
 1

ABSTRACT

 In this paper, we propose a reasonably simple and
near-optimal soft aperiodic task scheduling algorithm in
dynamic priority systems. The proposed algorithm has
extended the EDF-CTI (Earliest Deadline First-Critical
Task Indicating) Algorithm [4] in such a way of
modifying the slack calculation method which in turns
resolves the unit scheduling and the critical task
misindicating problems. The paper demonstrates a
simple way of slack calculation and near optimality of
the algorithm. Our simulation study shows that the
proposed algorithm, in most case, is slightly better than
the EDF-CTI algorithm in terms of short response time
of aperiodic requests, and considerably improves that in
a high workload.

1. Introduction

 In the last few decades considerable researches have
been done in the area of soft aperiodic task scheduling in
fixed priority systems [8],[9] such as the polling server,
the bandwidth preservation [5],[11],[12], and the slack
stealing algorithm [6],[7]. Recently, Tia and Liu [13]
introduced a scheduling of aperiodic requests in dynamic
priority systems [9] based on the slack stealing approach.
The main idea of their algorithm is to partition the
periodic requests in sets such that the slack of all the
requests in the same set are affected by the same
scheduling events. Consequently, their algorithm can
determine the minimum slack available at any time in
O(n) time where n is the number of periodic tasks and is
optimal in that it minimizes the response times of the
aperiodic requests. Homayoun and Ramanathan [2]

extended the deferrable server scheduling algorithm to
work with the EDF algorithm. The deferrable server
algorithm, however, does not always fully utilize the
processor due to the fact that the response times for the
aperiodic requests are sometimes not the minimum
possible. Spuri and Buttazzo [10] proposed four on-
line schedulings for aperiodic requests in dynamic
priority systems: the dynamic priority exchange, the total
bandwidth, the EDL (Earliest Deadline as Late as
possible), and the improved priority exchange algorithm.
Although only the EDL algorithm among them is
optimal, however, its run time overhead is higher than
that of Tia and Liu's algorithm.

 In this paper, we introduce a new type of near-
optimal soft aperiodic task scheduling, called dynamic
CTI algorithm, in dynamic priority systems. Some
optimal schedulings for soft aperiodic requests in
dynamic priority systems already exist, so a natural
question is: why near-optimal? The answer is that none
of the existing optimal soft aperiodic task schedulings
satisfy the requirements of practicality in real-world
applications due to their computational overhead for
slack calculation. Our goal, consequently, is to find a
near-optimal scheduling for soft aperiodic requests,
which is still preserving less computational overhead
than the other existing algorithms. To achieve this,
we have adopted a scheduling scheme in which the EDF
scheduling is applied to the given periodic task set while
referencing the information on the off-line built dynamic
CTI (Critical Task Indicating) table [3]. The dynamic
CTI table is built by applying the deadlinewise
preassignment scheme to the given periodic task set in a
dynamic priority system. The scheduling information on
this static table enables us to have a scheduling

A Near-Optimal Algorithm for Scheduling Soft-Aperiodic Requests
in Dynamic Priority Systems

Hyungill Kimϑ, Sungyoung Leeϑ, Jongwon Leeϑϑ, and Dougyoung Suhϑϑϑ

Department of Computer Engineering, Kyung Hee University, Seoul, Koreaϑ

Software Research Lab., Korea Telecom, Seoul, Koreaϑϑ
Department of Electronics, Kyung Hee University, Seoul, Koreaϑϑϑ

 2

predictability and reduces the overall computational
complexity at run time. Building a CTI table is very
similar to the reverse schedule of the EDL introduced by
Chetto and Chetto [1]. However, there are differences
between two approaches in terms of their applications
and pursuing goal which are shown in the [4].

 The remainder of this paper organized as follows.
Section 2 establishes a system model used in the paper.
In section 3, we introduce the dynamic CTI algorithm
and addresses its near optimality. Section 4
demonstrates the simulation result of the proposed
algorithm and compares it with the EDF-CTI algorithm
[4]. Finally, we conclude this paper in section 5.

2. Task Model

 Consider a uniprocessor real-time system with a set
T of n independent, preemptable periodic tasks, (τ1,
τ2, ..., τn). Each task, τi , has a worst-case computation
requirement Ci, a period Ti, an initiation time or an offset
φi relative to some time origin, and a deadline di.
Hence, we denote the system T = {τi(Ci,Ti,di): 1 ≤ i ≤ n}.
We assume that Ti = di and all initiation times or relative
offsets {φi, 1 ≤ i ≤ n} are synchronized as 0. In
response to external events which occur at random time
instants, the aperiodic tasks, {Jk, k ≥ 1} are introduced.
Each aperiodic request Ji(ai, ci) is characterized by its
arrival time ai and its worst-case computation time ci.
Let hyperperiod, H, be the least common multiple of all
the periodic task's periods.

