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Recovering 3D Human Body 
Postures from Depth Maps 

and Its Application in Human 
Activity Recognition

ABSTRACT

We present an approach of how to recover 3D human body postures from depth maps captured by a 
stereo camera and an application of this approach to recognize human activities with the joint angles 
derived from the recovered body postures. With a pair of images captured with a stereo camera, first 
a depth map is computed to get the 3D information (i.e., 3D data) of a human subject. Separately the 
human body is modeled in 3D with a set of connected ellipsoids and their joints: the joint is parameter-
ized with the kinematic angles. Then the 3D body model and 3D data are co-registered with our devised 
algorithm that works in two steps: the first step assigns the labels of body parts to each point of the 3D 
data; the second step computes the kinematic angles to fit the 3D human model to the labeled 3D data. 
The co-registration algorithm is iterated until it converges to a stable 3D body model that matches the 
3D human posture reflected in the 3D data. We present our demonstrative results of recovering body 
postures in full 3D from continuous video frames of various activities with an error of about 60-140 in 
the estimated kinematic angles. Our technique requires neither markers attached to the human subject 
nor multiple cameras: it only requires a single stereo camera. As an application of our body posture 
recovery technique in 3D, we present how various human activities can be recognized with the body 
joint angles derived from the recovered body postures. The features of body joints angles are utilized 
over the conventional binary body silhouettes and Hidden Markov Models are utilized to model and 
recognize various human activities. Our experimental results show the presented techniques outperform 
the conventional human activity recognition techniques.
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INTRODUCTION

Through several million years of human evolution, 
stereopsis is one of the unique functions in the 
human vision system, allowing depth perception: 
it is a process of combining two images projected 
to two human eyes to create the visual perception 
of depth. Learned from the human stereoscopic 
system, a stereo camera was invented to synchro-
nously capture two images of a scene with a slight 
difference in the view angle from which depth 
information of the scene can be derived. The depth 
information is generally reflected in a 2-D image 
called a depth map in which the depth information 
is encoded in a range of grayscale pixel values. 
Since its first commercial product in 1950s, Stereo 
Realist, introduced by the David White Company, 
there have been continuous developments of a 
stereo camera until now with the latest products 
such as a digital stereo camera, Fujifilm FinePix 
Real 3D W1 and a stereo webcam, Minoru 3D. 
Lately, 3D movies, in which depth information 
is added to RGB images, have received a lot of 
attention with the latest success of a film, Avatar 
released in 2009. Watching 3D movies and 3D 
TVs with the special viewing glasses is becoming 
a part of our lives these days.

Another area where the depth information 
could be valuable is the field of human com-
puter interaction (HCI). In this area, 3D motion 
information of a user is utilized to better control 
external devices such as computers and games. 
In the conventional ways, capturing 3D human 
motion or movement (i.e., a sequence of human 
postures) is typically done using optical markers 
or motion sensors. Such systems are capable of 
producing some kinematic parameters of human 
motion with high accuracy and speed using wear-
able optical markers or sensors. However, it is 
inconvenient to a user who needs to wear specially 
designed optical markers or sensor-suits when run-
ning these systems. This disadvantage combined 
with the high cost equipment makes the systems 
impractical in daily use applications. In the case 

of using motion sensors, a user has to hand-hold 
controllers equipped with accelerometers or gy-
roscopes. One good example is the Wii controller 
of Nintendo which uses optical sensors and ac-
celerometers to recognize the hand motion of the 
user to control the games. Lately, some efforts are 
being made to capture the whole body movement 
without the markers or motion sensors. Using a 
stereo camera and its derived depth map is one of 
options, since depth maps may provide sufficient 
3D information to derive human body motions in 
3D. Although this approach should open a new 
possibility for various novel applications in HCI 
such as games and u-lifecare, obtaining human 
body postures in 3D directly from depth maps is 
not very straightforward.

There have been some attempts to develop 
marker-less systems to estimate human motion 
from a sequence of monocular images or RGB im-
ages, only reflecting 2-D information. Because the 
3D information of the subject is lost, the efforts to 
reconstruct the 3D motion of the subject from only 
monocular images face difficulties with ambiguity 
and occlusion that lead to inaccurate results (Yang 
& Lee, 2007). Therefore, most marker-less systems 
use multiple cameras to capture 3D human motion. 
Through such systems, the 3D information of the 
observed human subject is captured from different 
directional views, thereby providing better results 
of recovered human motion in 3D (Knossow et al., 
2008; Gupata et al., 2008). However, it is usually 
complicated to setup such a system, because it 
requires enough space where the cameras can be 
installed. Also it requires synchronization of the 
cameras. Thus, there are always some tradeoffs 
between the flexibility of using a single camera 
and the ability to get the 3D information using 
multiple cameras.

Another way of recovering a series of human 
postures or motion in full 3D is to utilize the in-
formation in depth maps. However, there has been 
little effort to recover 3D human body postures 
using this approach. Some conventional works to 
estimate human body postures from depth maps 
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can be classified in the following two approaches: 
namely the matching-based approach and the 
model-based approach. In the matching-based 
approach (Yang & Lee, 2007), one tries to match 
a depth map with a set of generated human body 
postures to find the most compatible human body 
posture in the depth map. In the model-based ap-
proach (Urtasun et al., 2006), one creates a human 
body model and fits the model to the given depth 
map to estimate its corresponding human body 
posture. In this chapter, we present an approach of 
recovering human body postures from depth maps 
based on the framework of the model-based ap-
proach. However, in our approach we have added 
a novel step of detecting human body parts and 
incorporated it into our co-registration algorithm 
such that human body postures can be estimated 
in a more efficient and generalized framework.

