Software Vulnerability
Discovery

Heejo Lee
Center for Software Security and Assurance
Korea University
Dec 4, 2015

o9 KOREA £3-(SSA

B/ UNIVERSITY comers

Software Vulnerabilities

e Definition

= An unintended flaw in software code (or a system) that leaves it
open to the potential for exploitation in the form of unauthorized
access or malicious behavior such as viruses, worms, Trojan horses
and other forms of malware

» http://www.webopedia.com/TERM/S/security vulnerability.html

= A vulnerability is a weakness which allows an attacker to reduce a
system's information assurance. Vulnerability is the intersection of
three elements: a system susceptibility or flaw, attacker access to
the flaw, and attacker capability to exploit the flaw

» https://en.wikipedia.org/wiki/Vulnerability (computing)

%) KOREA £=-[GS A 2

UNIVERSITY comeerm

http://www.webopedia.com/TERM/S/security_vulnerability.html
https://en.wikipedia.org/wiki/Vulnerability_(computing)

Cases of Vulnerabilities

—[Intrusion: Internet Worm (1988)

—[Reuse: HeartBleed (2014)

)))

—[Human Life: Car & Airplain Hacking (2015)

Cases of Vulnerabilities

 Intrusion: Internet Worm (1988)

= The Morris worm or Internet worm of
November 2, 1988 was one of the first
computer worms distributed via the
Internet

It was the first to gain significant
mainstream media attention. It also
resulted in the first felony conviction in
the US under the 1986 Computer Fraud
and Abuse Act

It worked by exploiting known
vulnerabilities in Unix sendmail, finger,
and rsh/rexec, as well as weak passwords

8 KOREA

UNIVERSITY comeerm

CSSA

£y
Disk containing the source code
for the Morris Worm held at
the Computer History Museum,
Mountain View, California, USA

4

https://en.wikipedia.org/wiki/File:Morris_Worm.jpg
https://en.wikipedia.org/wiki/File:Morris_Worm.jpg

Cases of Vulnerabilities

e Reuse: HeartBleed (2014)

* The Heartbleed Bug is a
serious vulnerability in the
popular OpenSSL
cryptographic software
library

= This weakness allows
stealing the information
protected, under normal
conditions, by the SSL/TLS
encryption used to secure
the Internet

8 KOREA £ =

UNIVERSITY comerrm

Client

Client

GSSA

Server, send me

this 4 letter word

if you are there:
"bird"

—

Server, send me
this 500 letter
word if you are

_there: bird Y,

% Heartbeat - Normal usage

bird

V4

W Heartbeat - Malicious usage

bird. Server
master key is

| 31431498531054.

User Carol wants
to change
password to
"password 123"...

- User Carol wants

[letters: bird. Serve
| master key is

Server
A13as conneccea.

User Bob has
connected. User
Alice wants 4
letters: bird. Serve
master key is
31431498531054
User Carol wants
change password
.. 123" 7

Server
.1ds conneccea.

User Bob has
connected. User
Mallory wants 50C

31431498531054

change password
u 1123" 7

Cases of Vulnerabilities

e Human Life:
Car & Airplane Hacking (2015)

= Chrysler announced that it’s issuing a
formal recall for 1.4 million vehicles
that may be affected by a hackable
software vulnerability in Chrysler’s
Uconnect dashboard

= U.S. commercial airliners could be
hacked in flight by passengers using a
plane's wireless entertainment
system to access its flight controls

Jeep’s brakes were remotely disabled

%) KOREA £=-(,00 A

UNIVERSITY comeerm

Vulnerabilities by Date

e Common Vulnerabilities and Exposures (CVE)

= Areference-method for publicly known information security
vulnerabilities and exposures

= MITRE Corporation maintains the system, with funding from the

National Cyber Security Division of the United States Department of

Homeland Security

Vulnerabilities By Year

2158

1677 mu 1525
&l

7848

5510 8520

5R22 5736 - 5843
<HC 5181
4934 4651
4155
2450 I

1999 204
2000 1020
M 2001 1877
M 2002 2158
2003 1528
2004 2450
2005 4834
M 2006 5810
M 2007 8520
2008 5632
2009 5738
2010 4851
W 2011 4155
M 2012 5207
2013 5191
2014 7948
2015 5243

