
 1

Abstract

 In this paper, we present a joint scheduling of hard
deadline periodic and soft deadline aperiodic tasks in
dynamic-priority systems. The proposed algorithm has
extended the fixed-Critical Task Indicating (CTI) algorithm
developed by the authors [3]. The dynamic-CTI algorithm is
operated in such a way that dynamic-priority assignment
strategy for a given periodic task set and the information on a
deadlinewise preassignment table, called dynamic-CTI table,
are mixed dynamically according to the aperiodic tasks'
arrivals at runtime. The algorithm has a predictability and a
less computational complexity in calculating the slacks since it
uses the dynamic-CTI table. Our simulation study shows that
the dynamic-CTI scheduling has better performance than the
fixed-CTI algorithm which is even better than the slack
stealing algorithms, especially under a heavy transient
overload.

1. Introduction

 In the last several years, the joint scheduling algorithms of
periodic and soft aperiodic tasks in fixed priority systems
[8],[9] have been investigated by many researchers
[5],[6],[11],[12]. However, relatively a few works have been
done in dynamic priority systems. Recently, Homayoun and
Ramanathan [2] extended the deferrable server scheduling
algorithm [5] to work with the EDF algorithm. The deferrable
server algorithm, however, does not always fully utilize the
processor due to the fact that the response times for the
aperiodic requests are sometimes not the minimum possible.
Tia and Liu [13] developed a scheduling of aperiodic requests
with a slack-stealing approach. The algorithm, which is a
greedy, uses the EDF algorithm to schedule the periodic
requests. The time complexity of the algorithm is O(n) where
n is the number of periodic tasks. It is optimal in that it
minimizes the response times of all the aperiodic requests
among all valid aperiodic task scheduling algorithms. Spuri
and Buttazzo [10] also introduced an optimal algorithm, the
EDL algorithm. However, its runtime overhead is higher than
that of Tia and Liu's algorithm.
In this paper we introduce a different type of the soft aperiodic
task scheduling algorithm in dynamic-priority systems. The
proposed algorithm extended the fixed-CTI algorithm [3]

which is a soft aperiodic task scheduling in fixed priority
systems. The simulation study [3] showed that the fixed-CTI
algorithm has a faster response time for aperiodic requests and
a less computational complexity in calculating slacks than the
slack stealing algorithms [6],[7]. The major goal of the
dynamic-CTI algorithm is to provide a scheduling
predictability and a simplicity in calculating slacks. To
achieve this, we have adopted a scheduling mechanism in
which a dynamic-priority assignment strategy for a given
periodic task set and the information on a off-line built
dynamic-CTI table are mixed according to the aperiodic tasks'
arrivals at run-time. The role of the dynamic-CTI table is to
indicate the critical periodic tasks (if any) at each scheduling
point that must be assigned immediately to meet their
deadlines. This property enables us to have a scheduling
predictability and reduces the overall computational
complexity at run-time since it has scheduling information in a
priori.
 To build a dynamic-CTI table at off-line, we developed the
dynamic-priority preassignment strategy, called deadlinewise
preassignment, in which each start time of the given set of
periodic tasks' instances is deferred toward their deadlines at
maximum according to the given dynamic-priority.
Consequently, the slacks which were made by artificially
deferring the execution time of periodic tasks can be utilized
by the aperiodic tasks if they arrive at those slack zones.
Otherwise, those slacks can be used for the periodic tasks just
as per normal dynamic-priority scheduling. The property of
the deadlinewise preassignment is shown on [3], [4] in detail.
 Intuitively, the deadlinewise preassignment for a periodic
task set can also be obtained by rotating the dynamic-priority
preassignment in a 180° on the axis of the beginning or the
ending point of the hyperperiod under the strong assumption
that the deadlines of periodic tasks must be the same as the
periods of them. Because of this transposed property for a
special case, the CTI approach may be considered as same
method as the reverse schedule, introduced by Chetto and
Chetto [1]. We, however, would like to point out the major
differences between the Chetto and Chetto's work [1] and ours
in terms of the application scope (constraints) and the pursuing
goal. In the light of the application scope, our approach can be
used to relax the constraint of Chetto and Chetto's scheduling
method. While the reverse schedule of EDL (Earliest
Deadline as Late as possible) proposed by them is restricted to
the fact that the deadlines of periodic tasks must be same as
the periods of periodic tasks, an extension of our approach will

