Towards an Operating System for
Big Data

April 24, 2015

Byung-Gon Chun
Computer Science and Engineering Department
Seoul National University

Joint work with the REEF Apache Incubator project team



About Me

Backgrounds on operating and networked systems

My research centers around big data systems, cloud
computing, mobile systems, and security

Leader: Cloud and Mobile Systems Lab
(SW Star Lab)

Co-Founder: REEF Apache Incubator Project,
TaintDroid



About Me: Selected Projects

Mobile

TaintDroid

(OSDI ’10, CACM ’14, TOCS ’14)
Mantis

(USENIX ATC ’13)

Mobile-Cloud

CloneCloud

(HotOS 09, EuroSys '11)
Mobius

(MobiSys ’'12)

Backend

REEF (SIGMOD ’15, VLDB ’13)
Data Analytics Profiling (NSDI ’15)
Elastic Memory (HotOS ’15)
Pinterest Analysis

(SIGMETRICS ’14)

MegaPipe (OSDI '12)
RouteBricks (SOSP ’09)
NetComplex (NSDI ’08)

Attested AM (SOSP ’07)

DONA (SIGCOMM ’Q7)



How This Project Got Started



A Plethora of Open Source Big Data
Systems

( REEF
?

Create Intelligence™

HERSE Dryad Sl
(.IR P’t;
I3




From a Monolithic Big Data Processing
System

Hadoop v1
( )
Inter- :
Batch active Stream Mach.lne Graph
learning
query

AL

Hadoop MapReduce
(resource management, application scheduling, ...)

Distributed File System (HDFS)




A Recent Step Towards Refactoring Big
Data Processing Systems

Hadoop v2
E.g., ( h
MapBeduci Batch ntier— St Machine Graph
as a ||brary \s atc active ream Iearning rap
(application guery

I ymymyymy

Resource Manager (YARN)

Distributed File System (HDFS)

\. J

= Split up resource management and application job scheduling



Resource Managers




Resource Managers

Container




Resource Managers

True multi-tenancy...

Many workloads: Streaming,
Batch, Interactive, ...

Many users: Production Jobs,
Ad-Hoc Jobs, Experiments, ...

...but, only for sophisticated
apps




Resource Managers

True multi-tenancy...

Many workloads: Streaming,
Batch, Interactive, ...

Many users: Production Jobs,
Ad-Hoc Jobs, Experiments, ...

...but, only for sophisticated
apps

Fault tolerance
Pre-emption
Elasticity




Example 1:
SQL/MapReduce

Fault tolerance

Elasticity

01100 01100

10010 10010

00101 00101
01100
10010
00101

EEEEREEENE
HEEC B
HEEEEENEER
EEEEN-HEN
11111111




Example 2:
Machine learning

Fault tolerance
Elasticity

lterative computations

011000 01100
10010 10010
00101 00101

01100 01100
10010 10010
00101 00101




Graph processing . .

01100 01100
10010 10010
00101 00101

Fault tolerance S0 o110

00101 00101

Elasticity

lterative computations
Low latency
B . . . . . .




Silos

The flexibility comes
at a high cost in
development and
operation

01100 01100
10010 10010
00101 00101
. . . . 2 . . . . .
10010
00101

AL IIIIII
HEEEEEN I:I:

A 1118

A1 IIIII
EREREREENRNNN
EEEEEEEEREEERN




Decomposing Big Data Applications

* Control plane: coordinates application job
tasks, handles faults, provides heartbeats,
configures jobs, etc.

— Master-slave pattern

* Data plane: moves and processes data



Dive into Apache REEF



What is REEF (Retainable Evaluation
Execution Framework)?

A scale-out computing fabric that
eases the development of Big Data
applications on top of resource managers



REEF: Towards a Big Data
Operating System

Business Stream Machine
Intelligence  Processing Learning

Services I
REEF

BDOS

Resource Manager (YARN, Mesos, or HDInsight)

Distributed File System

v Reusable control plane for coordinating data plane tasks

v' Virtualization of resource managers

v Container and state reuse across tasks from heterogeneous
frameworks

v Simple configuration management

v’ Scalable event handling



Motivating Architectural Choice

e How to structure master and slave code?