72,240 of vulnerabilities reported at CVE in Dec 2, 2015
) KOREA £

UNIVERSITY

== (OSA

CVSS Score Distribution for

All Vulnerabilities
 NVD Vulnerability Severity Ratings

= Open industry standard for assessing the severity of vulnerabilities
= The scores range from 0 to 10

Distribution of all vulnerabilities by Vulnerability Distribution By CV55 Scores
CVSS Scores CWSS5 Score Ranges
CVSS Number Of |

Percentage N

Score Vulnerabilities 10285

o 2] ou
3-4
12 542 0.70 14232 14820 s
2-3 2086 4.10 a5
= 10444
3-4 1748 2.40 2574 -7
T-8
45 14232 19.50 oo
5-6 14820 20.30 I WMo
6-7 8879 12.20 83 542 174 308
—
7-8 18865 25.90
8-9 09 0.40
- 10444 14.30
Total 72918

Weighted Average CVSS Score: 6.8

High CVSS covers 41% of CVE’s vulnerabilities

: ”" KOREA f-"—@SSA .

UNIVERSITY comeero

CWE

e Common Weakness Enumeration
= Creating a catalog of software weaknesses and vulnerabilities

= The goal of the project is to better understand flaws in software and
to create automated tools that can be used to identify, fix, and prev
ent those flaws

® The project is sponsored by Mitre Corporation

CWE-2000: Comprehensive CWE Dictionary

¥ View Metrics

| | |
Total 1003 out of 1003
Views 32 out of 32
Categories 244 out of 244
Weaknesses 719 out of 719
Compound_Elements 8 out of 8

%) KOREA £=-(,G0

UNIVERSITY comeerm

Vulnerabilities Scanning

—[Net Scanners }

e Metasploit (http://www.metasploit.com/)

e Nessus (http://www.tenable.com/products/nessus-vulnerability-scanner)

e OpenVAS (http://www.openvas.org/)

Web Scanners

o w3af (http://w3af.org/)
o Nikto (nhttps://cirt.net/Nikto2)
e Paros (http://www.testingsecurity.com/paros_proxy)

8 KOREA £2-(SS A

&) UNIVERSITY o

10

Net Scanners

e Metasploit Project

= The Metasploit Project is a computer security project that provides
information about security vulnerabilities and aids in penetration
testing and IDS signature development

= |ts best-known sub-project is the open source Metasploit
Framework, a tool for developing and executing exploit code
against a remote target machine

= |t is world's most used etzsploit
penetration testing software

6=
=)=

—————————

@ KOREA =-(SSA 1

Net Scanners

e Nessus

= Nessus is a proprietary comprehensive vulnerability scanner which
is developed by Tenable Network Security. It is free of charge for
personal use in a non-enterprise environment

= According to surveys done 2009 by sectools.org, Nessus is the
world's most popular vulnerability scanner, taking first place in the
2000, 2003, and 2006 security tools survey. Tenable Network
Security estimated year 2005 that it was used by over 75,000
organizations worldwide

Q) Nessus

vulnerability scanner

T KOREA £3-(SSA 12

A%/ UNIVERSITY ..

https://en.wikipedia.org/wiki/File:Nessus_Vulnerability_Scanner_Logo.png
https://en.wikipedia.org/wiki/File:Nessus_Vulnerability_Scanner_Logo.png

Net Scanners

* OpenVAS

= OpenVAS is a framework of several services and tools offering a
vulnerability scanning and vulnerability management solution

= OpenVas began, under the name of GNessUs, as a fork of the
previously open source Nessus scanning tool after Tenable Network

Security changed it to a proprietary (closed source) license in
October 2005

= All OpenVAS products are 2> 9PenVAS | guras I ey I Sseciny I
Assistant Deskaop

Free SOftwa re Scan Tangels p :

> Most components are ' | !
licensed under the GPL . e I Openvas I OpenvAS I

Scanner Manager Administrator
L |

NVT's I Results, l
Configs

%) KOREA-=-(SS A 13

UNIVERSITY comeerm

https://en.wikipedia.org/wiki/File:OpenVAS4-Structure.png
https://en.wikipedia.org/wiki/File:OpenVAS4-Structure.png

