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ABSTRACT
Over the years, many Linear Discriminant Analysis (LDA)
algorithms have been proposed for the study of high dimen-
sional data in a large variety of problems. An intrinsic lim-
itation of classical LDA is the so-called ”small sample size
(3S) problem” that is, it fails when all scatter matrices are
singular. Many LDA extensions were proposed in the past
to overcome the 3S problems. However none of the previ-
ous methods could solve the 3S problem completely in the
sense that it can keep all the discriminative features with
a low computational cost. By applying LDA after whiten-
ing data, we proposed the Whitened LDA (WLDA) which
can find the most discriminant features without facing the
3S problem. In WLDA, only eigenvalue problems instead of
generalized eigenvalue problems are performed, leading to
the low computation cost of WLDA. Experimental results
are shown using two most popular Yale and ORL databases.
Comparisons are given against Linear Discriminant Analy-
sis (LDA), Direct LDA (DLDA), Null space LDA (NLDA)
and several matrix-based subspace analysis approaches de-
veloped recently. We show that our method is always the
best.

Categories and Subject Descriptors
I.5.4 [PATTERN RECOGNITION]: Applications

General Terms
Algorithms, Theory, Experimentation, Performance
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1. INTRODUCTION
A facial recognition system is a computer-driven applica-

tion for automatically identifying a person from a digital im-
age. It does that by comparing selected facial features in the
live image and a facial database. With the rapidly increasing
demand on face recognition technology, it is not surprising
to see an overwhelming amount of research publications on
this topic in recent years. Like other classical statistical
pattern recognition tasks, we usually represent data sam-
ples with n-dimensional vectors, i.e. data is vectorized to
form data vectors before applying any technique. However
in many real applications, the dimension of those 1D data
vectors is very high, leading to the ”curse of dimensionality”.
The curse of dimensionality is a significant obstacle in pat-
tern recognition and machine learning problems that involve
learning from few data samples in a high-dimensional fea-
ture space. In face recognition, Principal component analy-
sis (PCA)[5] and Linear discriminant analysis (LDA)[1] are
the most popular subspace analysis approaches to learn the
low-dimensional structure of high dimensional data. PCA is
a subspace projection technique widely used for face recogni-
tion. It finds a set of representative projection vectors such
that the projected samples retain most information about
original samples. The most representative vectors are the
eigenvectors corresponding to the largest eigenvalues of the
covariance matrix. Unlike PCA, LDA finds a set of vectors
that maximizes Fisher Discriminant Criterion. It simulta-
neously maximizes the between-class scatter while minimiz-
ing the within-class scatter in the projective feature vec-
tor space. While PCA can be called unsupervised learning
techniques, LDA is supervised learning technique because it
needs class information for each image in the training pro-
cess. This method overcomes the limitations of the Eigen-
face method by applying the Fisher’s Linear Discriminant
criterion. This criterion tries to maximize the ratio

wT Sbw

wT Sww
(1)

where Sb is the between-class scatter matrix, and Sw is the
within-class scatter matrix. Thus, by applying this method,
we find the projection directions that on one hand maximize
the Euclidean distance between the face images of different
classes and on the other minimize the distance between the
face images of the same class. This ratio is maximized when
the column vectors of the projection matrix Ware the eigen-
vectors of S−1