The chapter begins with a survey of the con-
ventional approaches including the use of optical 
markers and multiple cameras to capture 3D human 
body postures. We discuss their advantages and 
disadvantages in comparison with our approach 
of recovering 3D human body postures directly 
from depth maps without using optical markers 
or multiple cameras. In the following sections, 
we present technical details of our method with 
examples and demonstrations. Subsequently, as 
an application of our technique in human activity 
recognition (HAR), we present a section of how 
various human activities can be recognized with 
the derived body joint angles from the recovered 
body postures. We conclude the chapter with 
future research directions.

BACKGROUND

In general, there are two main frames of human 
motion (or a time-series of postures) capture 
systems. One is the optical system (i.e., video 
sensor based), which uses video cameras to obtain 
images and applies image processing techniques 
to reconstruct human motion from the acquired 

images. The other is the non-optical (i.e., motion 
sensor based) system, which uses gyroscopes (to 
measure angular velocity), accelerometers (to 
measure acceleration), or magnetic sensors (to 
measure the position and orientation of magnetic 
markers) to capture human motion. Here, we 
mainly focus on the systems using optical devices.

Most conventional optical systems to acquire 
human motion commonly use markers. Basically, 
the users are required to wear optical markers, so 
that the cameras can locate the position of the hu-
man body parts where the markers are attached. To 
avoid the effects of occlusion, additional cameras 
are installed at different locations. The number of 
the cameras might be up to several hundreds to 
make sure the full coverage around the human 
subject. In this method, the kinematic parameters 
are estimated using the relative locations of the 
detected markers. For instance, the kinematic 
angles at the knee joint are estimated based on 
the 3D coordinates of the detected markers at the 
ankle, knee, and crotch. The main advantages of 
the method are fast processing speed and high 
accuracy. For example, capturing human body 
postures via VICON exhibits a recording frame 
rate up to 240 frames-per-second that is enough 
to capture human activities with fast move-
ments. However the devices for this approach are  
very expensive.

Nowadays, there are increasing research efforts 
to develop a marker-less system to recover hu-
man body postures in 3D from video. Obviously, 
the video is conveniently recorded with a normal 
camera to provide a sequence of monocular im-
ages. The articulated human body model was 
reconstructed from some detected regions of the 
human body in monocular images using the inverse 
kinematics (Taylor, 2000). In other approaches, 
a probabilistic model was designed to establish 
the relationship between the human postures and 
the cues from images like color, contours, and 
silhouettes. Machine learning techniques such 
as the sampling by the Monte-Carlo method (Lee 
& Cohen, 2006) were applied to find the human 
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body posture most probabilistically compatible 
with the information given in the images. How-
ever, as the depth information is lost (i.e., the 3D 
object is projected into a 2-D image), there will 
be an ambiguity of reconstructing a 3D human 
posture from a monocular image. The appear-
ance of a human subject in an image might also 
correspond to many possible configurations of 
the human posture in 3D. Due to this limitation, 
most previous researches based on a monocular 
image concentrate only on detecting the human 
body parts (Hua et al., 2005; Ramanan et al., 2007; 
Roberts et al., 2007).

Rather than processing on a single image, 
a lot of attempts have been proposed to utilize 
monocular images acquired with multiple cameras 
to get more accurate results of recovering human 
body postures. For instance, a setup with multiple 
cameras described in (Horaud et al., 2009; Knos-
sow et al., 2007) was composed of six cameras 
installed at different locations to estimate motion 
of a tracked subject. Typically, the information 
in monocular images with different directional 
views is combined to reconstruct the 3D data of 
a human subject. The 3D data might be presented 
by 3D voxels or by a cloud of 3D points. Thus, 
with each presentation of 3D data, there are dif-
ferent ways to reconstruct human body postures. 
In (Sundaresan & Chellapa, 2008), the authors 
presented a method to segment the 3D voxels into 
different body parts and registered each part by 
one quadric surface to reconstruct the articulated 
human model. To segment the 3D voxels, they 
mapped the voxels’ coordinates into a new domain 
using the Laplacian Eigenmaps where they could 
discover the skeleton structure (1-D manifolds) 
of the 3D data. Based on this skeleton structure, 
they could assign the 3D data to corresponding 
human body parts using probabilistic registration. 
Some other methods like ISOMAP (Chu et al., 
2003; Tenenbaum et al., 2000), Locally Linear 
Embedding (Roweis & Saul, 2000), or Multidi-
mensional Scaling (Cox & Cox, 2001) are also 
available to recover the human skeleton structure 

of the 3D voxels. Meanwhile, with another form 
of representation of 3D data, a cloud of 3D points, 
in (Plankers & Fua 2003), the authors modeled 
the human body with an isosurface, called the soft 
object. The shape of the soft object was controlled 
by the kinematic parameters of the human model. 
The least-square estimator was used to minimize 
the differences between the soft object and the 
cloud of 3D points, consequently finding the hu-
man body posture most fitted with the 3D data. 
Rather than using a single surface like the soft 
object, in (Horaud et al., 2009), they used a set 
of surfaces with ellipsoids to present the human 
body. In order to perform the registration of the 
ellipsoids to the 3D data, each 3D point was cast 
into one ellipsoid using the datum distance and 
the least-square estimator was utilized to draw 
the ellipsoids close the 3D data.