Web Scanners

e w3af

= w3af (web application attack and audit framework) is an open-
source web application security scanner

= The project provides a vulnerability scanner and exploitation tool
for Web applications

= After identification, vulnerabilities like (blind) SQL injections, OS
commanding, remote file inclusions (PHP), cross-site scripting (XSS),
and unsafe file uploads, can be exploited in order to gain different

types of access to the remote system . ’@wgaf

; KOREA -'—2-@88/\

UNIVERSITY .. 14

https://en.wikipedia.org/wiki/File:W3af-screenshot.png
https://en.wikipedia.org/wiki/File:W3af-screenshot.png
https://en.wikipedia.org/wiki/File:W3af_project_logo.png
https://en.wikipedia.org/wiki/File:W3af_project_logo.png

Web Scanners

e Paros

= Paros is a valuable testing tool
for your security and
vulnerability testing

= Paros can be used to
spider/crawl your entire site,
and then execute canned
vulnerability scanner tests

= |t was used to attack KT, 2014

e Nikto Web Scanner

= |tis a Web server scanner that
tests Web servers for
dangerous files/CGls,
outdated server software and
other problems

= |t performs generic and server
type specific checks

= |t also captures and prints any
cookies received

KT oliZ, “&l 7HE Al 1Sak 0| ==5IX] E50toF

E” o12yum - 2014-03-07 1609 g 238 & zziEsp| ==

i 502 L ¥ =5 TR

Q| sjZ 0|2 = =13 Fiddler-Odysseus-Achilles S & 67|
SGA, A AE 9 HAgE A7 HX Zot S 107HK] H|A|

Hot

[2etr2 ZZO0 kT2l 12008 Fo| JHQAHET P22 QlEf) FEETA JHeH L0
st =20

& 0H]
oHo| Z5=5 X1 QUL

D Ol HE MMEH Haghc

%) KOREA =[S/ 15

UNIVERSITY comerrm

Finding Zero-day Vulnerabilities

e Zero-day Vulnerabilities

= An undisclosed computer application vulnerability that could be
exploited to adversely affect the computer programs, data,
additional computers or a network

= Known as a "zero-day" because once the flaw becomes known, the
application author has zero days in which to plan and advise any
mitigation against its exploitation (by, for example, advising
workarounds or issuing patches)

 Methods of finding zero-day vulnerabilities

= Dynamic analysis of binaries and network protocols
> Done by automated Black-box testing

= Static analysis of source codes
> Done by automated White-box testing

%) KOREA £=-[GS A 16

UNIVERSITY comerrr

Black-box Test Research

“Black-box testing is a method of software testing that examines the
functionality of an application without peering into its internal structures
or workings” - Wikipedia

 The tester is aware of what the software is supposed to
do but is not aware of how it does it

e Test cases generation
e generally derived from external descriptions of the
software
e specifications
* requirements
e design parameters

8 KOREA £=-(SS A 17

8/ UNIVERSITY e

Black-box Test Research

e Test designer selects both valid and invalid inputs and
determines the correct output

* In penetration testing, the goal of a black-box penetration
test is to simulate an external hacking or cyber warfare
attack

e Open source fuzzing tools
 Binary Fuzzing : AFL, Peach, Sulley, etc.
 Network Fuzzing : Protos, Pwntooth, etc.

American Fuzzy Lop (AFL)

e Compile-time dynamic fuzzer

e Security-oriented fuzzer that employes a novel type of
compile-time instrumentation

= Automatically discover clean, interesting test cases that trigger new
internal states in the targeted binary

american fuzzy lop 0.47b (readpng)

- process timing overall results
run time : 0 days, 0 hrs, 4 min, 43 sec cycles done :
h : 0 days, 0 hrs, 0 min, 26 sec
: none seen yet ui
: 0 days, 0 hrs, 1 min, 51 sec uniq hangs :
S5 map coverage
ng - 38 (19.49%) 1ap de ty @ 1217 (7.43%)
t - 0 (0.00%) coun je : }2.55 bits/tuple
55 apth
: interest 32/8 favore . - 128 (65.64%)
: 0/9990 (0.00%) 1 1 : 85 (43.59%)
: 654k 0 s - 0 (0 unique)
- 2306/sec total hangs : 1 (1 umique)
Jtrategy yields path geometry
s : B8/14.4k, 6/14.4k, 6/14._4k levels : 3
ps : 0/1804, 0!1?86 1f1?50
: 31/126k, 3/45.6k, 1/17.8k
: 1/15.8k, 4/65.8k, 6/78.2k
: 34{254k, 0/0
- 2876 B/931 (61.45% gain)

AFL fuzzing example

%) KOREA £=-[,GS A 19

UNIVERSITY

Peach Fuzzer

e Easy-to-launch fuzzer with XML libraries

e Open source fuzzing platform under MIT license
= Provides extensive library of test definitions (Pits)
» For binary & network etc.