A Soft Aperiodic Task Scheduling Algorithm in Dynamic-Priority Systems

 Sungyoung LeeJ, Hyungill KimJ, Jongwon LeeJJ

 JDepartment of Computer Engineering
Kyung Hee University, Seoul, Korea

JJ Software Research Lab.
Korea Telecom, Seoul, Korea

 2

remove the limitations by building a dynamic-CTI table using
deadlinewise preassignment according to the EDF priority
order. By using this deadlinewise preassignment, the
dynamic-CTI approach does not need to reverse the
scheduling domain, so that the deadlines of the periodic tasks
are not necessarily to be same as the periods of those periodic
tasks. Further, Chetto and Chetto have introduced the EDL
scheme as an acceptance test mechanism for hard aperiodic
tasks while we have suggested the CTI approach as a
mechanism for mainly reducing computational complexity in
calculating the slacks.
 The remainder of the paper is organized as follows.
Section 2 describes the dynamic-CTI algorithm including an
example. Section 3 shows simulation results and addresses
some issues on the CTI approach. Section 4 discusses an
extension of the proposed algorithm. Finally, we conclude the
paper in section 5.

2. The Dynamic-CTI Algorithm

 The dynamic-CTI algorithm seems to be similar to the
Chetto and Chetto's approach in that EDL scheduling method
at off-line is mixed with EDS (Earliest Deadline as Soon as
possible) scheduling at on-line. We, however, already
mentioned the differences between the two approaches in
section 1.
 A dynamic-CTI table is obtained by applying the
deadlinewise preassignment strategy based on a dynamic-
priority policy for the given instances of periodic tasks. This
approach is very similar to creating the fixed-CTI table. The
dynamic-CTI algorithm also works on the same principle as of
the fixed-CTI algorithm. Figure 1 depicts a pseudocode of the
dynamic-CTI algorithm.

1 initialize data structures
 /* create the dynamic-CTI table */
2 loop begin
3 if (a critical periodic task unit not yet been serviced
 has occurred) then service it
4 else if (aperiodic task(s) is ready or arrived) then
 service it
5 else if (periodic task(s) is ready or arrived) then
 service it
6 else process CPU idle state
7 advance timer
8 if ((timer_value MOD hyperperiod) is equal to zero)
 then reinitialize the global parameters
9 end loop

Figure 1. A pseudocode of the dynamic-CTI algorithm.

At line 1, the data structures for the algorithm including the
dynamic-CTI table, the timer, and the hyperperiod are
initialized for a given periodic task set. At line 3, the
algorithm checks to see if (C1) there are slacks available for
the aperiodic task in the CTI table at the current time, or
(C2) the current critical task unit (whole or part of the task
instance) already has been serviced. If one of the two

conditions is met, it services the aperiodic task immediately. If
neither of them is met, the critical task is serviced. Otherwise,
an aperiodic task in a ready state (or newly arrived) is
serviced immediately at line 4. A dynamic scheduling such as
the EDF algorithm is to be applied to the periodic tasks at line
5. Note that the assumptions for the dynamic-CTI algorithm
are basically same as that for the fixed-CTI scheduling.
 Example 1. Suppose there is a set of periodic tasks Ts
which consists of three periodic tasks. Ts = {τ1(1,5,5),
τ2(5,10,10), τ3(4,15,15)} where the values inside of
parenthesis represent execution time, period, and deadline
respectively. Ts is a set of periodic tasks that can be scheduled
with the EDF while unable to be scheduled with a fixed-
priority scheduling algorithm. The EDF-CTI table for the
given periodic tasks set is shown in Figure 2. An example of
the EDF-CTI scheduling using an EDF-CTI table for the given
Ts is shown in Figure 3.

τ

τ

τ

1

2

3

Hyperperiod

30

30

30

deadlinewise preassignment using EDF

Figure 2. EDF-CTI Table for Ts.

τ

τ

τ

1

2

3 H yperperiod30

30

30

deadlinewise preassignment using ED F

2 333332 2 2 2 2 2 2 2 2 21 1 1 1 10 3 33 2 2 221

Aperiodic Task t=15
 Figure 3. Aperiodic task service at t=15 using EDF-CTI

algorithm.

