
Software Vulnerability
Discovery

Heejo Lee
Center for Software Security and Assurance

Korea University
Dec 4, 2015

Software Vulnerabilities
• Definition

 An unintended flaw in software code (or a system) that leaves it
open to the potential for exploitation in the form of unauthorized
access or malicious behavior such as viruses, worms, Trojan horses
and other forms of malware

› http://www.webopedia.com/TERM/S/security_vulnerability.html

 A vulnerability is a weakness which allows an attacker to reduce a
system's information assurance. Vulnerability is the intersection of
three elements: a system susceptibility or flaw, attacker access to
the flaw, and attacker capability to exploit the flaw

› https://en.wikipedia.org/wiki/Vulnerability_(computing)

2

http://www.webopedia.com/TERM/S/security_vulnerability.html
https://en.wikipedia.org/wiki/Vulnerability_(computing)

Cases of Vulnerabilities

Intrusion: Internet Worm (1988)

Reuse: HeartBleed (2014)

Human Life: Car & Airplain Hacking (2015)

3

Cases of Vulnerabilities

• Intrusion: Internet Worm (1988)
 The Morris worm or Internet worm of

November 2, 1988 was one of the first
computer worms distributed via the
Internet

 It was the first to gain significant
mainstream media attention. It also
resulted in the first felony conviction in
the US under the 1986 Computer Fraud
and Abuse Act

 It worked by exploiting known
vulnerabilities in Unix sendmail, finger,
and rsh/rexec, as well as weak passwords

4

Disk containing the source code
for the Morris Worm held at
the Computer History Museum,
Mountain View, California, USA

https://en.wikipedia.org/wiki/File:Morris_Worm.jpg
https://en.wikipedia.org/wiki/File:Morris_Worm.jpg

Cases of Vulnerabilities
• Reuse: HeartBleed (2014)

 The Heartbleed Bug is a
serious vulnerability in the
popular OpenSSL
cryptographic software
library

 This weakness allows
stealing the information
protected, under normal
conditions, by the SSL/TLS
encryption used to secure
the Internet

5

Cases of Vulnerabilities

• Human Life:
Car & Airplane Hacking (2015)
 Chrysler announced that it’s issuing a

formal recall for 1.4 million vehicles
that may be affected by a hackable
software vulnerability in Chrysler’s
Uconnect dashboard

 U.S. commercial airliners could be
hacked in flight by passengers using a
plane's wireless entertainment
system to access its flight controls

6

Jeep’s brakes were remotely disabled

Vulnerabilities by Date
• Common Vulnerabilities and Exposures (CVE)

 A reference-method for publicly known information security
vulnerabilities and exposures

 MITRE Corporation maintains the system, with funding from the
National Cyber Security Division of the United States Department of
Homeland Security

7

72,240 of vulnerabilities reported at CVE in Dec 2, 2015

CVSS Score Distribution for
All Vulnerabilities
• NVD Vulnerability Severity Ratings

 Open industry standard for assessing the severity of vulnerabilities
 The scores range from 0 to 10

8

High CVSS covers 41% of CVE’s vulnerabilities

CWE
• Common Weakness Enumeration

 Creating a catalog of software weaknesses and vulnerabilities
 The goal of the project is to better understand flaws in software and

to create automated tools that can be used to identify, fix, and prev
ent those flaws

 The project is sponsored by Mitre Corporation

9

Vulnerabilities Scanning

• Metasploit (http://www.metasploit.com/)

• Nessus (http://www.tenable.com/products/nessus-vulnerability-scanner)

• OpenVAS (http://www.openvas.org/)

Net Scanners

• w3af (http://w3af.org/)

• Nikto (https://cirt.net/Nikto2)

• Paros (http://www.testingsecurity.com/paros_proxy)

Web Scanners

10

Net Scanners
• Metasploit Project

 The Metasploit Project is a computer security project that provides
information about security vulnerabilities and aids in penetration
testing and IDS signature development

 Its best-known sub-project is the open source Metasploit
Framework, a tool for developing and executing exploit code
against a remote target machine

 It is world's most used
penetration testing software

11

Net Scanners
• Nessus

 Nessus is a proprietary comprehensive vulnerability scanner which
is developed by Tenable Network Security. It is free of charge for
personal use in a non-enterprise environment

