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ABSTRACT 

 
 In this paper, we propose a reasonably simple and 
near-optimal soft aperiodic task scheduling algorithm in 
dynamic priority systems.  The proposed algorithm has 
extended the EDF-CTI (Earliest Deadline First-Critical 
Task Indicating) Algorithm [4] in such a way of 
modifying the slack calculation method which in turns 
resolves the unit scheduling and the critical task 
misindicating problems.  The paper demonstrates a 
simple way of slack calculation and near optimality of 
the algorithm.  Our simulation study shows that the 
proposed algorithm, in most case, is slightly better than 
the EDF-CTI algorithm in terms of short response time 
of aperiodic requests, and considerably improves that in 
a high workload.    
 
1. Introduction 
 
 In the last few decades considerable researches have 
been done in the area of soft aperiodic task scheduling in 
fixed priority systems [8],[9] such as the polling server, 
the bandwidth preservation [5],[11],[12], and the slack 
stealing algorithm [6],[7]. Recently, Tia and Liu [13] 
introduced a scheduling of aperiodic requests in dynamic 
priority systems [9] based on the slack stealing approach.  
The main idea of their algorithm is to partition the 
periodic requests in sets such that the slack of all the 
requests in the same set are affected by the same 
scheduling events. Consequently, their algorithm can 
determine the minimum slack available at any time in 
O(n) time where n is the number of periodic tasks and is 
optimal in that it minimizes the response times of the 
aperiodic requests.  Homayoun and Ramanathan [2] 

extended the deferrable server scheduling algorithm to 
work with the EDF algorithm.  The deferrable server 
algorithm, however, does not always fully utilize the 
processor due to the fact that the response times for the 
aperiodic requests are sometimes not the minimum 
possible.  Spuri and Buttazzo [10] proposed four on-
line schedulings for aperiodic requests in dynamic 
priority systems: the dynamic priority exchange, the total 
bandwidth, the EDL (Earliest Deadline as Late as 
possible), and the improved priority exchange algorithm.  
Although only the EDL algorithm among them is 
optimal, however, its run time overhead is higher than 
that of Tia and Liu's algorithm.  
 
 In this paper, we introduce a new type of near-
optimal soft aperiodic task scheduling, called dynamic 
CTI algorithm, in dynamic priority systems.  Some 
optimal schedulings for soft aperiodic requests in 
dynamic priority systems already exist, so a natural 
question is: why near-optimal?  The answer is that none 
of the existing optimal soft aperiodic task schedulings 
satisfy the requirements of practicality in real-world 
applications due to their computational overhead for 
slack calculation.  Our goal, consequently, is to find a 
near-optimal scheduling for soft aperiodic requests, 
which is still preserving less computational overhead 
than the other existing algorithms.   To achieve this, 
we have adopted a scheduling scheme in which the EDF 
scheduling is applied to the given periodic task set while 
referencing the information on the off-line built dynamic 
CTI (Critical Task Indicating) table [3].  The dynamic 
CTI table is built by applying the deadlinewise 
preassignment scheme to the given periodic task set in a 
dynamic priority system. The scheduling information on 
this static table enables us to have a scheduling 
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predictability and reduces the overall computational 
complexity at run time.  Building a CTI table is very 
similar to the reverse schedule of the EDL introduced by 
Chetto and Chetto [1].  However, there are differences 
between two approaches in terms of their applications 
and pursuing goal which are shown in the [4].  
 
  The remainder of this paper organized as follows.  
Section 2 establishes a system model used in the paper.  
In section 3, we introduce the dynamic CTI algorithm 
and addresses its near optimality.  Section 4 
demonstrates the simulation result of the proposed 
algorithm and compares it with the EDF-CTI algorithm 
[4].  Finally, we conclude this paper in section 5. 
 
2. Task Model  
 
 Consider a uniprocessor real-time system with a set 
T of n independent, preemptable periodic tasks, (τ1, 
τ2, ..., τn).  Each task, τi , has a worst-case computation 
requirement Ci, a period Ti, an initiation time or an offset 
φi relative to some time origin, and a deadline di.  
Hence, we denote the system T = {τi(Ci,Ti,di): 1 ≤ i ≤ n}.  
We assume that Ti = di and all initiation times or relative 
offsets {φi, 1 ≤ i ≤ n} are synchronized as 0.  In 
response to external events which occur at random time 
instants, the aperiodic tasks, {Jk, k ≥ 1} are introduced. 
Each aperiodic request Ji(ai, ci) is characterized by its 
arrival time ai and its worst-case computation time ci.  
Let hyperperiod, H, be the least common multiple of all 
the periodic task's periods. 
 