In this example, when an aperiodic task A1 arrives at t=15, by
the slack discriminant, the EDF-CTI algorithm indicates that
the τ2 is not a critical task at t=15. Consequently, A1 is
assigned at that point immediately. Note that the slack
discriminant f(t) for the dynamic-CTI algorithm indicates a
slack if CTI[t] = 0 or CP[CTI[t]] - CR[CTI[t]] > 0, otherwise
a critical task, where t denotes current scheduling time, CTI
denotes CTI table (an array of integers, each element of which
represents a slack or a periodic task), CP[i] and CR[i] (i
represents an identifier of a periodic task) respectively denote
all the computation processing done and all the computation
requirement for each periodic task until t.

 3

3. Simulation Result and Discussion

 In this section, we observe the average response time for
aperiodic requests. The performance of the dynamic-CTI
algorithm will be compared to that of the fixed-CTI
scheduling; all the combinations of a fixed- or dynamic-CTI
table built off-line and an on-line fixed- or dynamic-priority
assignment. In other words, we can combine an on-line
algorithm for the CTI policy using fixed- or dynamic-priority
with a fixed- or dynamic-CTI table, which has been built
based on a fixed-priority or dynamic-priority scheduling.
Thus, four different types of scheduling are available, i.e., a
fixed-priority scheduling with a fixed-CTI table, a fixed-
priority scheduling with a dynamic-CTI table, a dynamic-
priority scheduling with a fixed-CTI table, and dynamic-
priority scheduling with a dynamic-CTI table.
 The task set in the simulation consists of 10 different
periodic tasks, each of which has randomly generated period
and computation requirements. All aperiodic tasks are
generated by using both an exponential distribution function
for their computation requirements and the Poisson arrival
function for their arrivals. An aperiodic workload has been
easily coordinated by modifying the exponential scale
parameter value and the arrival rate of the Poisson function.
 In order to provide a fairly subjective observation ground
for the simulation, we have constructed a model of simulation
in a similar manner to that shown in the slack stealing
algorithm. We arranged the periodic task set with 90% of
CPU utilization to simulate high workload scheduling. This is
summarized in Table 1.

We also consider two cases of average execution time for
aperiodic tasks, 3.5 and 20. In the following, the result of
aperiodic response time for the above two cases is briefly
discussed.
 In Figure 4, as the workload of aperiodic tasks is increased,

the average response time tends to be slower. The average

response time is dependent more on the off-line scheduling if
the aperiodic workload is low, but is dependent more on the
on-line scheduling if the aperiodic workload is high. Figure 5
shows that the average execution time for the given aperiodic
tasks is 20. In this Figure, we observe the average response
time for soft aperiodic tasks is dependent more on their
average execution time; the larger average execution time for
aperiodic tasks, the slower average response time for that
tasks. The average response time for aperiodic requests is also
affected by the on-line scheduling of periodic tasks. The
simulation study, as a conclusion, shows that the average
response time for aperiodic tasks is the smallest in case of
EDF-EDF combination; the EDF on-line algorithm with a
EDF-CTI table built off-line. Also, the response time of the
aperiodic requests is faster than any other valid aperiodic task
scheduling algorithms in fixed-priority systems, especially
under the transient overload.

Periodic Workload (90%)

3

3.5

4

4.5

5

5.5

0 1.2 2.4 3.5 4.7 5.8 7 8.1 9.2
Aperiodic Workload (%)

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

Fixed-Fixed
Fixed-EDF
EDF-Fixed
EDF-EDF

Offline-Online

Figure 4. Average response time for aperiodic tasks when

average execution time is 3.5.

Periodic Workload (90%)

0

10

20

30

40

50

60

70

80

90

0 1.1 2.1 3.1 4.1 5.1 6 7 7.9 8.9

Aperiodic Workload (%)

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e Fixed-Fixed

Fixed-EDF
EDF-Fixed
EDF-EDF

Figure 5. Average response time for aperiodic tasks when
average execution time is 20.

 Meanwhile, both of the fixed- and dynamic-CTI algorithms
have some limitations such as the discrete unit time scheduling
and the critical task misindicating problem. Misindicating of a
non-critical task as a critical one may lead to the result that the
algorithm can not find more available slacks at the scheduling
point. Let us consider two periodic task T1 and T2, with T1
having the higher priority. Suppose there is no aperiodic
request initially. The first instant of T1 finishes executing. An
aperiodic task comes. Now, according to the fixed-CTI table,

 With 90%
Periodic Workload

 Task ID Period Computation
 1 100 2
 2 280 14
 3 2100 108
 4 440 29
 5 350 14
 6 210 30
 7 35 8
 8 70 11
 9 2200 231
 10 300 12

Table 1. A sample periodic task set used in the
simulations.