Although the marker-less systems using mul-
tiple cameras to recover human body postures can 
overcome the disadvantages of the system using a 
single camera with the ambiguities and occlusions 
of the 3D data when presented in a monocular 
image, there are still some remaining limitations 
in the multiple camera-based approaches. For 
instance, there is a need for extra software and 
hardware to support the transfer of large video 
data from multiple cameras over a network. Also, 
the data acquired with more than one camera 
must be calibrated to compute the 3D coordinate 
of each pixel of the recorded images within the 
same coordinate system. Moreover, the multiple 
cameras require a complicated installation. There-
fore, using a single stereo camera should be more 
flexible and practical in the recovery of human 
body postures. As mentioned, there are two types 
of approaches of recovering human body postures 
from depth maps.

The first is the matching-based approach in 
which a set of human body postures is generated 
and compared with a depth map derived from a 
stereo camera to find the best matching posture. 
In (Yang & Lee, 2007), about 100,000 human 
postures, presenting most appearances of the hu-
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man body in 3D, were created and stored in an 
exemplar database. However, with a large number 
of human body postures, the authors had to develop 
an efficient algorithm to organize and retrieve the 
human body posture stored in the database. To 
avoid generating all possible human postures, in 
(Olivier et al., 2009), only a limited number of 
human postures at the time index t that are close 
to the human body posture estimated at the time 
index t-1 were generated. This method evaluated 
the discrepancies between the created human 
postures and the 3D information of the new depth 
map given at the time index t to find the human 
posture best compatible with the depth map. The 
drawback of this method is that with the limited 
number of generated postures, the accuracy of 
estimating human body postures tends to be low. 
In the opposite case, with the increased number 
of generated postures, the time needed to search 
for an appropriate human posture gets prolonged.

Apart from the matching-based approach, 
the model-based approach (Urtasun et al., 2006) 
estimates human body postures directly from 
depth maps without using a set of temporary 
postures for matching. This approach models an 
articulated human body in 3D and formulates an 
estimation problem to minimize the difference 
between the human model and the information 
in a depth map to recover a human posture. Our 
technique of recovering human body postures 
presented in this chapter is based on the frame-
work of this model-based approach. However, 
we have extended and generalized the approach 
by developing a co-registration algorithm with an 

additional step of detecting human body parts in 
3D before fitting the human body model to 3D 
data (Thang et al., 2010a).

HOW TO RECOVER 3D 
HUMAN BODY POSTURES 
FROM DEPTH MAPS

The overall steps of our method of recovering hu-
man body postures from depth maps are presented 
in Figure 1. First, we preprocess a pair of stereo 
images to obtain a depth map and calculate the 3D 
information (i.e., 3D data) from the depth map. 
Separately, we create our articulated human body 
model using a set of ellipsoids and parameterize 
the model with kinematic joint angles. Finally, we 
co-register the body model to the 3D data of the 
depth map to estimate the joint angles. Our co-
registration involves the following two main steps:

• Labeling: The labeling step assigns a label 
of each human body part (i.e., an ellipsoid) 
to each point of the 3D data using the in-
formation and cues from RGB images.

• Model Fitting: after the body part label-
ing, the model fitting step fits each point to 
its corresponding ellipsoid by minimizing 
the distance between them.

This two-step co-registration process is iter-
ated to minimize the differences between the 3D 
human body model and the observed 3D data. 
Finally, the algorithm finds the best human pos-

Figure 1. Essential steps of our methodology of recovering 3D human body postures from depth maps
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ture on a frame-by-frame basis. In the following 
sub-sections, more details of each process are 
presented.

Preprocessing of Stereo Images

As mentioned, a stereo camera is used to capture 
a pair of images in a time sequence containing 
human motion. For each pair of images, we ap-
ply the stereo matching algorithm (Cech & Sara, 
2007) to compute the pixel disparities between 
them, generating a depth map that decodes the 
3D information of the scene: the pixel with higher 
disparity value is closer to the camera than other 
pixels. Continuously, we perform the background 
modeling and subtraction (Wang et al., 2003) in a 
RGB image to get the binary silhouette of a human 
subject and use the binary silhouette to extract the 
region of interest in the depth map containing only 
the 3D information of the human subject. Then, 
for each pixel belonging to the human body region 
in the depth map, we calculate its coordinate in 
the 3D space in order to estimate the kinematic 
joint angles of the human posture correctly. The 
depth value Zw of a pixel in the 3D coordinate 
system is computed by

Z
f b

dw
c=  (1)

where fc is the focus length, b the base-line, and d 
a disparity value of the pixel. The two remained 
coordinate Xw and Yw are computed by

X
uZ

fw
w

c

= ,  (2)

Y
vZ

fw
w

c

= ,  (3)

where u and v are the column and row index of 
the pixel in the depth map.

3D Human Body Modeling

We create the articulated human body with a set 
of ellipsoids where each ellipsoid represents one 
human body part as shown in Figure 2(a). For the 
convenience of transformation computations, we 
formulate the equation of each ellipsoid in the 4-D 
projective space as,

q X X XT T T( )= − =Q S DSQq q 2 0  (4)

where the constant matrix D = diag[a-2,a-2,b-2,1],b 
≥ a determines the size of the ellipsoid. The con-
stant matrix S locates the center of the ellipsoid 
in the local coordinate attached to the ellipsoid. 
Qq  is the skeleton-induced transformation matrix. 
X = [x,y,z,1]T, indicating the coordinate of a 3D 
point in the 4-D projective space. Each segment 
of the human body model is controlled by a series 
of transformations specified by the kinematic 
parameters at each body joint, therefore Qq is a 
matrix function of q q q q= ( , , ..., )1 2 n , where 
q q q1 2, , ..., n  are n kinematic parameters. We 
separate Qq  into a series of matrices where each 
matrix is computed based on a single parameter,