* |nitial prototype based on Java Future:
pull-based API

* Problems
— Blocking call

— Tricky error handling
— Tricky performance tuning




Architectural Choice #1

* Application master based on event-driven
programming and engine (Wake)

* Asynchronous event push-based API

— User code (event handlers) that reacts to various REEF
events

* Progressive resource acquisition
* Easy error handling

* Easy performance tuning by properly allocating
thread pools to event handlers by Wake



Motivating Architectural Choice #2

* Typical way of configuration: A key-value model
for configuration

— More than 90% of options in seven open-source
projects totaling million lines of code (Rabkin and
Katz, 2011)

* Prone to misconfiguration

— Pervasive documentation errors for options that do
not exist and undocumented options

— Mismatching value type
— Overriding configurations
— Configuration mistakes (no default.fs.name)



Architectural Choice #2

* Configuration using Dependency Injection (Tang)
— Bind an implementation to an interface
— Bind a value to a configuration parameter

— Static configuration checks / object construction
time checks

— Avoid dynamic configuration done by
subscriptions at run time (e.g., use statically
configured event flows)



Architectural Choice #2

* Tang properties
— “Configuration” are just data
— Configuration options can be set at most once
— A large subset of Tang’s public APl is commutative
— IDE, static analysis and documentation tools
— Cross-language support



At Most Once

final Configuration driverConfiguration = DriverConfiguration. CONF
.set(DriverConfiguration.DRIVER_IDENTIFIER, "Hello")
.set(DriverConfiguration.DRIVER_IDENTIFIER, "HelloZ2”)
.set(DriverConfiguration. GLOBAL_LIBRARIES,
EnvironmentUtils.get(ClassLocation(HelloDriver.class))
.set(DriverConfiguration.ON_DRIVER_STARTED,
HelloDriver.StartHandler. class)
.set(DriverConfiguration.ON_EVALUATOR_ALLOCATED,
HelloDriver. EvaluatorAllocatedHandler.class);

java -cp target/reef-tutorial-1.0-SNAPSHOT-shaded.jar
edu.snu.cms.reef.tutorial.HelloREEF
Exception in thread "main" java.lang.lllegalArgumentException: Attempt to re-add:
[com.microsoft.tang.formats.RequiredParameter@507895d8] old value: Hello new
value Hello2
at com.microsoft.tang.util. MonotonicHashMap.put(MonotonicHashMap.java:28)
at
com.microsoft.tang.formats.ConfigurationModule.set(ConfigurationModule.java:138)
at edu.snu.cms.reef.tutorial.HelloREEF.getDriverConfiguration(HelloREEF.java:46)
at edu.snu.cms.reef.tutorial.HelloREEF.runHelloReef(HelloREEF.java:60)
at edu.snu.cms.reef.tutorial.HelloREEF.main(HelloREEF.java:79)



Motivating Architectural Choice

* Delay in spawning containers
— Container creation
— Execution code, library shipping

* Slow state sharing

— Write to/read from backend distributed file
system (e.g., HDFS)

— Sharing state across frameworks




Architectural Choice #3

* Retain container through an abstraction in
REEF

e State reuse across heterogeneous frameworks
— Local context that keeps state across tasks
— Multiple stackable contexts



Motivating Architectural Choice

* Control plane: master-slave pattern

* Not easy to set up the plane

— manually set up master, workers, and channels
between them

— Make the channels scalable
— Provide heartbeats




Architectural Choice

e Centralized control flow
— Container allocation & configuration
— Task configuration & submission

* Centralized error handling
— Task exceptions are thrown at the master
— Container failure is reported to the master

* Scalable communication channels
— Multiplexing events between two endpoints
— Periodic heartbeats from workers to master
— Multicast from master to workers