 According to surveys done 2009 by sectools.org, Nessus is the
world's most popular vulnerability scanner, taking first place in the
2000, 2003, and 2006 security tools survey. Tenable Network
Security estimated year 2005 that it was used by over 75,000
organizations worldwide

12

https://en.wikipedia.org/wiki/File:Nessus_Vulnerability_Scanner_Logo.png
https://en.wikipedia.org/wiki/File:Nessus_Vulnerability_Scanner_Logo.png

Net Scanners
• OpenVAS

 OpenVAS is a framework of several services and tools offering a
vulnerability scanning and vulnerability management solution

 OpenVas began, under the name of GNessUs, as a fork of the
previously open source Nessus scanning tool after Tenable Network
Security changed it to a proprietary (closed source) license in
October 2005

 All OpenVAS products are
Free Software

› Most components are
licensed under the GPL

13

https://en.wikipedia.org/wiki/File:OpenVAS4-Structure.png
https://en.wikipedia.org/wiki/File:OpenVAS4-Structure.png

Web Scanners
• w3af

 w3af (web application attack and audit framework) is an open-
source web application security scanner

 The project provides a vulnerability scanner and exploitation tool
for Web applications

 After identification, vulnerabilities like (blind) SQL injections, OS
commanding, remote file inclusions (PHP), cross-site scripting (XSS),
and unsafe file uploads, can be exploited in order to gain different
types of access to the remote system

14

https://en.wikipedia.org/wiki/File:W3af-screenshot.png
https://en.wikipedia.org/wiki/File:W3af-screenshot.png
https://en.wikipedia.org/wiki/File:W3af_project_logo.png
https://en.wikipedia.org/wiki/File:W3af_project_logo.png

Web Scanners
• Paros

 Paros is a valuable testing tool
for your security and
vulnerability testing

 Paros can be used to
spider/crawl your entire site,
and then execute canned
vulnerability scanner tests

 It was used to attack KT, 2014
• Nikto Web Scanner

 It is a Web server scanner that
tests Web servers for
dangerous files/CGIs,
outdated server software and
other problems

 It performs generic and server
type specific checks

 It also captures and prints any
cookies received

15

Finding Zero-day Vulnerabilities
• Zero-day Vulnerabilities

 An undisclosed computer application vulnerability that could be
exploited to adversely affect the computer programs, data,
additional computers or a network

 Known as a "zero-day" because once the flaw becomes known, the
application author has zero days in which to plan and advise any
mitigation against its exploitation (by, for example, advising
workarounds or issuing patches)

• Methods of finding zero-day vulnerabilities
 Dynamic analysis of binaries and network protocols

› Done by automated Black-box testing
 Static analysis of source codes

› Done by automated White-box testing

16

Black-box Test Research

17

“Black-box testing is a method of software testing that examines the
functionality of an application without peering into its internal structures
or workings” - Wikipedia

• The tester is aware of what the software is supposed to
do but is not aware of how it does it

• Test cases generation
• generally derived from external descriptions of the

software
• specifications
• requirements
• design parameters

Black-box Test Research

18

• Test designer selects both valid and invalid inputs and
determines the correct output

• In penetration testing, the goal of a black-box penetration
test is to simulate an external hacking or cyber warfare
attack

• Open source fuzzing tools
• Binary Fuzzing : AFL, Peach, Sulley, etc.
• Network Fuzzing : Protos, Pwntooth, etc.

American Fuzzy Lop (AFL)
• Compile-time dynamic fuzzer
• Security-oriented fuzzer that employes a novel type of

compile-time instrumentation
 Automatically discover clean, interesting test cases that trigger new

internal states in the targeted binary

19

AFL fuzzing example

Peach Fuzzer
• Easy-to-launch fuzzer with XML libraries
• Open source fuzzing platform under MIT license

 Provides extensive library of test definitions (Pits)
› For binary & network etc.