Q Q Q Qq q q q= − −n n n n( ) ( )... ( )1 1 1 1  (5)

where Q Q Q21 1 2 6 6( ), ( ), ..., ( )q q q are of six degrees 
of freedom (DOF) (i.e., three translations and 
three rotations) that determine the transformation 
from the global coordinate system to the local 
coordinate system attached at the body hip. The 
other matrix element, Q TrRi i i i( ) ( )q q=  with i 
> 6 is the transformation matrix from the local 
coordinate system attached to the body segment 
i to the local coordinate system attached to the 
body segment i+1, where Tri  is the constant 
translation matrix dependent on a skeleton  
structure and R( )qi  is the rotation matrix at each 
body joint around the x-, y-, or z-axis. We can 
assign the value of the matrix Tri  by an identity 
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matrix if we want to add more than one DOF to 
a body joint.

Our defined human model is composed of 14 
body segments, nine joints (i.e., two knees, two 
hips, two elbows, two shoulders, and one neck), 
and 24 DOF (i.e., two DOF at each joint and six 
DOF for the transformation from the global co-
ordinate system to the local coordinate system at 
the body hip). In addition, another human body 
model using the super quadric can be created for 
better display of the results as in Figures 3 and 
4. The formulation of the super-quadric surface 
without any transformation (rotation or transla-
tion) is derived as

x
a

y
b

sz
c

z
c








 +







 = +









 − −






2 2

1 1 1
2 
















d

 (6)

where a, b, and c determine the size of the super-
quadric along the x-, y-, and z-axis, respectively.

Mathematical Relationship 
Between Human Body Model 
and Depth Information

In this section, we introduce a probabilistic dis-
tribution that represents the relationship between 
the human body posture specified by the kine-
matic parameters and the information in the cor-
responding depth map and RGB image. Let D = 
(X1,X2,…,XN) denote N points of the 3D data 
computed from a depth map and I denote a RGB 
image. The supplementary variable V = (v1,v2,…
,vN) is used to label the body part where each point 
should belong to. The posterior probability be-
tween the label V and the kinematic parameter q  

Figure 2. Two examples of running E-steps to detect the body part labels. (a) Initial models. (b) The 
label assignments found by the first iteration of E-step. (c) The label assignments found by the last 
iteration of E-step.
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given the 3D data, D and the RGB image, I is 
expressed by,

P V I D P V P I V P D V P D V( , | , ) ( ) ( | ) ( | ) ( | , ).q qµ  
(7)

Obviously, the optimal kinematic parameter 
q*  that maximizes the probability distribution 
given in (7) represents the human body posture 
that is most compatible with the 3D information 
given in the depth map. The co-registration algo-
rithm to estimate the optimal kinematic param-
eter q* , recovering the correct human body 

Figure 3. Experimental results with (a) elbow movements in the horizontal direction, (b) elbow move-
ments in the vertical direction, (c) knee movements, and (d) shoulder movements. From the left column 
to the right: RGB images, depth maps, and recovered human postures in the front view and +450 view.
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posture from the given depth map is presented in 
the next section.

a)  Smoothness Prior

The smoothness prior found from the Potts 
model (Boykov et al., 2001) is given by

P V P v vi j
j Ni

N

i

( ) ( , )=
⊂=
∏∏

1

 (8)

where Ni is a set of neighbors of the point i and 
P(vi,vj) is defined by

P v v
if v v

e if v vi j
i j

i j

( , )
1

=
=

≠





 

 g  (9)

where g  is a positive constant. The smoothness 
prior P(vi,vj) is used to derive the label of each 
point toward the same label of its neighbors that 
makes the labeling outcomes smooth and removes 
outliers. Here, the neighbors of one pixel in a 
depth map lie inside a circle with the center at the 
pixel’s location with its radius d=3.

b)  Image Likelihood

The RGB image containing the information of 
a human subject in a color space can be used to 
detect some human body parts, providing extra 
information for assigning the labels of 3D data. 
The detection results are integrated into equation 
(7) by the likelihood term P(I|V),

P I V I v
i

N

i( | ) = ( | ).
=1
Õj  (10)

In our work, we perform the face and torso 
detection to calculate the probability of one point 
inside the detected regions getting a label ‘head’ 
or ‘torso’. The face areas are located by detecting 
the skin color in the HSV color space (Conaire 
et al., 2007).

j( | )I v head
e  i

i

c

= =
      

1   

the pixel  is marked as  'face'
         

 
other wise






 

(11)

where c is a positive constant.
The likelihood of a pixel labeled as ‘torso’ is 

computed based on the function f(ri),

f r ei
d ri( ) ( )= −k  (12)

Figure 4. Experimental results with (a) a walking sequence (top). Recovered human postures are depicted 
in the front view (middle) and -450 view (bottom) and (b) an arbitrary activity sequence (top). Recovered 
human postures are depicted in the front view (middle) and -450 view (bottom).
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where d(ri) is the algebraic distance from a point 
ri in a RGB image with a coordinate [xr,yr,1]T in 
the 3D prospective space to the center of the body 
Obody: Obody lies in a middle between the center of 
the face and the center of a binary silhouette. K 
is a positive constant. The algebraic distance d(ri) 
is computed by,

d r r ri i
T

e
T

e e i( )= −Q D Q 1  (13)

where De and Qe are the 3 × 3 matrices that config-
ure the size and shape of the ellipse representing 
the torso. The likelihood to assign a point as a 
‘torso’ is given by,

j( | )
1

I v torso
f r d r

i
i i= =

≤( )            ( )                  

1                      
           

 .other wise






 

(14)

c)  Pairwise Geodesic Relationship among 3D 
Points

The geodesic distance is measured by the 
length of the shortest path between two points 
on a curved surface. During the movement and 
deformation of a non-rigid object like the hu-
man body, the geodesic distance between any 
two points on the boundary surface of the object 
is preserved. Therefore, we utilize this property 
of the geodesic distance to derive the geodesic 
constraints between any two points of the 3D data 
representing the human body.