3. Dynamic CTI Algorithm 
 
 In the conventional joint scheduling of aperiodic and 
periodic tasks, the scheduling time interval [0, t] is filled 
up by the execution time of periodic task instances Pij (t), 
the execution time for aperiodic requests A(t), and the 
idle time I(t).  The formula (1) depicts this concept.  
 

 t P t A t I tij
i j

= + +∑ ( ) ( ) ( )
,

 (1) 

 Meanwhile, the slack within [0,t], denoted by S0(t), 

is generally defined as the available time for aperiodic 
requests while guaranteeing the deadlines of the given 
periodic requests.  Consequently, S0(t) is the total 
amount of time from 0 to t except for the sum of the 
execution time of periodic requests.  The actual slack 
for aperiodic requests, however, is less than or equal to 
S0(t) because it includes idle time (see formula (2)). 
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 The slack stealing algorithm [6],[7] uses the actual 
slack as the minimum slack value to ensure that all the 
lower priority periodic deadlines are met (see formula 
(3)). 
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 On the contrary, in our proposed algorithm, the 
maximum slack S(t) at the current time t, can be obtained 
by the formula (4) where D is the absolute deadline of a 
periodic task. 
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 In order to get S(t) efficiently, we decompose a 
hyperperiod into a set of scheduling zones, denoted by 
{Zk, 0≤ k} where k is an index. The actual domain of the 
decomposition is a virtual scheduling table produced by 
the EDF on-line scheduling. A Zk is a time interval 
between two deadlines of instances of periodic tasks.  
The main reason for introducing the decomposition 
mechanism is to reduce the computational complexity 
for slack calculation and to find the available slack as 
much as possible. By this way, we can easily evaluate 
the slack availability while considering the deadlines of 
periodic tasks.  Figure 1 depicts an example of how to 
obtain {Zk} for the given three periodic tasks, τ1(1,5,5), 
τ2(1,7,7), τ3(3,10,10) where the parameters are the worst 
case computation time, deadline, and period of the tasks, 
respectively. 
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        z0      z1     z2        z3       z4      z5        z6      z7         z8     z9         z10       

τ1(1,5,5)

τ2(1,7,7)

τ3(3,10,10)

[Figure 1] An example of {Zk} decomposition. 
 
 In order to explain the algorithm and to show it is 
near-optimal, we introduce the following fundamental 
theorems. 
 
 Theorem 1: At the starting point of the hyperperiod, 
the deadlinewise preassignment scheme [3] in a 
dynamic priority system, as an off-line scheduling, is 
an optimal scheduling for the aperiodic requests. 
 Proof: At the start time of the hyperperiod, the 
deadlinewise preassignment is a special case of the EDL 
since the EDL has the property that assign the periodic 
tasks as late as possible. The EDL, meanwhile, is known 
to be an optimal aperiodic scheduling in the EDF 
framework which was proven by Chetto and Chetto [1]. 
                

 
 In the algorithm, the most important factor is to 
decide whether the given periodic tasks should be 
executed or not.  We, therefore define that Cri is the 
computation requirement for τi which should be 
completed and Cpi is all the computation processing 
done for τi. 
 
 Theorem 2: Let Pk(t) be the execution time of 
periodic tasks which is not preassigned in the CTI table 
section that correspond to the on-line scheduling zone 
Zk. The lost slack as much as the amount of Pk(t) 
within Zk during the on-line scheduling will be 
compensated at the next adjacent scheduling zone Zk+1 

and/or later zones. 
 Proof: If there are no critical tasks, any periodic 
task which has the shortest deadline should be assigned 
based on the EDF.  In this case, the amount of the slack 
loss caused by the processing of the periodic tasks will 
be compensated at the next adjacent scheduling zone. 

That is, the amount of lost slack will be represented as 
follows :  
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  where Pk(t)≤ Sk, 1≤ l < N. 
 
 In this formula, Sk denotes the maximum slack value 
produced by the off-line CTI table section corresponding 
to Zk and N denotes the number of periodic requests in 
the hyperperiod. 
 
 From the formula (5), we can induce a new formula 
(6) that calculates the maximum slack in Zk.    
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 In the formula (6), (a) is the compensated slack 
value from the previous adjacent scheduling zone and 
(b) is the total lost slack value by the current time t in Zk 
such as the execution time of periodic tasks, the idle time, 
and the execution time for aperiodic requests. 
 
 The formula (5) and (6) prove the theorem.      
 
    From the Theorem 1 and 2, it is shown that the 
slack is retained at the maximum within Zk. This fact 
supports that the algorithm keeps the maximum slack 
within [0,t] since the interval [0,t] is composed of the 
discrete consecutive scheduling zones. Hence, the 
proposed algorithm is near-optimal for soft aperiodic 
requests at any time t.  Figure 2 shows a pseudocode of 
the dynamic CTI algorithm. 
 