2 Device
= LA SECURITY TESTING LIK ,{'.""_}_
" DISCOVER UNKNOWN o4
Peach

Binary(Firmware) Fuzzing

%) KOREA £=-(,00 A 20

UNIVERSITY comeerm

Sulley Fuzzer

e Easy-to-configure fuzzer with python template

e Open source fuzzing platform under GNU license
= Python-based customization

= Provides library extensions
» For binary & network fuzzing

Sulley Fuzz Control

Total:

5168: op-3: 4

FEsume

141 Unable to disassemhble at 41414141 from thread &

Web monitoring interface (example)

Protos Project

* Protocol implementations fuzzing project
= By Oulu University Secure Programming Group (OUSPG)

e To study, evaluate and develop methods of implementing
and testing application and system software

= |n order to prevent, discover and eliminate implementation level
security vulnerabilities

A

NIVERSITY of OULU !;:S

EE;‘E:J;".%%"“M Oulu University Secure Programming Group
SeNavigation
* HelpContents ABSTRACT

The purpose of the Oulu University Secure Programming Group (OUSPG) is to study, evaluate and
develop methods of implementing and testing application and system software in order to prevent,
discover and eliminate implementation level security vulnerabilities in a pre-active fashion. Our focus
is on implementation level security issues and software security testing

Research Group History

Acfive as an independent and academic research group in the @ Computer Engineering Laboratory
since summer 1996.

Current Activities

- Black-box testing for software vulnerabilities

- Vulnerability tracking of disclosures Protos prOject Webpage

- Integrating secure programming in local curriculum
- Study of the vulnerability classifications and taxenomies
= Study of the life-cycle of the software vulnerabilities
A number of our research tools can be found from our &) GitHub page 22

Pwntooth

 Automated packet mutation fuzzer

e Designed to automate Bluetooth penetration testing

= Scans for the devices, runs the tools
> Blueper / Bluesnarfer / BSS / carwhisper

'+] Fuzzing start <OBEX>...

+] original Packet (The first normal packet)

'+] 86 81 82 63 64 65 B6 67 68 09 A 6B 6C 6D BE OF
+] 18 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D

of tested inputs :

prtOBEX:: connect_rfcomm, connect() failed
Connection refused

ND RESPONSE

0OBEX might be crashed. Check it out

86 F7 87 E7 BF oC 42 8D 13 50 6D 1C DC A9 B3 61
7> 84 BD 2D 598 9B 44 EO BO E5 C1 @A BD 7D

root@ubuntu: fhomeforenffuzz /bluetooth _fuzz# [

Bluetooth Stack Smasher
(example)

Research Related

e Program-Adaptive Mutational Fuzzing (2015, CMU)

= Leverage white-box symbolic analysis on an execution trace for a
given program-seed pair to detect dependencies among the bit
positions of an input

= Use the dependency relation to compute optimal mutation ratio

e Optimized Seed Selection (2014, CMU)

= How to mathematically formulate and reasonabout one critical
aspect in fuzzing: how best to pick seed files to maximize the total
number of bugs found

8 KOREA £=-(SS A 24

8/ UNIVERSITY e

Research Related (Cont.)

e Scheduling Black-box Mutational Fuzzing
(2013, CMU)

= How to schedule the fuzzings in order to maximize the number of
unique bugs found at any point in time

= The algorithm presented outperforms the multi-armed bandit
algorithm in the current version of the CERT Basic Fuzzing
Framework (BFF) by finding 1.5x more unique bugs in the same
amount of time

8 KOREA £=-(SS A 25

8/ UNIVERSITY e

What is White-box Testing?