w Sb. In face recognition tasks, this method
cannot be applied directly since the dimension of the sam-
ple space is typically larger than the number of samples in
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the training set. As a consequence, Sw is singular. This
problem is known as the ”small sample size problem”[3].
A lot of methods have been proposed to solve this prob-
lem, and reviews of those methods could be found in papers
relevant to this problem. For the sake of completeness, we
here summarize the most novel approaches to overcome the
3S problem. In [1], they proposed a two stage PCA+LDA
method, also known as the Fisherface method, in which PCA
is first used for dimension reduction so as to make Sw non-
singular before the application of LDA. However, in order
to make Sw nonsingular, some directions corresponding to
the small eigenvalues of Sw are thrown away in the PCA
step. Thus, applying PCA for dimensionality reduction has
the potential to remove dimensions that contain discrimina-
tive information. In [12], they try to make make Sw become
nonsingular by adding a small perturbation matrix ∆ to
Sw. However, this method is very computationally expen-
sive and will not be considered in the experiment part of
this paper. The Direct-LDA method is proposed in [11].
First, the null space of Sb is removed and, then, the pro-
jection vectors that minimize the within-class scatter in the
transformed space are selected from the range space of Sb.
However, removing the null space of Sb by dimensionality
reduction will also remove part of the null space of Sw and
may result in the loss of important discriminative informa-
tion. In [2], Chen et al. proposed the null space based LDA
(NLDA), where the between-class scatter is maximized in
the null space of the within-class scatter matrix. The sin-
gularity problem is thus implicitly avoided. Huang et al. in
[4] improved the efficiency of the algorithm by first remov-
ing the null space of the total scatter matrix. In orthogonal
LDA (OLDA) [8], a set of orthogonal discriminant vectors
is computed, based on a new optimization criterion. The
optimal transformation is computed through the simultane-
ous diagonalization of scatter matrices, while the singularity
problem is overcome implicitly. In [10], they showed that
NLDA is equivalent to OLDA, under a mild condition that
the rank of the total scatter matrix equals to the sum of
the rank of the between-class scatter matrix and the rank
of the within-class scatter matrix. So we will choose only
NLDA for experiment comparison intead of both NLDA and
OLDA. In general, due to the nonsingular of the within-class
scatter matrix, none of the above methods could solve the 3S
problem completely in the sense that it can keep all the dis-
criminative features with a low computational cost. In our
paper, we propose a new LDA algorithm that can overcome
those above disadvantages of previous work. For the fairness
in algorithm evaluation, we also consider some matrix-based
approaches developed recently. While all above approaches
are based on 1D vector data, recently, two-dimensional PCA
(2DPCA) [6] has been proposed in which image covariance
matrices can be constructed directly using original image
matrices. A brief of history of matrix-based subspace anal-
ysis can be summarized as follow. Based on PCA, some
image-based subspace analysis approaches have been devel-
oped such as 2DPCA [6], Generalized low rank approxima-
tions of matrices (GLRAM) [7]. While 2DPCA is one-side
low-rank approximation algorithm, GLRAM is two-side low-
rank approximation one. Based on LDA, 2DLDA [9] has
been developed. 2DLDA aims to find the two-sided optimal
transformations such that the class structure of the original
high-dimensional space is preserved in the low-dimensional
space.

The key idea of WLDA is that we apply data whitening be-
fore perform LDA. With some nice properties of whitened
data, we show how to turn the generalized eigenvalue prob-
lem of LDA into simple eigenvalue problem, leading to low
computation cost of algorithm. While in previous works,
some discriminant information lost during performing algo-
rithms, WLDA has the ability of keeping all discriminant
information. Some main contributions of this paper can be
described as: giving the solution to LDA without facing the
3S problem, keeping all the discriminative features, solving
the problem with low computational cost. The outline of
this paper is as follows. In Section 2, all important previ-
ous and related works are described such as : PCA, LDA,
2DPCA, GLRAM and 2DLDA. The proposed method is de-
scribed in Section 3. In Section 4, experimental results are
presented for the ORL and Yale face image databases to
demonstrate the effectiveness of our method. Finally, con-
clusions are presented in Section 5.

2. SUBSPACE ANALYSIS
One approach to cope with the problem of excessive di-

mensionality of the image space is to reduce the dimension-
ality by combining features. Linear combinations are par-
ticularly attractive because they are simple to compute and
analytically tractable. In effect, linear methods project the
high-dimensional data onto a lower dimensional subspace.
Basic notations are described in Table 1 for reference. Sup-
pose that we have N sample images {x1, x2, ..., xN} taking
values in an n-dimensional image space. Let us also consider
a linear transformation mapping the original n-dimensional
image space into an m-dimensional feature space, where
m < n. The new feature vectors yk ∈ <m are defined by the
following linear transformation:

yk = W T (xk − µ) (2)

where k = 1, 2, ..., N , µ ∈ Rn is the mean of all samples, and
W ∈ <n×m is a matrix with orthonormal columns. Atfer the
linear transformation, each data point xk can be represented
by a feature vector yk ∈ <m which is used for classification.

2.1 Principal Component Analysis - PCA
Different objective functions will yield different algorithms

with different properties. PCA aims to extract a subspace
in which the variance is maximized. Its objective function
is wopt = arg max

w
(wT Stw), with the total scatter matrix is

defined as

St =
1

N

N∑

k=1

(xk − µ)(xk − µ)T (3)

where µ = 1
N

N∑
i=1

xi is the mean of all samples. The opti-

mal projection W = [w1w2...wm] is the set of n-dimensional
eigenvectors of St corresponding to the m largest eigenval-
ues.