Architectural Choices Summary

Event-driven programming and engine
Configuration using dependency injection

Container and state reuse across heterogeneous
frameworks

Scalable control plane master-worker messaging



REEF Runtime Infrastructure

Driver Runtime: hosts the application control-
flow logic implemented in the Driver module

Environment Adapter: translate Driver resource
actions to the underlying resource manager
protocol
— Local Process, Apache YARN, Apache Mesos,

Azure HDInsight
Wake: asynchronous event processing
framework

Tang: configuration through dependency
Injection



REEF Runtime Infrastructure

executes application tasks
Evaluator implemented in the Task module, and

manages application state in the form
of Contexts

Retains state across Task executions
Context

Factors out core functionalities that
Service can be re-used across a broad range of
applications




REEF Application Framework

Application code that implements the
resource allocation and task scheduling

components.

1. Runtime Events
2. Evaluator Events
3. Task Events

Task Application code executed within an
Evaluator.

The application-supplied Task implementation has
access to its configuration parameters and the
Evaluator state, which is exposed as Contexts




REEF Control Flow

Yarn (& ) handles resource
management (security,
quotas, priorities) £ |

10010
00101

I¢.“

Per-job REEF Drivers (%
request resources,

coordinate computations,
and handle events: faults,

REEF Evaluators (. ) hold
hardware resources,
allowing multiple REEF Tasks

the same cached state




| EEEEERENEEEEN
Retained BN CEENENER

Evaluator & Context

and parsed data between
frameworks

lterative computation

Interactive queries

EENREEEEE- [/
TITEEETT




lsubmit job

-

>
launch

container

REEFRuntime

=

eI

REEF Control Flow: Job Life Cycle

public class DistributedShell {

public static void main(String[] args)

{
Injector i = new

Injector(yarnConfiguration);
REEF reef =

i.getInstance(REEF.class);

[ reef.submit(driverConf);

J

}

4




REEF Control Flow

ubmit job

-

>
launch

container

REEFRuntime

_>

public class DistributedShell {

public static void main(String[] args)

{

Injector i = new
Injector(yarnConfiguration);

REEF reef =
i.getInstance(REEF.class);

reef.submit(driverConf);

}
}

e




REEF Control Flow

Reques
ask for

container

<€

REEFRuntime
—

public class DistributedShellJobDriver {
private final EvaluatorRequestor
requestor;

public void onNext(StartTime time) {

, )
requestor.submit(

EvaluatorRequest.Builder()
.setSize(SMALL).setNumber(2)
.build()
)

. y,

s
}




REEF Control Flow

Allocated
Evaluatg

REEERuntime public class DistributedShellJobDriver {
private final EvaluatorRequestor
requestor;

—

signed token public void onNext(AllocatedEvaluator

eval) {
Configuration contextConf = ...;
eval.submitContext(contextConf)

}




REEF Control Flow

REEFRuntime

Context
Evaluator

-



REEF Control Flow

ActiveContext
REEFRuntime

-

Evaluator



REEF Control Flow

public—class
DistributedShellJobDriver {
private final String cmd = “dir”’;

[...]
public void onNext(ActiveContext
ctx) {
REEFRuntime final String taskId = [...];

Configuration taskConf =
Task.CONF
.Set(IDENTIFIER, "ShellTask")
.set(TASK, ShellTask.class)
.set (COMMAND, this.cmd)
build();

CTX.submitlask(taskconty;)

Task
Context [...]

Evaluator } 7



-

REEF Control Flow

REEFRuntime

Task

Context
Evaluator

vl vl

class ShellTask implements Task {
private final String command;

@Inject
ShellTask(@Parameter(Command.class)
String c) {
this.command = c;

}

private String exec(final String
command) {

,

@Override

public byte[] call(byte[] memento) {
String s = exec(this.cmd);
return s.getBytes();

}

4




REEF Control Flow

REEFRuntime
Node

—>

heartbeat()
Task

Context
Evaluator

Task

Context
Evaluator

.gz,
3 e 3
| ||| L

ol



REEF Control Flow

CompletedTa é
REEFRuntime

Task Task

Context

Evaluator Evaluator
Retains
State! .