20

Binary(Firmware) Fuzzing

Sulley Fuzzer
• Easy-to-configure fuzzer with python template
• Open source fuzzing platform under GNU license

 Python-based customization
 Provides library extensions

› For binary & network fuzzing

21

Web monitoring interface (example)

Protos Project
• Protocol implementations fuzzing project

 By Oulu University Secure Programming Group (OUSPG)

• To study, evaluate and develop methods of implementing
and testing application and system software
 In order to prevent, discover and eliminate implementation level

security vulnerabilities

22

Protos project webpage

Pwntooth
• Automated packet mutation fuzzer
• Designed to automate Bluetooth penetration testing

 Scans for the devices, runs the tools
› Blueper / Bluesnarfer / BSS / carwhisper

23

Bluetooth Stack Smasher
(example)

Research Related
• Program-Adaptive Mutational Fuzzing (2015, CMU)

 Leverage white-box symbolic analysis on an execution trace for a
given program-seed pair to detect dependencies among the bit
positions of an input

 Use the dependency relation to compute optimal mutation ratio

• Optimized Seed Selection (2014, CMU)
 How to mathematically formulate and reasonabout one critical

aspect in fuzzing: how best to pick seed files to maximize the total
number of bugs found

24

Research Related (Cont.)
• Scheduling Black-box Mutational Fuzzing

(2013, CMU)
 How to schedule the fuzzings in order to maximize the number of

unique bugs found at any point in time
 The algorithm presented outperforms the multi-armed bandit

algorithm in the current version of the CERT Basic Fuzzing
Framework (BFF) by finding 1.5x more unique bugs in the same
amount of time

25

What is White-box Testing?
• Method of testing software with the knowledge of internal

structure of application
① Source code (e.g. C, C++, …) is given as an input

② Detect and verify the vulnerability in the source code (Static, Dynamic)

③ Report the vulnerability

26

Code 1
Code 2

…
…

Code n

Code 1
Code 2

…
…

Code n

Report
Vulnerability

White-box
Testing

Platform
①

② ③

How to Detect & Verify Vulnerability?

• Example of detection : Code Clone Detection
 A set of identical or similar piece of code
 Dangerous when vulnerable code is reused
 Various detection methods

› Token, Abstract Syntax Tree, Dependency Graph based

• Example of Verification : Concolic execution
 Concolic = CONCrete + symbOLIC

› Trace all source code path by using symbolic input
› Symbolic input is a representation of input

which is used to generate random value

27

Example of Language-dependent
Tools
• Junit

 Framework for write and run repeatable unit test
 Test whether program works as expected
 Work on Java code

• FindBugs
 Static code analysis tool
 Using bug patterns, find the code

that are likely to be error
 Work on Java code

28

< Example of Unit Test : sum(10, 20) == 30 >

Example of Commercial Tools (1)
• Coverity

 Perform static and dynamic analysis
 Analyze code level vulnerability and

system fault
 Support C and C++ code

• Fortify
 Static analysis tool
 Support vulnerability definition

› OWASP, CWE, CERT, …
 Multilanguage support

29

Example of Commercial Tools (2)
• CodeSonar

 Static analysis tool
 Support C, C++, Java code

• Sparrow
 Semantic based static analysis tool
 Multilanguage support

› C, C++, Java, PHP, …
 Support vulnerability definition

› CWE, CERT, …

30

Our Research: Code Clone (1)
• Code clone vulnerability illustrated

 Vulnerability still exists even after the patch has been released

31

Our Research: Code Clone (2)
• Code clone vulnerability is found on latest Smartphone’s

source code

32

3
0

4
0 1

6 6

26

34

0

5

10

15

20

25

30

35

40

2007 2008 2009 2010 2011 2012 2013 2014 2015

Co
un

t(
s)

Year of CVE

CVE Count(s) by Year

1 1

9
7

2

23

2 1

7

25

1
0

5

10

15

20

25

30

0 1.9 2.1 4.6 4.7 4.9 5 5.2 6.9 7.2 10

Co
un

t(
s)

CVSS Score

CVE Count(s) by CVSS Score

<Statistics of code clone vulnerabilities by CVE Counts>

*CVSS: Common Vulnerability Scoring System*CVE: Common Vulnerabilities and Exposures

Our Research: CLORIFI (1)
• CLORIFI: Software Vulnerability Discovery using Code Clone Verification

• CLORIFI is composed of 3 steps:
 Step 1: Code Clone Detection

› Use CVE patch and source code to detect code clone vulnerabilities
 Step 2: Backward Sensitive Data Tracing

› Backward data tracing from vulnerable point to the initial user input
and insert the test code

 Step 3: Vulnerability Verification
› Verify the vulnerability by using the randomly generated input

33

Our Research: CLORIFI (2)
• Main contribution is in Step 2:

