
 1

Abstract 
 

 In this paper, we present a joint scheduling of hard 
deadline periodic and soft deadline aperiodic tasks in 
dynamic-priority systems. The proposed algorithm has 
extended the fixed-Critical Task Indicating (CTI) algorithm 
developed by the authors [3]. The dynamic-CTI algorithm is 
operated in such a way that dynamic-priority assignment 
strategy for a given periodic task set  and the information on a 
deadlinewise preassignment table, called dynamic-CTI table, 
are mixed dynamically according to the aperiodic tasks' 
arrivals at runtime. The algorithm has a predictability and a 
less computational complexity in calculating the slacks since it 
uses the dynamic-CTI table. Our simulation study shows that 
the dynamic-CTI scheduling has better performance than the 
fixed-CTI algorithm which is even better than the slack 
stealing algorithms, especially under a heavy transient 
overload. 
 
 
 
1. Introduction 

     In the last several years, the joint scheduling algorithms of 
periodic and soft aperiodic tasks in fixed priority systems 
[8],[9] have been investigated by many researchers 
[5],[6],[11],[12].  However, relatively a few works  have been 
done in dynamic priority systems.  Recently, Homayoun and 
Ramanathan [2] extended the deferrable server scheduling 
algorithm [5] to work with the EDF algorithm.  The deferrable 
server algorithm, however, does not always fully utilize the 
processor due to the fact that the response times for the 
aperiodic requests are sometimes not the minimum possible.  
Tia and Liu [13] developed a scheduling of aperiodic requests 
with a slack-stealing approach.  The algorithm, which is a 
greedy, uses the EDF algorithm to schedule the periodic 
requests.  The time complexity of the algorithm is O(n) where 
n is the number of periodic tasks.  It is optimal in that it 
minimizes the response times of all the aperiodic requests 
among all valid aperiodic task scheduling algorithms.  Spuri 
and Buttazzo [10] also introduced an optimal algorithm, the 
EDL algorithm.  However, its runtime overhead is higher than 
that of  Tia and Liu's algorithm.                                                                     
In this paper we introduce a different type of the soft aperiodic 
task scheduling algorithm in dynamic-priority systems.   The 
proposed algorithm extended the fixed-CTI algorithm [3] 

which is a soft aperiodic task scheduling in fixed priority 
systems.   The simulation study [3] showed that the fixed-CTI 
algorithm has a faster response time for aperiodic requests and 
a less computational complexity in calculating slacks than the 
slack stealing algorithms [6],[7].  The major goal of  the 
dynamic-CTI algorithm is to provide a scheduling 
predictability and a simplicity in calculating slacks.  To 
achieve this, we have adopted a scheduling mechanism in 
which a dynamic-priority assignment strategy for a given 
periodic task set and the information on a off-line built 
dynamic-CTI table are mixed according to the aperiodic tasks' 
arrivals at run-time.  The role of the dynamic-CTI table is to 
indicate the critical periodic tasks (if any) at each scheduling 
point that must be assigned immediately to meet their 
deadlines.  This property enables us to have a scheduling 
predictability and reduces the overall computational 
complexity at run-time since it has scheduling information in a 
priori. 
 To build a dynamic-CTI table at off-line, we developed the 
dynamic-priority preassignment strategy, called deadlinewise 
preassignment, in which each start time of the given set of 
periodic tasks' instances is deferred toward their deadlines at 
maximum according to the given dynamic-priority.  
Consequently, the slacks which were made by artificially 
deferring the execution time of periodic tasks can be utilized 
by the aperiodic tasks if they arrive at those slack zones.  
Otherwise, those slacks can be used for the periodic tasks just 
as per normal dynamic-priority scheduling.  The property of 
the deadlinewise preassignment is shown on [3], [4] in detail.   
 Intuitively, the deadlinewise preassignment for a periodic 
task set can also be obtained by rotating the dynamic-priority 
preassignment in a 180° on the axis of the beginning or the 
ending point of the hyperperiod under the strong assumption 
that the deadlines of periodic tasks must be the same as the 
periods of them.  Because of this transposed property for a 
special case, the CTI approach may be considered as same 
method as the reverse schedule, introduced by Chetto and 
Chetto [1].  We, however, would like to point out the major 
differences between the Chetto and Chetto's work [1] and ours  
in terms of the application scope (constraints) and the pursuing 
goal.  In the light of the application scope, our approach can be 
used to relax the constraint of Chetto and Chetto's scheduling 
method.  While the reverse schedule of EDL (Earliest 
Deadline as Late as possible) proposed by them is restricted to 
the fact that the deadlines of periodic tasks must be same as 
the periods of periodic tasks, an extension of our approach will 
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remove the limitations by building a dynamic-CTI table using 
deadlinewise preassignment according to the EDF priority 
order.  By using this deadlinewise preassignment, the 
dynamic-CTI approach does not need to reverse the 
scheduling domain, so that the deadlines of the periodic tasks 
are not necessarily to be same as the periods of those periodic 
tasks.  Further, Chetto and Chetto have introduced the EDL 
scheme as an acceptance test mechanism for hard aperiodic 
tasks while we have suggested the CTI approach as a 
mechanism for mainly reducing computational complexity in 
calculating the slacks.  
  The remainder of the paper is organized as follows.  
Section 2 describes the dynamic-CTI algorithm including an 
example. Section 3 shows simulation results and addresses 
some issues on the CTI approach. Section 4 discusses an 
extension of the proposed algorithm.  Finally, we conclude the 
paper in section 5. 