   Example.  In Figure 3, we demonstrate an example 
of scheduling for the proposed algorithm.  We assume 
that the first aperiodic task arrives at t = 4 with its 
computation time c1=3. (a) When the aperiodic task 
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arrived, S0=0, which calculated from the CTI table 
section corresponding to Z0.  Since the tasks τ21 and τ31, 
which are not preassigned to the CTI table section that 
correspond to Z0, have been executed at t=1 and t=2 
respectively, P0(4)=3, A0(4)=0, and I0(4)=0.  Since Z0 is 
the first scheduling zone in the hyperperiod, the 
compensated slack value in the next adjacent scheduling 
zones is equal to 0.  Consequently, because S0(4)=1,  
we can assign the slack value 1 to the aperiodic request 
within that zone.  (b) At time 5, the starting time of the 
next scheduling zone Z1,  all the values of S1, P1(5), 
I1(5), and A1(5) are equal to 0.  However, since the 
reserved slack value within Z0 is equal to 2, S1(5)=2.  
Therefore, J1 is to start its execution at t=4 and to 
complete at t=7. 
 

       z0      z1      z2        z3     z4        z5       z6     z7          z8     z9        z10        

τ1(1,5,5)

τ2(1,7,7)

τ3(3,10,10)

J1(c1=3) arrive
CTI table

 
[Figure 3] A scheduling example  

4. Simulation Result 
 
 The task set in the simulation consists of 10 different 
periodic tasks, each of which has randomly generated 
period and computation requirements. All aperiodic tasks 
are generated by using both an exponential distribution 
function for their computation requirements and the 
Poisson arrival function for their arrivals.  An aperiodic 
workload has been easily coordinated by modifying the 
exponential scale parameter value and the arrival rate of 
the Poisson function. 
 
 We arranged the periodic task set with 90% of CPU 
utilization to simulate high workload scheduling.  It is 
summarized in Table 1. Note that the average execution 
time for aperiodic tasks is set to 3. 

Build CTI table at off-line 
Initialize various counters including Cpi, Cri, etc. 
if (there is aperiodic task in the queue) then 
  Determine Sk(t), the maximum slack available within Zk at the current time t; 
   if (there is slack) then 
      while (Sk(t) > 0 and there is aperiodic task in the queue) do 
         Service the aperiodic task; 
         Update Ak, the accumulation of elapsed processing time for aperiodic tasks within Zk  
   else 
      Service the periodic task with the highest priority; 
      Update Cpi, the accumulation of elapsed processing time for the periodic task from the start of  
         the hyperperiod 
else 
   if (there is periodic task in the queue) then 
      Service the periodic task with the highest priority; 
      Update Cpi 
   else 
      Process idle state; 
      Update Ik, the accumulation of elapsed idle processing time within Zk 

[Figure 2]  A Pseudo Code of the Dynamic CTI Algorithm 
 

 
 

With 90% 
Periodic Workload 

 Task ID Period  Computation 
    1     100       2 
    2     280      14 
    3    2100     108 
    4     440      29 
    5     350      14 
    6     210      30 
    7      35       8 
    8      70      11 
    9    2200     231 
   10     300      12 

Table 1. A sample periodic task set. 
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[Figure 4] Simulation result 

 
 In Figure 4, as the workload of aperiodic tasks is 
increased, the average aperiodic response time tends to 
be slower. The average response time is dependent more 
on the off-line scheduling if the aperiodic workload is 
low, but is dependent more on the on-line scheduling if 
the aperiodic workload is high. The simulation study  
shows that the average response time for aperiodic tasks 
in the proposed algorithm is, in most cases, slightly 
better than that of the EDF-CTI. Especially, the 
algorithm shows considerably fast response time 
compared to the EDF-CTI in a high workload (over 
97%).  Meanwhile, the computational complexity of 
our off-line approach is O(nlog2 n) while that of on-line 
is O(n) where n is the number of periodic tasks. 
 
5. Summary 
 
 We introduced a near-optimal scheduling for soft 
aperiodic requests in dynamic priority systems. The 
proposed algorithm has simplified the way of slack 
calculation in such a way of partitioning the hyperperiod 
into the scheduling zones which resolves the problems of 
the EDF-CTI algorithm such as the unit time scheduling 
and the critical task misindicating. By this method, the 
algorithm considerably reduces the computational 
complexity which enables the algorithm to be more 
practical. Without saying, every scheduling algorithm 
should be developed for the practical real-world 
applications.  In this respect, our algorithm meet the 
claim, the implementation simplicity and the fast average 
response time for aperiodic requests. Our ongoing work 

is to develop a formal theory on the optimality of the 
algorithm that makes it more concrete and robust. 
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