Since there are a large number of 3D points, we 
need a large number of computations to estimate 
the geodesic distance among all pairs of the 3D 
points. In order to reduce the number of computa-
tions, we assign a set of close points into a group, 
called a cell. All 3D points belonging to the same 
cell receive the same geodesic constraint. Com-
puting the geodesic distance by the shortest path 
distance in graph using the Dijkstra’s algorithm 
(Dijkstra, 1959), we express P(D|V) by
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where ic is the cell that holds the point i, d v vi jc c
( , )  

the geodesic distance between the cell ic and jc, 
Nc the number of cells, and (α,β) two positive 
constants. Two values, d v vi jc cmin( , )  and 
d v vi jc cmax( , )  define the lower and upper bound 
for the geodesic distance between a pair of labels. 
The two related labels assigned to two 3D points 
that are too far or too close are penalized to reduce 
the belief in these assignments.

d)  Reconstruction Error

The discrepancies between the human model 
created by a set of connected ellipsoids and the 
cloud of 3D points are measured by the total 
Euclidean distances from each 3D point to the 
ellipsoid corresponding to the label of this point. 
Thus, the Euclidean distance is considered as 
another factor to assign the label of each point 
during the registration process. P D V( | , )q  is 
defined by

P D V e
i

N
d Xi vi

( | , ) =
=1

2( , , )

2 2θ
θ

σ∏
−

 (17)

where d X vi i( , , )q  is the Euclidean distance from 
the point Xi to the ellipsoid vi and the constants
is variance. The Euclidean distance is calculated 
by the distance from one point to the nearest point 
lying on the ellipsoid surface. In general, to com-
pute the Euclidean distance d X vi i( , , )q , we need 
to solve a sixth-degree polynomial equation 
(Heckbert, 1994). However, with the symmetric 
ellipsoid defined in our articulated human model, 



550

Recovering 3D Human Body Postures from Depth Maps and Its Application in Human Activity Recognition

a sixth-degree polynomial equation is simplified 
to a fourth-degree polynomial that has an ana-
lytical solution allowing us to compute its roots.

Co-Registration of 3D Human Body 
Model and 3D Depth Information

A human body posture that best matches the 
observed 3D data is subject to the kinematic pa-
rameter q* that maximizes the posterior probabil-
ity given in (7),

q qq
* arg max ( , | , ).= ∑P V I D

V

 (18)

To solve this optimization problem, the EM 
algorithm is a suitable choice with the incorpora-
tion of the latent variable, V. Let Q(V) be the prob-
ability distribution of the label V. Our algorithm 
to estimate a human body posture from a given 
depth map is formulated in an EM framework 
with the following two key steps:

• E-step: Assuming that the current value of 
the kinematic parameter q  isqold , E-step 
estimates the label assignments by com-
puting the probability distribution 
Q V P V I Dold( ) ( | , , )= q  of the label given 
the information of the RGB image and the 
3D data of the depth map.

• M-step: With the label assignment Q Vold( )
found by E-step, M-step maximizes 
E P V I DQ Vold ( )

[log( ( , | , ))]q  or equivalently 
minimizes the reconstruction error be-
tween the model and the cloud of 3D points 
to estimate a new optimal value of the ki-
nematic parameterq .

The two-step co-registration process is iterated 
to minimize the differences between the 3D model 
and the observed data and finally the correct hu-

man posture is found. More details of those two 
steps are presented as follows.

a)  E-step: Labeling

It is intractable to calculate the exact distri-
bution Q(V) of the label V. Therefore, we ap-
proximate the distribution Q(V) by using the mean 
field approach (Toyoda & Hasegawa, 2008). The 
logarithm of Q(V) is given by
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where gi(vi) is the sum of the logarithms of the 
image likelihood in (10) and the reconstruction 
error in (17), gij(vi,vj) the logarithm of the smooth 
prior in (8), and h v vi jc

( , ) the logarithm of the 
geodesic constraints in (15),

h v v P D v vi j geo i jc c
( , ) log ( | , ).=  (20)

The probability of a pixel i having a label vi, 
q v P v I Di i i( ) ( | , , )= q  is iteratively updated 
until it approaches to a stable value by an equation
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where Z v q vi i i ivstep stepi
( ) ( )=∑  is a normalization 

factor and q v E q vstep
j

j j j
c

c step c
( ) [ ( )]=  an average 

probability of all pixels j belonging to the cell jc. 