 4

T2 may now be critical because the deadlinewisely preassigned
scheduling is constructed with T2 first, followed by T1. But T1
has already finished executing, and the fixed-CTI algorithm
may not detect this. So instead of pushing T2 back and
scheduling the aperiodic request, the scheduler schedules T2
instead, thinking that it is critical when in fact it is not critical
because T1 has finished and there may be more time later to
execute T2.
 Due to the misindicating problem, our approach is not
optimal, which means our algorithm can not find more
available slacks. However, the computational complexity of
our approach at off-line is O(NlogN) while that of Tia and Liu
is O(N2) [13] where N is the number of periodic tasks in a
hyperperiod. Moreover, our algorithm's time complexity to
calculate the slack at on-line is O(1), which is the expense
only for the discriminant of slacks, while that of the [13] is
O(n) where n is the number of periodic tasks.

4. Extension of the Algorithm

 In order to improve scheduling performance, our algorithm
should eliminate the problems such as the misindicating of a
critical task and the discrete unit time scheduling even though
these are never seriously affects the overall scheduling. To
develop an optimal scheduling in the CTI algorithm
framework, we are under extending the dynamic-CTI
scheduling algorithm.
 The idea of this algorithm is that if the maximum slack
provided by the CTI table is added to the maximum slack
calculated at run-time, the algorithm should be an optimal.
We will show the proofs of an optimality and how to
overcome the limitations in the dynamic-CTI algorithm in
another paper soon. We, however, briefly introduce the basic
concept of this idea in this subsection.
 We can calculate the maximum slack at the start point of
time zone Z using the following formula

S Z S Cp Cr Crk k k
Z t Z

i i i
ik k

() min{(), }−
< <

= + −
−

∑1
1

--- f1

where k is an index for the time zone Z, i is an index of
preassigned periodic tasks in the CTI table [Zk-1, Zk]. Note
that Z is the time zone from the arrival or deadline of any
periodic tasks’ instance to the very next arrival or deadline of
any periodic task instance. We can calculate the maximum
slack in time zone Z while the periodic tasks are met their
deadline. Cr is the computation requirement and Cp is the
computation processing completed from the arrival time of ith
periodic task instance to Zk-1. In the right-hand side part of
equality in formula f1, Sk is a maximum slack provided by the
CTI table off-line. The remaining part of the right-hand side
calculated at run-time is the value of the periodic tasks'
instances already being executed which will be a slack in the
immediate following next zone Z. Figure 6 depicts how to
partition the time zone Z based on the deadlines of the given
periodic task set.

Z0 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11

τ1(1,5,5)

τ2(1,7,7)

τ3(1,10,10)

CTI table

Figure 6. Example of partitioning time zone Z

The pseudocode of the extended EDF-CTI algorithm is shown
in Figure 7. Note that A, P, and I are stand for an aperiodic
task, a periodic task, and an idle time respectively.

5. Summary

when aperiodic task queue is not empty
 while (Sk(t) > 0) and (aperiodic task queue is not empty) do
 service aperiodic task(s) in Ak(t);
 Sk(t) := Sk(t) - Ak(t);

when periodic task arrive / complete
calculate Sk(t);
if periodic task in CTI is not served (i.e. Crk(t) > Cpk(t)) then
 while Crk(t) - Cpk(t) do
 service periodic task(s) by CTI table in Crk(t) - Cpk(t);
 Sk(t) := Sk(t);
if periodic task queue is not empty then
 service highest priority periodic task(s) in queue;
 Sk(t) := Sk(t) - Pk(t); /* If Pk is not used, it is added to the slack in the very next zone */
if no aperiodic task and periodic task then
 it’s the idle time in Ik(t);
 Sk(t) := Sk(t) - Ik(t);

Figure 7. Pseudocode of the extended dynamic-CTI algorithm.