« Method of testing software with the knowledge of internal
structure of application

@ Source code (e.g. C, C++, ...) is given as an input
@ Detect and verify the vulnerability in the source code (Static, Dynamic)

3 Report the vulnerability

@ ® -

White-box
Code 1 Testing Code 1 \Vulnerability
Code 2 Code 2

Platform

Code n Code n

S y S

8 KOREA £=-(SS A 26

B/ UNIVERSITY commrrr

How to Detect & Verify Vulnerability?

e Example of detection : Code Clone Detection — 1
= A set of identical or similar piece of code
= Dangerous when vulnerable code is reused

= Various detection methods
» Token, Abstract Syntax Tree, Dependency Graph based

e Example of Verification : Concolic execution (o)
= Concolic = CONCrete + symbOLIC x#mnuug,f" —\x= 100000

» Trace all source code path by using symbolic input (=))

» Symbolic input is a representation of input czz/ " \x<z
which is used to generate random value ¥ <

|".==1 ooooo| {x=100000

. y=0 | y=50001 |
™, 4 ™ " - 4

Example of Language-dependent
Tools

e Junit
= Framework for write and run repeatable unit test
= Test whether program works as expected ™ oz ccia:

assertEquals({3@, calculator sum{1@, 28))

= Work on Java code ;
< Example of Unit Test : sum(10, 20) == 30>

* FindBugs
= Static code analysis tool

= Using bug patterns, find the code
that are likely to be error

= \Work on Java code

S ——— & MARYUAND

%) KOREA £=-(,00 A 28

UNIVERSITY

Example of Commercial Tools (1)

e Coverity —
= Perform static and dynamic analysis S

= Analyze code level vulnerability and
system fault

= Support C and C++ code

* Fortify

= Static analysis tool
Fortify 360 Server

Central reporting and management of software rity across the enterprise

= Support vulnerability definition TEa ronty sca
Security Ops Team g‘ Ll /N _‘,—) .‘I &{ FC:IC‘EILfy SCtAwnht d

> OWASP, CWE, CERT, ...
. Fortify RTA -\r’M geme;n >/ S
= Multilanguage support st N S [‘ -

{\‘ f1s - F 2
et gf“l g‘ Fortlfy SCA
Anal ly comprehensively

and a- \y
Fortlfy PTA i
M k very black box security test measurable and ‘n
ahl E’% Security Leads / Auditors

%) KOREA £=-(,00 A 29

UNIVERSITY

Example of Commercial Tools (2)

e CodeSonar
= Static analysis tool Y e
= Support C, C++, Java code '

* Sparrow
= Semantic based static analysis tool

= Multilanguage support
» C, C++, Java, PHP, ... = =3 %
= Support vulnerability definition i
 CHE S

8 KOREA £2-(SS A 30

B/ UNIVERSITY commrrr

Our Research: Code Clone (1)

e Code clone vulnerability illustrated
= Vulnerability still exists even after the patch has been released

Patch released:

V236 V238 w2311 SVEIOI-338R yp 395 wzaa V242 V243 V244 v24g Apache?
e T Y - I) Y Y Y Y

b L vy i P R e o ey Time line

6/17/2010 8/31/2010 3,/7/2011 9/20/2011 11/15/2011 2/17/2012 4/17/2012 8§/18/2012 32/35/2013 6/22/2013
s i
_:l : Unpatched code clone, code clone vulnerability
reoccurred at Same Program at Same Location
: Code clone patched
Patch for file:
eyl st V5813 V5.10.0 V5101 V66D V7.40
CVE-2011-3200 - . - - - V7.63 vazl1 Rsyslog
Pt A f\ Fa
_ A A A A A A
S £ W [d Y — i) Fi 5 Fi 5
Time line
9/6/2011 8/22/2012 8/23/2012 10/17/2012 10/22/2012 11/8/2012 3/27/2013 4/17/2014
'Ii\ - -
£ % 1 Unpatched code clone in file: pmrfc3164sd.c
Code clone vulnerability
) at Same Program at Different Location
Patch for program:
Bzip2 releasad:
V230 V240 W 26.0 W 28.0 ! 3L
CVE-2010-0405 W e Firefox
_ +]]]] [[] .
L L [L L1 L
. . . Time line
8/6/2013 S/17/2013 12/10/2013 3/18/2014 4/29/2014 7f22/2014