Backward Sensitive Data Tracing
 Starting from the sensitive sink,

backwardly trace to find its
entry point

 Only consider the input which is
related to sensitive sink

› In the right example, only consider
Input 1 among 3 inputs

• Reduce the whole input search space
 Mitigate path explosion problem occurred in other mechanism
 Other mechanism analyze the program from its all entry point

which cause exponential growth of searching time

34

Strength of Our Research
• Reduce the false positive

 Most commercial tools have a huge amount of
false positive

 Reduce the false positive by code clone based
detection and perform multiple verification phase

• Consider the priority
 Find the vulnerability to solve first
 ex) CVSS Score

• Publication
 CLORIFI: software vulnerability discovery using code clone

verification, Concurrency and Computation: Practice and
Experience, Apr. 2015.

 A scalable approach for vulnerability discovery
based on security patches, ATIS 2014. (Best Paper Award)

 Software vulnerability detection using backward trace
analysis and symbolic execution, ARES 2013

35

Center for Software
Security and Assurance
http://cssa.korea.ac.kr/

36

Overview

Center for Software Security and Assurance (CSSA) was established in
2015 for the purpose of building an Automated Analysis Platform which
enables even non-experts to deal with the known or unknown
vulnerabilities of IoT software professionally.

< Concept of Automated Analysis Platform for IoT SW Vulnerabilities Detection >

 Cooperation with research teams with 3
universities of the world top 10 (3rd, 4th, 9th)
to develop world-leading source technology

 Hold each online/offline meeting periodically
 Found international joint research center in Korea

University
 2 Months of research abroad (Dispatch 3~6

students to 3 overseas universities)
 Monthly online research meeting / Quarterly overall

result sharing meeting / Yearly offline result
announcement meeting

International Joint Research

 World-leading hacking team CMU PPP &
Domestic hacking group CodeRed

 Hold seminars and exchange technique

 Incognito: Union of 12 university security clubs
 Introduce automatic SW vulnerability analyzing

technique and hold vulnerability detection contest

 Meeting with a consulting group
 Hold advisory committee 2 times per year
 Feedback and verification of usability

Community Connection & Consultation

International Joint Research

Automatic Verification
of Software Error International Joint Research

Automatic detection of
Binary Vulnerability

System SW

Vulnerability
analysis and action

Wireless Protocol

Community activation

Source
code

Binary

Smart
Fuzzing

Vulnerability
Detection

IoT Software vulnerability
automatic analyzing
technique platform

“Here have we established the center for everyone in the world
who can secure their own IoT devices by themselves!”

Center Mission

Research Mission

• Enabling low cost evaluation of vulnerabilities in
small-sized SW

• Secure IoT-based society infrastructure

Technical
aspect

Economic &
Incustrial
aspect

Social
aspect

• Enforcing IoT SW & Network security

• Simple evaluation even for non-experts

Access http://cssa.korea.ac.kr

Conclusion
• Current Status

 The number of software vulnerabilities is increasing continuously
 Finding known vulnerabilities is not enough to overcome

current security threat

• Way to go
 Finding/building unknown vulnerabilities discovery on development

environment ahead of time
 Even non-experts could deal with the unknown vulnerabilities of IoT

software professionally

40

	Software Vulnerability Discovery
	Software Vulnerabilities
	Cases of Vulnerabilities
	Cases of Vulnerabilities
	Cases of Vulnerabilities
	Cases of Vulnerabilities
	Vulnerabilities by Date
	CVSS Score Distribution for �All Vulnerabilities
	CWE
	Vulnerabilities Scanning
	Net Scanners
	Net Scanners
	Net Scanners
	Web Scanners
	Web Scanners
	Finding Zero-day Vulnerabilities
	Black-box Test Research
	Black-box Test Research
	American Fuzzy Lop (AFL)
	Peach Fuzzer
	Sulley Fuzzer
	Protos Project
	Pwntooth
	Research Related
	Research Related (Cont.)
	What is White-box Testing?
	How to Detect & Verify Vulnerability?
	Example of Language-dependent Tools
	Example of Commercial Tools (1)
	Example of Commercial Tools (2)
	Our Research: Code Clone (1)
	Our Research: Code Clone (2)
	Our Research: CLORIFI (1)
	Our Research: CLORIFI (2)
	Strength of Our Research
	Center for Software Security and Assurance
	슬라이드 번호 37
	슬라이드 번호 38
	슬라이드 번호 39
	Conclusion