3. Dynamic CTI Algorithm

 In the conventional joint scheduling of aperiodic and
periodic tasks, the scheduling time interval [0, t] is filled
up by the execution time of periodic task instances Pij (t),
the execution time for aperiodic requests A(t), and the
idle time I(t). The formula (1) depicts this concept.

 t P t A t I tij
i j

= + +∑ () () ()
,

 (1)

 Meanwhile, the slack within [0,t], denoted by S0(t),

is generally defined as the available time for aperiodic
requests while guaranteeing the deadlines of the given
periodic requests. Consequently, S0(t) is the total
amount of time from 0 to t except for the sum of the
execution time of periodic requests. The actual slack
for aperiodic requests, however, is less than or equal to
S0(t) because it includes idle time (see formula (2)).

S t A t I t0 0 0() () ()= + (2)

 The slack stealing algorithm [6],[7] uses the actual
slack as the minimum slack value to ensure that all the
lower priority periodic deadlines are met (see formula
(3)).

S t S tk n i

*
{ }() min ()= ≤ ≤1 (3)

 On the contrary, in our proposed algorithm, the
maximum slack S(t) at the current time t, can be obtained
by the formula (4) where D is the absolute deadline of a
periodic task.

S t D t Ci
i d t D

n

i

()
, [,]

= − −
= ∈
∑

1

 (4)

 In order to get S(t) efficiently, we decompose a
hyperperiod into a set of scheduling zones, denoted by
{Zk, 0≤ k} where k is an index. The actual domain of the
decomposition is a virtual scheduling table produced by
the EDF on-line scheduling. A Zk is a time interval
between two deadlines of instances of periodic tasks.
The main reason for introducing the decomposition
mechanism is to reduce the computational complexity
for slack calculation and to find the available slack as
much as possible. By this way, we can easily evaluate
the slack availability while considering the deadlines of
periodic tasks. Figure 1 depicts an example of how to
obtain {Zk} for the given three periodic tasks, τ1(1,5,5),
τ2(1,7,7), τ3(3,10,10) where the parameters are the worst
case computation time, deadline, and period of the tasks,
respectively.

 3

 z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10

τ1(1,5,5)

τ2(1,7,7)

τ3(3,10,10)

[Figure 1] An example of {Zk} decomposition.

 In order to explain the algorithm and to show it is
near-optimal, we introduce the following fundamental
theorems.

 Theorem 1: At the starting point of the hyperperiod,
the deadlinewise preassignment scheme [3] in a
dynamic priority system, as an off-line scheduling, is
an optimal scheduling for the aperiodic requests.
 Proof: At the start time of the hyperperiod, the
deadlinewise preassignment is a special case of the EDL
since the EDL has the property that assign the periodic
tasks as late as possible. The EDL, meanwhile, is known
to be an optimal aperiodic scheduling in the EDF
framework which was proven by Chetto and Chetto [1].

 In the algorithm, the most important factor is to
decide whether the given periodic tasks should be
executed or not. We, therefore define that Cri is the
computation requirement for τi which should be
completed and Cpi is all the computation processing
done for τi.

 Theorem 2: Let Pk(t) be the execution time of
periodic tasks which is not preassigned in the CTI table
section that correspond to the on-line scheduling zone
Zk. The lost slack as much as the amount of Pk(t)
within Zk during the on-line scheduling will be
compensated at the next adjacent scheduling zone Zk+1

and/or later zones.
 Proof: If there are no critical tasks, any periodic
task which has the shortest deadline should be assigned
based on the EDF. In this case, the amount of the slack
loss caused by the processing of the periodic tasks will
be compensated at the next adjacent scheduling zone.

That is, the amount of lost slack will be represented as
follows :

P t Cp t Cr t

Cp t Cr t

k i i
d Z

i i
d Z

i j k

i j k l

() (() ())

(() ())
,

,

= − +

+ −

∈

∈

+

+

∑

∑
1

 (5)

L

 where Pk(t)≤ Sk, 1≤ l < N.

 In this formula, Sk denotes the maximum slack value
produced by the off-line CTI table section corresponding
to Zk and N denotes the number of periodic requests in
the hyperperiod.