8/27/2010

. Unpatched code clone in Frogram: Firefox
Code clone vulnerability at Derivate Program

= (OSA

enter for

[

31

KOREA

UNIVERSITY

Our Research: Code Clone (2)

e Code clone vulnerability is found on latest Smartphone’s
source code

CVE Count(s) by Year CVE Count(s) by CVSS Score
40 *CVE: Common Vulnerabilities and Exposures 30 *CVSS: Common Vulnerability Scoring System
34
35 25
25 23
30 26
= 25 - 20
=] =3
§ 20 § 15
S 15 S 9
10 7 7
10 6 6
4 NN e
3 5
5 0 0 1 11 2 2 1
0 0 o
2007 2008 2009 2010 2011 2012 2013 2014 2015 0O 19 21 46 47 49 5 52 69 7.2 10
Year of CVE CVSS Score

<Statistics of code clone vulnerabilities by CVE Counts>

%) KOREA £=-[GS A

UNIVERSITY comeerm

Our Research: CLORIFI (1)

e CLORIFI: Software Vulnerability Discovery using Code Clone Verification

e CLORIFI is composed of 3 steps:

= Step 1: Code Clone Detection
» Use CVE patch and source code to detect code clone vulnerabilities

= Step 2: Backward Sensitive Data Tracing
» Backward data tracing from vulnerable point to the initial user input
and insert the test code
= Step 3: Vulnerability Verification

» Verify the vulnerability by using the randomly generated input

int boo(char* src) @ Entry function F
CVE patch {

() Source
char* dst[10]; ¢= input
S S

S || g b=

Ancestor: b

(..)
return 0; 7 Smk(a)

‘ Vulnerable | | Safe

(1) Code clone detection (2) Backward data tracing (3) Vulnerability Verification

%) KOREA £=-[GS A 33

UNIVERSITY

Our Research: CLORIFI (2)

e Main contribution is in Step 2:
Backward Sensitive Data Tracing

= Starting from the sensitive sink,
backwardly trace to find its
entry point

= Only consider the input which is
related to sensitive sink

» In the right example, only consider
Input 1 among 3 inputs

.’/ \-_ O -~
Inputl / 7\) Input2
; Input3
Input to Sink: O :' ;
part of the program | |
glo:y | QO
o/ O O
sensitive sink .~
@) Q
O O
O

e Reduce the whole input search space
= Mitigate path explosion problem occurred in other mechanism

= Other mechanism analyze the program from its all entry point
which cause exponential growth of searching time

34

Strength of Our Research

 Reduce the false positive

" Most commercial tools have a huge amount of ‘ _
false positive

Reduce the false positive by code clone based “T R : __.r‘

detection and perform multiple verification phase A [

—

e Consider the priority

= Find the vulnerability to solve first NOW |/
= ex) CVSS Score | ATER [
e Publication i“J

= CLORIFI: software vulnerability discovery using code clone
verification, Concurrency and Computation: Practice and
Experience, Apr. 2015.

= A scalable approach for vulnerability discovery
based on security patches, ATIS 2014. (Best Paper Award)

= Software vulnerability detection using backward trace
analysis and symbolic execution, ARES 2013

%) KOREA £=-[GS A 35

UNIVERSITY comeerm

Center for Software
Security and Assurance

http://cssa.korea.ac.kr/

Overview

Center for Software Security and Assurance (CSSA)

A DY, loT 2ZEY O FHIZSHAME] 7H2

|
T 319l SA st of o] 7|2 7l =0 Ax| .
Saay SEAE el T RO ARAR Ve St e Sl ot Automated Analysis Platform for Automated
- IoT SW Vulnerabilities Testing Logic
+ - |&|@E & £912015.11.20 17:18:50 I}]Qnﬂ&

Visual/Aural

Feedback .
— — DESKIOP e Black-Box Testing Support
loT ATEQo{HOt AMZSOIME] AL /¢ " Moltimodal 3 types of

— — = — — _
. Parameter
Input
o ;. ™ - . : . — ~— Source / Binary
7 = T - MAIN UESR Files

FILE CALL GRAPH or

- Support
Code Line Flow Visualization of

Support Many obj 1 File/Source Code

4 Types of Graph Level Navigation r
- - - e.g. Obj 2 g .
A (U5 YT SHREEO[SIZ 0T S EEYO{H0N 2 S A PMER, OLS 2|0l Hi2| 1 H2B|HE DY M 9 Pie/Bar/TreeChart gp;3 \ 4 % g (-
- -~ -

YENTY AT o QrEEE 20 WHHSTAR 0L .