Context

1l 15




REEF Control Flow

Task Task

Context Context
Evaluator Evaluator

P
=
o



REEF Control Flow

CompletedT?k
REEFRuntime

Task

Context
Evaluator

Task

Context
Evaluator




REEF Control Flow

Context.
close()

CompletedEvaluator
REEFRuntime




Current REEF Services

St Abstractions: Map and Spool
orage Local and Remote

Name-based data passing
Collective communication

Network

State Checkpointing
VERELEERSN Task suspend-resume




Adding Blocked Time Analysis to REEF

* Making Sense of Performance in Data Analytics
Frameworks (NSDI 2015): Spark

— Network optimizations can reduce job completion
time by at most 2%

— CPU (not I/0) often the bottleneck

* 19% reduction in completion time from optimizing disk
— Many straggler causes can be identified and fixed

* Importance of adding instrumentation for
blocked time analysis to understand how to best
focus on performance improvements



REEF Implementation

Cit Java CPP Total

Tang 10,567 6,976 0] 17,543
Wake 7,749 4,681 0 12,430
REEF 13,136 15,118 1,854 30,108
Services 0 5,319 0 5,319
Total 31,452 32,094 1,854 65,400

Lines of code by component and language




REEF Status

* Open-source Apache Incubator project (3" Apache
incubation from Korea) since August 12, 2014

e 22 committers; 7 PMC members from CMSLab
e Release 0.10.0

* http://reef.apache.incubator.org

b Apache Software Foundation Apache  Wimge.

L3
Z http://www.apache.org/ incubator..
search... % » REEF Project Incubation Status
General This page tracks the project status, incubator-wise. For more general project status, look on the project website.
. Welcome » Description
» Incubation Overview REEF (Retainable Evaluator Execution Framework) is a scale-out computing fabric that eases the development of

« Incubation Policy Big Data applications on top of resource managers such as Apache YARN and Mesos.
 Incubation Guides
» Roles and Responsibilities . News

» General FAQ . . .
« Incubator Wiki » 2014-08-12 Project enters incubation.



Applications



MS Azure Stream Analytics
Powered by REEF

Pricing Documentation Downloads Marketplace Blog Community Support

Stream Analytics PREVIEW

Real-time stream processing in the cloud
v/ Stream millions of events per second v/ Reliable performance and predictable results

v Perform real-time analytics v No hardware to deploy
v Correlate across multiple streams of data v Rapid development with familiar SQL-like language

Get started for free >

Pricing details » Documentation »

Real-time business insights

Stream Analytics is an event processing engine that helps uncover real-time insights from devices,
sensors, infrastructure, applications and data. It will enable various opportunities including Internet of
Things (IoT) scenarios such as real-time fleet management or gaining insights from devices like mobile

phones or connected cars.



CORFU on REEF (VMWare)

 CORFU (NSDI 2012): a distributed logging tool
providing applications with consistency and

transactional services at extremely high
throughput

* CORFU master deployed in a Driver
— A logging unit fails, the Driver is informed, and the
CORFU master reacts

 REEF Service for triggering checkpointing and
restarting a Driver from a checkpoint

* REEF decouples CORFU’s resource deployment
from its state, allowing CORFU to be elastic




CORFU on REEF

e Using CORFU from REEF: a CORFU log may be
used from other REEF jobs by linking with a
CORFU client-side library

* CORFU as a REEF service: CORFU and
application event handlers jointly implement
the control flow of the application



Surf: In-Memory Store for Big Data
Analytics (SNU, SKT)

Computation Frameworks:
Hadoop MapReduce, Hive, Spark, etc.

* In-memory distributed

caching tier on REEF Surf

— Flexible caching policies Lookup cache

location

— Elasticity . ’ Tasks\ \ \

_L[T =1[ 7
— Easy read access across =7 [
frameworks and base . ) Increas:\
) Policies Driver capacity
file systems

Decide replication

Base FS: Q

HDFS, S3, etc.