2. The Dynamic-CTI Algorithm 
 
     The dynamic-CTI algorithm seems to be similar to the 
Chetto and Chetto's approach in that EDL scheduling method 
at off-line is mixed with EDS (Earliest Deadline as Soon as 
possible) scheduling at on-line.  We, however, already 
mentioned the differences between the two approaches in 
section 1.  
 A dynamic-CTI table is obtained by applying the 
deadlinewise preassignment strategy based on a dynamic-
priority policy for the given instances of periodic tasks.  This 
approach is very similar to creating the fixed-CTI table.  The 
dynamic-CTI algorithm also works on the same principle as of  
the fixed-CTI algorithm.  Figure 1 depicts a pseudocode of the 
dynamic-CTI algorithm.    
 

1 initialize data structures   
   /* create the dynamic-CTI table */ 
2 loop begin 
3 if (a critical periodic task unit not yet been serviced  
       has occurred)   then service it   
4    else if (aperiodic task(s) is ready or arrived) then  
                 service it 
5    else if (periodic task(s) is ready or arrived) then  
                 service it 
6    else process CPU idle state 
7  advance timer 
8  if ((timer_value MOD hyperperiod) is equal to zero)  
             then reinitialize the global parameters  
9 end loop 

Figure 1.  A pseudocode of the dynamic-CTI algorithm. 
 

At line 1, the data structures for the algorithm including the 
dynamic-CTI table, the timer, and the hyperperiod are 
initialized for a given periodic task set.  At line 3, the 
algorithm checks to see if (C1) there are slacks available for 
the aperiodic task in the CTI table at the current time, or 
(C2) the current critical task unit (whole or part of the task 
instance) already has been serviced. If one of the two 

conditions is met, it services the aperiodic task immediately. If 
neither of them is met, the critical task is serviced.  Otherwise, 
an aperiodic task in a ready state  (or newly arrived) is 
serviced immediately at line 4.  A dynamic scheduling such as 
the EDF algorithm is to be applied to  the periodic tasks at line 
5. Note that the assumptions for the dynamic-CTI algorithm 
are basically same as that for the fixed-CTI scheduling. 
    Example 1.  Suppose there is a set of periodic tasks Ts  
which consists of three periodic tasks.  Ts = {τ1(1,5,5), 
τ2(5,10,10), τ3(4,15,15)} where the values inside of 
parenthesis represent execution time, period, and deadline 
respectively.  Ts is a set of periodic tasks that can be scheduled 
with the EDF while unable to be scheduled with a fixed-
priority scheduling  algorithm.  The EDF-CTI table for the 
given periodic tasks set is shown in Figure 2.  An example of 
the EDF-CTI scheduling using an EDF-CTI table for the given 
Ts is shown in Figure 3.   
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Figure 2. EDF-CTI Table for Ts. 
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 Figure 3. Aperiodic task service at t=15 using EDF-CTI 

algorithm.  