 5

 This paper discusses the problem of jointly scheduling hard
deadline periodic and soft deadline aperiodic tasks in
dynamic-priority systems. The deadlinewise preassignment
based on dynamic-priority policy for a periodic task set in a
single hyperperiod produces a scheduling table, called
dynamic-CTI table, which is frequently referenced by the
scheduler whether there are slacks for soft aperiodic tasks. It
consequently keeps the benefits of the fixed-CTI algorithm
that is simple to implement and offers remarkable scheduling
predictability. The dynamic-CTI algorithm shows a good
performance as much as the other fixed-CTI approaches in
most cases and even better than the other soft aperiodic task
schedulings in a transient overload. The proposed algorithm
also relaxes the limitations of Chetto and Chetto's algorithm.
 Even though our proposed algorithm is not optimal, it has
considerable benefits such as the scheduling predictability and
computational simplicity. We agree that the scheduling
problem is, in some sense, a matter of tradeoff between
simplicity and performance. In this respect, our approach
more emphasizes upon the computational simplicity by
introducing the CTI table.

References

[1] H. Chetto and M. Chetto, "Some Results of the Earliest

Deadline Scheduling Algorithm", IEEE Transactions on
Software Engineering, Vol. 15, No. 10, pp. 466-473,
1989.

[2] N. Homayoun and P. Ramanathan, "Dynamic Priority
Scheduling of Periodic and Aperiodic Tasks in Hard
Real-Time Systems", Real-Time Systems: The
International Journal of Time-Critical Computing
Systems, Vol. 6, No. 2, pp. 207-232, 1994

[3] H.I.Kim, S.Y. Lee, J.W. Lee, and J.S. Kim, " An
Aperiodic Task Scheduling Algorithm by Hybrid Priority
Assignment in Real-Time Environments", Journal of the
Korea Information Science Society, Vol. 22, No. 5, pp.
748-758, May, 1995

[4] J.W. Lee, S.Y. Lee, and H.I Kim, "Scheduling Hard-
Aperiodic Tasks in Hybrid Static/Dynamic Priority
Systems", ACM SIGPLAN on Languages, Compilers,
and Tools for Real-Time Systems, pp. 7-19, La Jolla,
CA, June, 1995.

[5] J.P. Lehoczky, L. Sha, and J.K. Strosnider, "Enhanced
Aperiodic Responsiveness in Hard Real-Time
Environments", Proceedings of the IEEE Real-Time
Systems Symposium, pp. 261-270, San Jose, CA,
December 1987.

[6] J.P. Lehoczky and S. Ramos-Thuel, "An Optimal
Algorithm for Scheduling Soft-Aperiodic Tasks in Fixed-
Priority Preemptive Systems", Proceedings of the IEEE
Real-Time Systems Symposium, pp. 110-123, December
1992.

[7] J.P. Lehoczky and S. R. Thuel, Scheduling Periodic and
Aperiodic Tasks using the Slack Stealing Algorithm

(Chapter 8), Advances in Real-Time Systems, (ed. S.
Son) Prentice Hall, Englewood Cliffs, NJ, 1995.

[8] J.Y.-T. Leung and J. Whitehead, "On the Complexity of
Fixed-Priority Scheduling of Periodic Real-Time Tasks",
Performance Evaluation 2, pp. 237-250, 1982.

[9] C.L. Liu and J.W. Layland, "Scheduling Algorithms for
Multi-Programming in a Hard Real-Time Environments",
Journal of the Association for Computing Machinery,
Vol. 20, No.1, pp. 46-61, January 1973.

[10] M. Spuri and G.C. Buttazzo, "Efficient Aperiodic Service
under Earliest Deadline Scheduling", Proceedings of the
IEEE Real-Time System Symposium, pp. 2-11, 1994.

[11] B. Sprunt, J.P. Lehoczky, and L. Sha, "Scheduling
Sporadic and Aperiodic Events in a Hard Real-Time
System", Technical Report CMU/SEI-890TR-11, April
1989.

[12] B. Sprunt, J.P. Lehoczky, and L. Sha, "Exploiting Unused
Periodic Time for Aperiodic Service Using the Extended
Priority Exchange Algorithm", Proceedings of the IEEE
Real-Time System Symposium, pp. 251-258, December
1988.

[13] T.S. Tia, Utilizing Slack Time for Aperiodic and
Sporadic Requests Scheduling in Real-Time Systems,
Technical Report No. UIUCDCS-R-95-1906, University
of Illinois, April, 1995,

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