Surf: Interfaces

* Transparent backend FS-compatible Read/Write
Interface

— Address with surf://

— Compatible with existing frameworks
* Consistent addressing even on restart

— surf://yarn.reef-job-InMemory, instead of surf://host:port
e Command-Line Interface

— Preload data

— Manage policies

* Replication, Pinning, Write, Elasticity
— Manage caches



Elastic Machine Learning (SNU, MS)

Elastic group communication in REEF
— Scatter, gather, broadcast, reduce, ...
— Elastically add/remove nodes

— Handle faults at the task level

Elastic memory

— Elastically change memory resources for in-memory big
data analytics

— Solves the problem of the static allocation of resources for
low-latency interactive services, machine learning, etc.

Elastic ML runtime & optimizer
A new breed of elastic Machine Learning algorithms



The Applications Described
Underscore REEF’s Power

* A flexible framework for developing
distributed applications on Resource Manager
services

* A standard library of reusable system
components that can be easily composed (via
Tang) into application logic



REEF in Action



Cluster Setup

* YARN version 2.6 running on a cluster of 35
machines equipped with 128GB of RAM and
32 cores

* Microsoft Azure to allocate 25 D4 instances (8
cores, 28 GB of RAM and 400 GB of SSD disk
each): Overheads of REEF vs. Spark



Combined (REEF + YARN) Overheads
for Jobs with Short-lived (1s) Tasks

1,000 tasks ] 5,000 tasks
15% -

60% -
400/0 I 1 (5) ;o I
T 20% - % - .
OO/O pr— | - . O/ - - - -
10,000 tasks 100,000 tasks

% - 2 5% -
Xl 2.0% -

I183§°
R ll
O%'FF! ] ] 00/2 ..

o0 © Al <t (e 0)

|
Q0
QAN
F

Overhea

Number of evaluators

Overhead = actual _runtime/ideal runtime -1



Overhead of REEF and Spark for Jobs
with Short-lived Tasks (100ms)

100 }

'1 \/ A
v
aS A
- ra A
B L)

Overhead (seconds)

Number of tasks



Evaluator/Task Allocation and Launch
Time Breakdown

|
0O 32 64 96 128 160 192 224 256
Number of evaluators allocated

Container Evaluator Task
Allocation Launch Launch



Interactive Distributed Shell

30 -
—o— 1 8 64
10 - Number of _
Evaluators e 16 128

@ 3 - 4 32 —o— 256
)
£
|_

| |
1 5 10 15 20
Subsequent commands



Quick Ramp Up Thanks to Elastic
Machine Learning

.5 0.75— - -
© 0.70 -
-

& 0.65 -

()
= 0.60 -

8 h\—\_\_\_ T
‘5 0.55 - i

o - o

| - = Non-elastic BGD
|
, — Elastic BGD
|
|

Time (min.)




Learning Progress over Iterations with
Faulty Partitions

S Dataset A Dataset B

©0.20 - 0.57 -

2 0.18 - 0.56 -

© 0.16 - 0.55 -

5 0.14 1 et 0.54 -

D0.12 - N e ~|0.53 -

0 I I I I I I I I I
0 250 500 750 1000 25 50 75 100

lteration

___No _ _ lgnore ____ Approximate

- failures """ failed partitions """ failed partitions



What’s Next?



What's Next?

* Create a high-performance Big Data stack
based on REEF
— Big data operating system

e Exciting infrastructure services (e.g. Elastic Memory
(HotOS 2015))

— Unified data management
— Programming layer

 Grow the Apache REEF incubator project to
become a TLP project



REEF: Towards a Big Data
Operating System

Business Stream Machine
Intelligence  Processing Learning

Services I
REEF

BDOS

Resource Manager (YARN, Mesos, or HDInsight)

Distributed File System

v Reusable control plane for coordinating data plane tasks

v' Virtualization of resource managers

v Container and state reuse across tasks from heterogeneous
frameworks

v Simple configuration management

v’ Scalable event handling



THANK YOU!

http://reef.incubator.apache.org

Contact: Byung-Gon Chun
bgchun@snu.ac.kr