We use 1

0
Z v

g v
i i

i i( )
exp{ ( )}  as an initial value of 

q vi i0
( ) . For simplification, we set q vstep

j
j

c

c
( )= =e 1  

when the probability of the cell jc belonging to 
the ellipsoid e  is largest andq vstep

j
j

c

c
( ) = 0  for 

vjc ¹ e . In Figure 2, we show two examples of 
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running E-step to detect the body part labels from 
the 3D data.

b)  M-step: Model Fitting

After the probability distribution of the label 
variables is estimated from E-step, M-step com-
putes a new value of the kinematic parameter q  
as the solution of the optimization problem

argmax [log ( | , )]( )q qE P D VQ V  (22)

Here, we remove the terms in Equation (7) 
independent of q . Equation (22) can be rewritten 
as
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where N e is the number of ellipsoids and Zi( )θ ε  
the nearest point of Xi lying on the surface of the 
ellipsoid e . To reduce the number of computations, 
we set q vi i( )= =e 1  for e  satisfying 
q v q vi i i i( ) ( )= ≥ ≠e e  a n d  q vi i( ) = 0  f o r 
vi ¹ e . We solved the non-linear optimization 
problem in (23) by the Levenberg-Marquardt 
method (Murray et al., 1994; Sundaresan et al., 
2004).

To summarize, we describe the presented 
algorithm in Table 1.

Results of Recovering Human Body 
Postures from Depth Maps

In our experiments, we used a stereo camera, 
Bumblebee 2.0 of Point Grey Research, to capture 
stereo image pairs with their resolution at 640 × 
480. We asked our subjects to perform various 
motions in front of the stereo camera as depicted 

in Figure 3. Note that a sequence of frames in 
a video stream is shown from top-to-bottom in 
a column. In Figures 3(a) and 3(b), the move-
ments of the elbows in the horizontal and vertical 
directions were evaluated in our experiments. 
The subjects raised their hands up to create an 
angle about 900 between the upper hand and 
lower hand, then brought their hands down. In 
the next experiment shown in Figure 3(c), the 
subject in video performed an activity at their knee 
joints. The subject lifted his right leg up to a 900 
between the upper leg and lower leg then he did 
the same motion with the other leg. In addition, 
we considered the body movements created by 
the combination of the two kinematic angles at 
the shoulders as in Figure 3(d). To evaluate the 
reconstruction error, we generated the ground-
truth of the estimated kinematic angles by using 
the hand-label method (Gupta et al., 2008; Lee 
& Cohen, 2006). Some points were hand-labeled 
to determine the position of the body joints in the 
RGB images such as hand, elbow, shoulder, etc. 
Using the 3D information estimated from the depth 
maps, we computed the coordinate of these labeled 
points in 3D and then calculated the ground-truth 
angles. Then, we compared the kinematic angles 
of the recovered human body postures against the 
ground-truth angles and obtained the mean error 
of about 60~140 in the estimated kinematic angles.

In order to track the movements of the whole 
human body, the subjects were asked to perform 
complicated activities with all arms and legs. Fig-
ure 4 shows two video sequences and the recovered 
human body postures reflected in those sequences 
in two view angles. The average distance between 
the 3D points and the ellipsoids of the human model 
were used to evaluate the error measurements of 
the reconstructed postures. The average distance 
Dt of the frame t was computed by

D d i Nt t
i

N

=
=
∑ ( ) /

1

 (24)
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where dt(i) is the Euclidean distance between 
the point i and the nearest ellipsoid of the human 
model and N is the number of points. The mean 
error distance Dt for the walking and arbitrary 
sequences depicted in Figure 4 came out to be 
0.06m and 0.04m respectively.

HUMAN ACTIVITY RECOGNITION 
USING BODY JOINT ANGLES

Human Activity Recognition (HAR) is defined 
as recognizing various human activities utilizing 
external sensors such as acceleration, motion, or 
video sensors. In recent years, HAR from video has 
evoked considerable interests among researchers 
in computer vision and image processing com-
munities (Robertson & Reid, 2006). A key reason 
for this is its potential usefulness of the outcomes 
of such recognition in practical applications 
such as human computer interaction, automated 
surveillance, smart home, and human healthcare 
applications. A general method for video-based 

HAR starts with the extraction of key features 
from images and comparing them against the 
features of various activities. Thus, activity feature 
extraction, modeling, and recognition techniques 
become essential elements in this regard.

In general, 2-D binary silhouettes of human 
body shapes are the most common representa-
tions of human activity that have been applied for 
video-based HAR (Yamato et al., 1992; Carlsson 
& Sullivan, 2002; Niu & Abdel-Mottaleb, 2004; 
Niu & Abdel-Mottaleb, 2005; Uddin et al., 2008; 
Uddin et al., 2009). For instance, in (Yamato et 
al., 1992), a binary silhouette-based HAR system 
was proposed to transform the time sequential 
silhouettes into a feature vector sequence through 
the binary pixel-based mesh feature extraction 
from every image. Then, the features were utilized 
to recognize several tennis actions with Hidden 
Markov Models (HMMs). In (Carlsson & Sullivan, 
2002), a silhouette matching key frame-based 
approach was applied to recognize forehand and 
backhand strokes from tennis videos. Regarding 
binary silhouette-based features, Principal Com-

Table 1. The co-registration algorithm used to estimate human body postures from depth maps 

1. At the time index t, initialize the value of the kinematic parameterqt  with the value of the

kinematic parameterqt-1  estimated at the time index t-1
     2. E- step: Compute gi(vi) from the sum of the logarithms of the image likelihood in (10) and the

reconstruction error in (17) and use exp ( ) / ( )g v Z vi i i i{ }
0

as an initial value of q vi i0
( )