With Projectoror
Large display

obj 4 .
Color Cods File/Folder CodeLevel COOPERATIVE
EEEAe s 1A 2HNET A AL 192 o 2EEoEY SHSsITUEH ves Saliency based e ENVIRONMENT

(CSSA- Center for Software Security and Assurance, 0|3t ZH3SHTHE)E 430D 202 B3l
ck

Highlighting

SHESETHE swHRTMHEHY 2 Al DiH 2| 2o = R,

< Concept of Automated Analysis Platform for loT SW Vulnerabilities Detection >

International Joint Research

rslty —

* L < 5 o .
Automatic Verification o W omrrrr— » Cooperation with research teams with 3
of Software frror "ermetonallomtREseareh ginary vulnerabilty universities of the world top 10 (3rd, 4th, 9th)
I to develop world-leading source technology
System SW » Hold each online/offline meeting periodically
>, 3 . 3 . .
® /4’.‘\‘ v" Found international joint research center in Korea
ubuntu N University
Vulnerability v' 2 Months of research abroad (Dispatch 3~6
OpenSSl j 2 yois and action students to 3 overseas universities)
‘ — —y v" Monthly online research meeting / Quarterly overall
Source result sharing meeting / Yearly offline result
announcement meetin
{ Binary I:: I::\ Vulnerability g
; Detection
Wireless Protocol' Smart '
@,‘ Fuzzing . t J,
I 2 = World-leading hacking team CMU PPP &
€ Bluetooth P Domestic hacking group CodeRed
@ZigBee' oo ~odeRed %% v Hold seminars and exchange technique

» |ncognito: Union of 12 university security clubs

v" Introduce automatic SW vulnerability analyzing
technique and hold vulnerability detection contest

= Meeting with a consulting group

v" Hold advisory committee 2 times per year
v' Feedback and verification of usability

Ia Research Mission

Center Mission

“Here have we established the center for everyone in the world
who can secure their own 10T devices by themselves!”

J
Access http://cssa.korea.ac.kr

» Enforcing loT SW & Network security
» Simple evaluation even for non-experts

» Enabling low cost evaluation of vulnerabilities in
small-sized SW

» Secure loT-based society infrastructure

Conclusion

e Current Status

= The number of software vulnerabilities is increasing continuously

® Finding known vulnerabilities is not enough to overcome
current security threat

* Way to go
* Finding/building unknown vulnerabilities discovery on development
environment ahead of time

= Even non-experts could deal with the unknown vulnerabilities of loT
software professionally

%) KOREA £=-(GG\ 40

UNIVERSITY comeerm

	Software Vulnerability Discovery
	Software Vulnerabilities
	Cases of Vulnerabilities
	Cases of Vulnerabilities
	Cases of Vulnerabilities
	Cases of Vulnerabilities
	Vulnerabilities by Date
	CVSS Score Distribution for �All Vulnerabilities
	CWE
	Vulnerabilities Scanning
	Net Scanners
	Net Scanners
	Net Scanners
	Web Scanners
	Web Scanners
	Finding Zero-day Vulnerabilities
	Black-box Test Research
	Black-box Test Research
	American Fuzzy Lop (AFL)
	Peach Fuzzer
	Sulley Fuzzer
	Protos Project
	Pwntooth
	Research Related
	Research Related (Cont.)
	What is White-box Testing?
	How to Detect & Verify Vulnerability?
	Example of Language-dependent Tools
	Example of Commercial Tools (1)
	Example of Commercial Tools (2)
	Our Research: Code Clone (1)
	Our Research: Code Clone (2)
	Our Research: CLORIFI (1)
	Our Research: CLORIFI (2)
	Strength of Our Research
	Center for Software Security and Assurance
	슬라이드 번호 37
	슬라이드 번호 38
	슬라이드 번호 39
	Conclusion