In this example, when an aperiodic task A1 arrives at t=15, by 
the slack discriminant, the EDF-CTI algorithm indicates that 
the τ2  is not a critical task at t=15.  Consequently, A1 is 
assigned at that point immediately. Note that the slack 
discriminant  f(t) for the dynamic-CTI algorithm indicates a 
slack if CTI[t] = 0 or CP[CTI[t]] - CR[CTI[t]] > 0, otherwise 
a critical task, where t denotes current scheduling time, CTI 
denotes CTI table (an array of integers, each element of which 
represents a slack or a periodic task), CP[i] and CR[i] (i 
represents an identifier of a periodic task) respectively denote 
all the computation processing done and all the computation 
requirement for each periodic task until t. 
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3. Simulation Result and Discussion 
 
 In this section, we observe the average response time for 
aperiodic requests.  The performance of the dynamic-CTI 
algorithm will be compared to that of the fixed-CTI 
scheduling; all the combinations of a fixed- or dynamic-CTI 
table built off-line and an on-line fixed- or dynamic-priority 
assignment.   In other words, we can combine an on-line 
algorithm for the CTI policy using fixed- or dynamic-priority 
with a fixed- or dynamic-CTI table, which has been built 
based on a fixed-priority or dynamic-priority scheduling.  
Thus, four different types of scheduling are available, i.e., a  
fixed-priority scheduling with a fixed-CTI table, a fixed-
priority scheduling with a dynamic-CTI table, a dynamic-
priority scheduling with a fixed-CTI table, and dynamic-
priority scheduling with a dynamic-CTI table. 
     The task set in the simulation consists of 10 different 
periodic tasks, each of which has randomly generated period 
and computation requirements. All aperiodic tasks are 
generated by using both an exponential distribution function 
for their computation requirements and the Poisson arrival 
function for their arrivals.  An aperiodic workload has been 
easily coordinated by modifying the exponential scale 
parameter value and the arrival rate of the Poisson function. 
 In order to provide a fairly subjective observation ground 
for the simulation, we have constructed a model of simulation  
in a similar manner to that shown in the slack stealing 
algorithm.   We arranged the periodic task set with 90% of 
CPU utilization to simulate high workload scheduling.  This is 
summarized in Table 1.   
 
 
We also consider two cases of average execution time for 
aperiodic tasks, 3.5 and 20.  In the following, the result of 
aperiodic response time for the above two  cases is briefly 
discussed.   
    In Figure 4, as the workload of aperiodic tasks is increased, 

the average response time tends to be  slower.  The average 

response time is dependent more on the off-line scheduling if 
the aperiodic workload is low, but is dependent more on the 
on-line scheduling if the aperiodic workload is high.   Figure 5 
shows that  the average execution time for the given aperiodic 
tasks is 20.  In this Figure, we observe the average response 
time for soft aperiodic tasks is dependent  more on their 
average execution time; the larger average execution time for 
aperiodic tasks, the slower average response time for that 
tasks.  The average response time for aperiodic requests is also 
affected by the on-line scheduling of periodic tasks.  The 
simulation study, as a conclusion,  shows that the average 
response time for aperiodic tasks is the smallest in case of 
EDF-EDF combination; the EDF on-line algorithm with a 
EDF-CTI table built off-line.  Also, the response time of the 
aperiodic requests is faster than any other valid aperiodic task 
scheduling algorithms in fixed-priority systems, especially 
under the transient overload.   
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Figure 4. Average response time for aperiodic tasks when 

average execution time is 3.5. 
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Figure 5. Average response time for aperiodic tasks when 
average execution time is 20. 

 
 Meanwhile, both of the fixed- and dynamic-CTI algorithms 
have some limitations such as the discrete unit time scheduling 
and the critical task misindicating problem.  Misindicating of a 
non-critical task as a critical one may lead to the result that the 
algorithm can not find more available slacks at the scheduling 
point.  Let us consider two periodic task T1 and T2, with T1 
having the higher priority.   Suppose there is no aperiodic 
request initially.  The first instant of T1 finishes executing.  An 
aperiodic task comes.  Now, according to the fixed-CTI table, 

 With 90% 
Periodic Workload 

 Task ID Period  Computation 
    1     100       2 
    2     280      14 
    3    2100     108 
    4     440      29 
    5     350      14 
    6     210      30 
    7      35       8 
    8      70      11 
    9    2200     231 
   10     300      12 

Table 1. A sample periodic task set used in the 
simulations. 



 4

T2 may now be critical because the deadlinewisely preassigned 
scheduling is constructed with T2 first, followed by T1.  But T1 
has already finished executing, and the fixed-CTI algorithm 
may not detect this.   So instead of pushing T2 back and 
scheduling the aperiodic request, the scheduler schedules T2 
instead, thinking that it is critical when in fact it is not critical 
because T1 has finished and there may be more time later to 
execute T2.   
    Due to the misindicating problem, our approach is not 
optimal, which means our algorithm can not find more 
available slacks.  However, the computational complexity of 
our approach at off-line is O(NlogN) while that of Tia and Liu 
is O(N2) [13] where N is the number of periodic tasks in a 
hyperperiod.  Moreover, our algorithm's time complexity to 
calculate the slack at on-line is O(1), which is the expense 
only for the discriminant of slacks, while that of the [13] is 
O(n) where n is the number of periodic tasks.    
 