3. Compute g v vij i j( , )  from the logarithm of the smooth prior in (8) and h v vi jc
( , ) from the logarithm of the

     geodesic constraints in (15) 
     4. Update 
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     6. M-step: Estimate new values of the kinematic parameter
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7. If qt  has not converged, go back to step 2
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ponent Analysis (PCA), a feature extractor based 
on the second-order statistics, is most commonly 
applied (Niu & Abdel-Mottaleb, 2004; Niu & 
Abdel-Mottaleb, 2005; Uddin et al., 2009). After 
applying PCA, some top PCs (i.e., eigenvectors) 
are chosen to produce global features representing 
most frequently moving parts of the human body 
in various activities. In (Niu & Abdel-Mottaleb, 
2004; Niu & Abdel-Mottaleb, 2005), the authors 
utilized PC features from binary silhouettes and 
optical flow-based motion features in combination 
with HMM to recognize different view-invariant 
activities. The top flow of Figure 5 shows the 
typical processing components of the binary 
silhouette-based HAR. Once the binary silhouettes 
are obtained from RGB images, some prominent 
features, obtained through the feature extraction 
process, are then applied to a recognition technique 
to train and recognize various human activities.

Recently, more advanced HAR techniques 
have been introduced in terms of new features 
and more powerful feature extraction techniques. 
Although binary silhouettes are commonly em-
ployed to represent a wide variety of body con-

figurations, they also produce ambiguities by 
representing the same silhouette for different 
postures from different activities: especially for 
those activities that are performed toward the 
video camera. Thus, the binary silhouettes do not 
seem to be a good choice to represent human body 
postures in different activities. In this regard, depth 
silhouettes for human body representations can 
be a solution. In the case of depth-based silhouette 
representation, the pixel values are set on the 
basis of the distance to the camera and hence it 
can provide better activity information than the 
binary silhouettes. In (Uddin et al., 2008; Uddin 
et al., 2009), the authors proposed to use a new 
feature extraction technique called Independent 
Component Analysis (ICA) to produce prominent 
local features from time-sequential depth silhou-
ettes to be used with HMMs and obtained supe-
rior HAR performance than the binary silhouette-
based approaches.

However, depth silhouettes do not convey truly 
3D information of the human body postures and 
hence generates the similar problems as binary 
silhouettes: they represent the human body in dif-

Figure 5. Processes involved in the binary silhouette and 3D body joint angle-based HAR
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ferent activities from one angle view of depth. As 
the human body consists of limbs connected with 
joints, if one is able to obtain their 3D joint angle 
information, one can form much stronger features 
than conventional silhouette features that will lead 
to significantly improved HAR. In this section, 
we present an application of HAR based on our 
estimated 3D body joint angle features and HMM. 
From the time-sequential activity video frames, the 
joint angles are first estimated by co-registering a 
3D human body model to the stereo information 
and then mapped into codewords to generate a 
sequence of discrete symbols for an HMM of 
each activity. With these symbols, each activity 
HMM is trained and used for activity recognition. 
The bottom of Figure 5 shows the basic processes 
regarding 3D body joint angle-based HAR. It 
indicates that after obtaining the depth images, 
joint angles are estimated via co-registration and 
represented as features to feed into the HMMs 
to train and recognize different human activities. 
Some more details of the essential processing 
steps are given below.

3D Joint Angle Features 
in Human Activities

Once we obtain the joint angles of the 3D human 
body for each video frame as discussed earlier, 
we can utilize these to represent various human 
activities effectively. The estimated joint angles 
from a video frame of a particular activity form 
a feature vector: thus, each activity video clip is 
represented in a sequence of joint angle feature 
vectors as (F1,F2,…,FT), where T is the length 
of the activity video. Therefore, the 3D joint 
angle features from video can really contribute 
in distinguishing an activity from another: es-
pecially those activities that are not discernible 
with the conventional binary or depth silhouette- 
based approaches.

Training and Recognition via HMM

HMM has been applied extensively to solve a 
large number of spatiotemporal pattern recognition 
problems including human activity recognition 
because of its capability of handling sequential 
information in space and time with its probabilistic 
learning capability for recognition (Lawrence & 
Rabiner, 1989; Niu & Abdel-Mottaleb, 2004; Niu 
& Abdel-Mottaleb, 2005; Uddin et al., 2008; Ud-
din et al., 2009). Basically, HMM is a stochastic 
process where an underlying process is usually 
unobservable but it can be observed through 
another set of stochastic processes that produces 
observation symbols. To learn a video-based hu-
man activity in a HMM, the symbol sequences 
obtained from the training image sequences of 
distinct activities are used to optimize the cor-
responding HMM. Finally, the trained HMMs 
are used to calculate the maximum likelihood 
for recognition.

Technically, HMM is a collection of finite 
states connected by transitions. Every state is 
characterized by transition and symbol observa-
tion probabilities. A generic HMM is expressed 
as H = {S,π,A,B} where S denotes possible states, 
π the initial probability of the states, A the transi-
tion probability matrix between the hidden states 
and B the observation probability from every 
state. If the number of activities is N then there 
will be a dictionary (H1,H2,…,HN) of N trained 
models. To estimate HMM parameters, one could 
use the Baum-Welch algorithm (Lawrence &  
Rabiner, 1989).

We choose a four-state and left-to-right HMM 
in this study to model sequential events of each 
human activity. To recognize each test activ-
ity, the obtained observation symbol sequence 
O={O1,O2,…,OT} through the vector quantization 
process is used to determine the proper activity 
HMM from all the trained activity HMMs by 
means of the highest likelihood as
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decision P O Hi
i M

=
=
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 (25)

where Hi indicates ith HMM and M number of 
activities. More details on regarding training and 
testing of HMMs for human activity recognition 
are available in our previous work (Uddin et al., 
2008; Uddin et al., 2009).