 From the formula (5), we can induce a new formula
(6) that calculates the maximum slack in Zk.

S t S

Cp t Cr t a

P t I t A t b

k k

i i
d Z

k k k

i j k

()

(() ())....()

() () ().....()
,

=

+ −

− − −
∈
∑ (6)

 In the formula (6), (a) is the compensated slack
value from the previous adjacent scheduling zone and
(b) is the total lost slack value by the current time t in Zk
such as the execution time of periodic tasks, the idle time,
and the execution time for aperiodic requests.

 The formula (5) and (6) prove the theorem.

 From the Theorem 1 and 2, it is shown that the
slack is retained at the maximum within Zk. This fact
supports that the algorithm keeps the maximum slack
within [0,t] since the interval [0,t] is composed of the
discrete consecutive scheduling zones. Hence, the
proposed algorithm is near-optimal for soft aperiodic
requests at any time t. Figure 2 shows a pseudocode of
the dynamic CTI algorithm.

 Example. In Figure 3, we demonstrate an example
of scheduling for the proposed algorithm. We assume
that the first aperiodic task arrives at t = 4 with its
computation time c1=3. (a) When the aperiodic task

 4

arrived, S0=0, which calculated from the CTI table
section corresponding to Z0. Since the tasks τ21 and τ31,
which are not preassigned to the CTI table section that
correspond to Z0, have been executed at t=1 and t=2
respectively, P0(4)=3, A0(4)=0, and I0(4)=0. Since Z0 is
the first scheduling zone in the hyperperiod, the
compensated slack value in the next adjacent scheduling
zones is equal to 0. Consequently, because S0(4)=1,
we can assign the slack value 1 to the aperiodic request
within that zone. (b) At time 5, the starting time of the
next scheduling zone Z1, all the values of S1, P1(5),
I1(5), and A1(5) are equal to 0. However, since the
reserved slack value within Z0 is equal to 2, S1(5)=2.
Therefore, J1 is to start its execution at t=4 and to
complete at t=7.

 z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10

τ1(1,5,5)

τ2(1,7,7)

τ3(3,10,10)

J1(c1=3) arrive
CTI table

[Figure 3] A scheduling example

4. Simulation Result

 The task set in the simulation consists of 10 different
periodic tasks, each of which has randomly generated
period and computation requirements. All aperiodic tasks
are generated by using both an exponential distribution
function for their computation requirements and the
Poisson arrival function for their arrivals. An aperiodic
workload has been easily coordinated by modifying the
exponential scale parameter value and the arrival rate of
the Poisson function.

 We arranged the periodic task set with 90% of CPU
utilization to simulate high workload scheduling. It is
summarized in Table 1. Note that the average execution
time for aperiodic tasks is set to 3.

Build CTI table at off-line
Initialize various counters including Cpi, Cri, etc.
if (there is aperiodic task in the queue) then
 Determine Sk(t), the maximum slack available within Zk at the current time t;
 if (there is slack) then
 while (Sk(t) > 0 and there is aperiodic task in the queue) do
 Service the aperiodic task;
 Update Ak, the accumulation of elapsed processing time for aperiodic tasks within Zk
 else
 Service the periodic task with the highest priority;
 Update Cpi, the accumulation of elapsed processing time for the periodic task from the start of
 the hyperperiod
else
 if (there is periodic task in the queue) then
 Service the periodic task with the highest priority;
 Update Cpi
 else
 Process idle state;
 Update Ik, the accumulation of elapsed idle processing time within Zk

[Figure 2] A Pseudo Code of the Dynamic CTI Algorithm

With 90%
Periodic Workload

 Task ID Period Computation
 1 100 2
 2 280 14
 3 2100 108
 4 440 29
 5 350 14
 6 210 30
 7 35 8
 8 70 11
 9 2200 231
 10 300 12

Table 1. A sample periodic task set.

 5

Periodic Workload 90%

2

3

4

5

0 1 2 3 4 5 6 7 8 9 9.4 9.6

Aperiodic Workload (%)

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

fo
r A

pe
rio

di
c

R
eq

ue
st

s

EDF-CTI

Dynamic-CTI

[Figure 4] Simulation result

 In Figure 4, as the workload of aperiodic tasks is
increased, the average aperiodic response time tends to
be slower. The average response time is dependent more
on the off-line scheduling if the aperiodic workload is
low, but is dependent more on the on-line scheduling if
the aperiodic workload is high. The simulation study
shows that the average response time for aperiodic tasks
in the proposed algorithm is, in most cases, slightly
better than that of the EDF-CTI. Especially, the
algorithm shows considerably fast response time
compared to the EDF-CTI in a high workload (over
97%). Meanwhile, the computational complexity of
our off-line approach is O(nlog2 n) while that of on-line
is O(n) where n is the number of periodic tasks.