 
4. Extension of the Algorithm 
  
  In order to improve scheduling performance, our algorithm 
should eliminate the problems such as the misindicating of a 
critical task and the discrete unit time scheduling even though 
these are never seriously affects the overall scheduling.  To 
develop an optimal scheduling in the CTI algorithm 
framework, we are under extending the dynamic-CTI 
scheduling algorithm.  
 The idea of this algorithm is that if the maximum slack 
provided by the CTI table is added to the maximum slack 
calculated at run-time, the algorithm  should be an optimal.  
We will show the proofs of an optimality and how to 
overcome the limitations in the dynamic-CTI algorithm in 
another paper soon.   We, however, briefly introduce the basic 
concept of this idea in this subsection.  
 We can calculate the maximum slack at the start point of 
time zone Z using the following formula 
 

S Z S Cp Cr Crk k k
Z t Z

i i i
ik k

( ) min{( ), }−
< <

= + −
−

∑1
1

---  f1 

 
where k is an index for the time zone Z, i is an index of 
preassigned periodic tasks in the CTI table [Zk-1, Zk].  Note 
that Z is the time zone from the arrival or deadline of any 
periodic tasks’ instance to the very next arrival or deadline of  
any periodic task instance.  We can calculate the maximum 
slack in time zone Z while the periodic tasks are met their 
deadline. Cr is the computation requirement and Cp is the 
computation processing completed from the arrival time of  ith 
periodic task instance to Zk-1.   In the right-hand side part of 
equality in formula f1, Sk  is a maximum slack provided by the 
CTI table off-line.  The remaining part of the right-hand side 
calculated at run-time is the value of the periodic tasks' 
instances already being executed which will be a slack in the 
immediate following next zone Z.  Figure 6 depicts how to 
partition the time zone Z based on the deadlines of the given 
periodic task set.  
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Figure 6. Example of partitioning time zone Z 

 
   
The pseudocode of the extended EDF-CTI algorithm is shown 
in Figure 7.  Note that A, P, and I are stand for an aperiodic 
task, a periodic task, and an idle time respectively. 
 
 
 
5. Summary 
 

when aperiodic task queue is not empty  
    while (Sk(t) > 0) and (aperiodic task queue is not empty) do 
       service aperiodic task(s) in Ak(t);   
    Sk(t) := Sk(t) - Ak(t);  
 
when periodic task arrive / complete  
calculate Sk(t); 
if periodic task in CTI is not served (i.e. Crk(t)  >  Cpk(t)) then 
   while Crk(t) - Cpk(t) do 
      service periodic task(s) by CTI table in Crk(t) - Cpk(t); 
   Sk(t) := Sk(t);  
if periodic task queue is not empty then 
   service highest priority periodic task(s) in queue; 
   Sk(t) := Sk(t) - Pk(t);  /* If Pk is  not used, it is added to the slack in the very next zone */  
if no aperiodic task and periodic task then  
   it’s the idle time in Ik(t);  
   Sk(t) := Sk(t) - Ik(t); 

Figure 7.  Pseudocode of the extended dynamic-CTI algorithm. 
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 This paper discusses the problem of jointly scheduling hard 
deadline periodic and soft deadline aperiodic tasks in 
dynamic-priority systems.   The deadlinewise preassignment 
based on dynamic-priority policy for a periodic task set in a 
single hyperperiod produces a scheduling table, called 
dynamic-CTI table, which is frequently referenced by the 
scheduler whether there are slacks for soft aperiodic tasks.  It 
consequently keeps the benefits of the fixed-CTI algorithm 
that is simple to implement and offers remarkable scheduling 
predictability.  The dynamic-CTI algorithm shows a good 
performance as much as the other fixed-CTI approaches in 
most cases and even better than the other soft aperiodic task 
schedulings in a transient overload. The proposed algorithm 
also  relaxes the limitations of Chetto and Chetto's algorithm.
 Even though our proposed algorithm is not optimal, it has 
considerable benefits such as the scheduling predictability and 
computational simplicity.  We agree that the scheduling  
problem is, in some sense, a matter of tradeoff between 
simplicity and performance.  In this respect, our approach 
more emphasizes upon the computational simplicity by 
introducing the CTI table. 
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