Results of Recognizing 
Various Human Activities

We had built a database of six different activities 
(namely, left hand up-down, right hand up-down, 
both hands up-down, boxing, left leg up-down, and 
right leg up-down) to be trained and recognized 
via our 3D joint angle and HMM-based approach. 
A total of 15 and 40 image sequences of each 
activity were prepared to be used for training and 
recognition respectively.

We started our experiments with the traditional 
binary silhouette-based HAR. Table 2 shows the 
experimental results of HMM-based HAR utiliz-
ing the IC features of binary silhouettes and joint 
angle features of 3D body model respectively. As 
ICA is superior to PCA by extracting the local 

binary silhouette features (Uddin et al., 2009), it 
was utilized for HAR where 150 features were 
considered in the feature space. Binary silhouettes 
were not appropriate to recognize the activities 
used in our experiments, yielding a much lower 
mean recognition rate of 58.33%. On the contrary, 
utilizing the 3D body joint angle features, we ob-
tained a mean recognition rate of 92.50%, which is 
far better than that of the binary silhouette-based 
HAR. The experimental results show that the 3D 
joint angle features are remarkably superior to 
the conventionally used silhouette features. The 
body joint angle features seem to be much more 
sensitive toward complex activities that are not 
discernable with the body silhouettes.

FUTURE RESEARCH DIRECTIONS

As presented, our human motion capturing system 
using a stereo camera is potentially applicable to 
various biomedical and HCI areas. However, due to 
the existing errors of recovered kinematic angles, 
our system might face difficulty with practical 
applications requiring high accurate results of 
estimating motion. For instance, in biomechanics 

Table 2. Experimental results of video-based HAR using binary silhouettes vs. joint angles 

Approach Activity Recognition 
Rate Mean Standard Devia-

tion

Binary Silhouette-Based HAR Left hand up-down 47.50% 58.33 16.78

Right hand up-down 60

Both hands up-down 67.50

Boxing 30

Left leg up-down 72.50

Right leg up-down 72.50

Joint Angle-Based HAR Left hand up-down 87.50 92.50 4.18

Right hand up-down 97.5

Both hands up-down 87.50

Boxing 95

Left leg up-down 92.50

Right leg up-down 95
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measurements, some systems need small errors 
of recovered kinematic angles in order to analyze 
the detailed motion of a tracked subject. In health 
care areas, a human motion capturing system can 
be used to help a handicap person to learn how 
to walk, run, etc. However, the system with large 
errors of estimated kinematic angles might cause 
adverse effects to the treatment of the patient. The 
other difficulty of our method relates to estimating 
human motion from tricker movements or rapid 
changes of trackers’ locations. In this situation, 
there are large variations of the human postures 
between two consecutive frames. A part of infor-
mation used to assign the label of 3D data might get 
inaccurate, causing a missing calculation of some 
body parts. For such reasons, we plan our future 
work to improve the reliability of our presented 
techniques and its robustness to handle the rapid 
and complex changes of human postures in a video 
sequence. The concerns are addressed by develop-
ing better labeling method with investigating more 
information to detect human body parts from RGB 
images as exampled in (Ninh et al., 2009). Also 
in the model fitting part of our algorithm, a large 
number of 3D points processed in the algorithm 
slow down the co-registration process and take 
into account outliers in computations that affect 
the recovering results. To mitigate this problem, 
we recently suggested a way of utilizing clusters 
of 3D points being assigned the same label of a 
body part and computing the kinematic parameters 
with a small number of clusters (Thang et al., 
2010b). This greatly reduced the computational 
time, eliminated the presence of outliers, and made 
the presented techniques more practical.

As a practical application, we presented our 
work of HAR using the derived feature of joint 
angles, which proved its superior performance 
over the conventional feature of body silhouettes. 
We believe that our presented work in this chapter 
should be able to find its use in other applications 
such as advanced HCI, video games, smart homes, 
smart hospitals, etc.

CONCLUSION

In this chapter, we have presented our marker-
less system to recover human body postures in 
3D from a sequence of depth maps acquired by 
a single stereo camera. We have described our 
methodology including how to estimate the 3D 
data of a depth map, how to create a human body 
model, and how to co-register the human body 
model to the 3D data. Our experimental results 
with real video data have shown that our method 
successfully recovers human body postures from 
depth maps: our validation indicates an error range 
of about 60-140 in the estimated joint angles. In 
addition, as an application of our technique, we 
have presented a HAR work using the derived 
body joint angles. Again our experimental results 
with real video data show that our HAR system 
produces significantly better recognition rates than 
the conventional approaches in which binary sil-
houettes are utilized to recognize human activities.
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KEY TERMS AND DEFINITIONS

Depth Map: A 2-D image representing the 
depth information of a scene using gray-scaled 
colors.



561

Recovering 3D Human Body Postures from Depth Maps and Its Application in Human Activity Recognition

Human Computer Interaction (HCI): A re-
search of interaction between users and computers.

Maker-Based Human Motion Capture: An 
approach of capturing human motion by attaching 
markers to the human body. The trajectories of the 
markers detected in 3D space provide the motion 
information of the tracked subject.

Markerless-Based Human Motion Capture: 
An approach of capturing human motion without 
using markers.

Stereo Camera: A type of camera composed of 
two or more lenses to allow taking some pictures 
of a scene in alternate view angles to estimate the 
information of depth.

Stereo Matching Algorithm: An algorithm 
used to generate the depth map from a pair of 
images captured by a stereo camera.

Stereopsis: A process of combining two im-
ages received from two human eyes to create a 
3D sensation about viewed objects.