5. Summary

 We introduced a near-optimal scheduling for soft
aperiodic requests in dynamic priority systems. The
proposed algorithm has simplified the way of slack
calculation in such a way of partitioning the hyperperiod
into the scheduling zones which resolves the problems of
the EDF-CTI algorithm such as the unit time scheduling
and the critical task misindicating. By this method, the
algorithm considerably reduces the computational
complexity which enables the algorithm to be more
practical. Without saying, every scheduling algorithm
should be developed for the practical real-world
applications. In this respect, our algorithm meet the
claim, the implementation simplicity and the fast average
response time for aperiodic requests. Our ongoing work

is to develop a formal theory on the optimality of the
algorithm that makes it more concrete and robust.

Reference

[1] H. Chetto and M. Chetto, "Some Results of the Earliest Deadline

Scheduling Algorithm", IEEE Transactions on Software
Engineering, Vol. 15, No. 10, pp. 466-473, 1989.

[2] N. Homayoun and P. Ramanathan, "Dynamic Priority
Scheduling of Periodic and Aperiodic Tasks in Hard Real-Time
Systems", Real-Time Systems: The International Journal of
Time-Critical Computing Systems, Vol. 6, No. 2, pp. 207-232,
1994

[3] J.W. Lee, S.Y. Lee, and H.I Kim, "Scheduling Hard-Aperiodic
Tasks in Hybrid Static/Dynamic Priority Systems", ACM
SIGPLAN Workshop on Languages, Compilers, and Tools for
Real-Time Systems, pp. 7-19, La Jolla, CA, June, 1995.

[4] S.Y. Lee, H.I. Kim and J.W. Lee, A Soft Aperiodic Task
Scheduling Algorithm in Dynamic Priority Systems, 2nd IEEE
Workshop on Real-Time Computing Systems and Applications,
Tokyo, pp. 68-72, October, 1995.

[5] J.P. Lehoczky, L. Sha, and J.K. Strosnider, "Enhanced Aperiodic
Responsiveness in Hard Real-Time Environments", Proceedings
of the IEEE Real-Time Systems Symposium, pp. 261-270, San
Jose, CA, December 1987.

[6] J.P. Lehoczky and S. Ramos-Thuel, "An Optimal Algorithm for
Scheduling Soft-Aperiodic Tasks in Fixed-Priority Preemptive
Systems", Proceedings of the IEEE Real-Time Systems
Symposium, pp. 110-123, December 1992.

[7] J.P. Lehoczky and S. R. Thuel, Scheduling Periodic and
Aperiodic Tasks using the Slack Stealing Algorithm (Chapter 8),
Advances in Real-Time Systems, (ed. S. Son) Prentice Hall,
Englewood Cliffs, NJ, 1995.

[8] J.Y.-T. Leung and J. Whitehead, "On the Complexity of Fixed-
Priority Scheduling of Periodic Real-Time Tasks", Performance
Evaluation 2, pp. 237-250, 1982.

[9] C.L. Liu and J.W. Layland, "Scheduling Algorithms for Multi-
Programming in a Hard Real-Time Environments", Journal of
the Association for Computing Machinery, Vol. 20, No.1, pp.
46-61, January 1973.

[10] M. Spuri and G.C. Buttazzo, "Efficient Aperiodic Service under
Earliest Deadline Scheduling", Proceedings of the IEEE Real-
Time System Symposium, pp. 2-11, 1994.

[11] B. Sprunt, J.P. Lehoczky, and L. Sha, "Scheduling Sporadic and
Aperiodic Events in a Hard Real-Time System", Technical
Report CMU/SEI-890TR-11, April 1989.

[12] B. Sprunt, J.P. Lehoczky, and L. Sha, "Exploiting Unused
Periodic Time for Aperiodic Service Using the Extended Priority
Exchange Algorithm", Proceedings of the IEEE Real-Time
System Symposium, pp. 251-258, December 1988.

[13] T.S. Tia, Utilizing Slack Time for Aperiodic and Sporadic
Requests Scheduling in Real-Time Systems, Technical Report
No. UIUCDCS-R-95-1906, University of Illinois, April, 1995.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