2.2 Linear Discriminant Analysis - LDA
While PCA seeks directions that are efficient for represen-

tation, LDA seeks directions that are efficient for discrimi-
nation. Assume that each image belongs to one of C classes
{Π1, Π2, ..., ΠC}. Let Ni be the number of the samples in
class Πi(i = 1, 2, ..., C), µi = 1

Ni

∑
x∈Πi

x be the mean of the
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Table 1: Basic Notations
Notations Descriptions

xi ∈ <n the ithimage point in vector form

Xi ∈ <r×c the ithimage point in matrix form

Πi the ithclass of data points (both in vector and matrix form)
n dimension of xi

m dimension of reduced feature vector yi

r number of rows in Xi

c number of columns in Xi

N number of data samples
C number of classes
Ni number of data samples in class Πi

L transformation on the left side
R transformation on the right side
l1 number of rows in Yi

l2 number of columns in Yi

samples in class Πi. Then the between-class scatter matrix
Sb and the within-class scatter matrix Sw are defined

Sb =
1

N

C∑
i=1

Ni(µi − µ)(µi − µ)T (4)

Sw =
1

N

C∑
i=1

∑
xk∈Πi

(xk − µi)(xk − µi)
T (5)

We should note some properties of these scatter matrices Sb,
Sw, St as follow

rank(St) = N − 1
rank(Sb) = C − 1
rank(Sw) = N − C
St = Sb + Sw

(6)

In LDA, the projection Wopt is chosen to maximize the ratio
of the determinant of the between-class scatter matrix of
the projected samples to the determinant of the within-class
scatter matrix of the projected samples, i.e.,

wopt = arg max
w

wT Sbw

wT Sww
(7)

The optimal projection for LDA is W = [w1w2...wm], where
{wi |i = 1, 2, ..., m} is the set of generalized eigenvectors of
Sb and Sw corresponding to the m largest generalized eigen-
values {λi |i = 1, 2, ..., m} , i.e.,

Sbwi = λiSwwi

⇔ SbS
−1
w wi = λiwi

i = 1, 2, ..., m (8)

To overcome the singularity of Sw while solving (7), we con-
sider 3 main algorithms to solve the problem in this paper.
First one is Fisherface method [1], in which PCA is first
used for dimension reduction so as to make Sw nonsingu-
lar before the application of LDA. Second approach is the
null space based LDA (NLDA) [2], where the between-class
scatter is maximized in the null space of the within-class
scatter matrix. The singularity problem is thus implicitly
avoided. Final one is Direct-LDA method [11]. First, the
null space of Sb is removed and, then, the projection vectors
that minimize the within-class scatter in the transformed
space are selected from the range space of Sb. Due to the

limited length of paper, details of those algorithms can be
found in respective references.

2.3 Two-dimensional PCA - 2DPCA
In 2D approach, the image matrix does not need to be

previously transformed into a vector, so a set of N sample
images is represented as {X1, X2, ..., XN} with Xi ∈ <r×c,
which is a matrix space of size r×c. The total scatter matrix
is defined as

Tt =
1

N

N∑
i=1

(Xi −M)T (Xi −M) (9)

with M = 1
N

N∑
i=1

Xi ∈ <r×c is the mean image of all samples.

Tt ∈ <r×r is also called image covariance (scatter) matrix.
A linear transformation mapping the original r × c image
space into an r ×m feature space, where m < c. The new
feature matrices Yi ∈ <r×m are defined by the following
linear transformation:

Yi = (Xi −M)W ∈ <r×m (10)

where i = 1, 2, ..., N and W ∈ <r×m is a matrix with
orthogonal columns. In 2DPCA, the projection Wopt is
chosen to maximize tr(W T TtW ). The optimal projection
Wopt = [w1w2...wm] with {wi |i = 1, 2, ..., m} is the set of
c-dimensional eigenvectors of Tt corresponding to the m
largest eigenvalues. After a transformation by 2DPCA, a
feature matrix is obtained for each image. Then, a near-
est neighbor classifier is used for classification. Here, the
distance between two arbitrary feature matricesYiandYj is
defined by using Euclidean distance as follows:

d(Yi, Yj) =

√√√√
k∑

u=1

s∑
v=1

(Yi(u, v)− Yj(u, v))2 (11)

Given a test sampleYt, if d(Yt, Yc) = min
j

d(Yt, Yj), then the

resulting decision is Yt belongs to the same class as Yc.

2.4 Generalized Low Rank Approximations of
Matrices - GLRAM

In [7], they considered the problem of computing low rank
approximations of matrices which are based on a collection
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Table 2: Algorithm – GLRAM

Algorithm – GLRAM
Step 0
Initialize L = L(0) = [I1, 0]T , and set k = 0.
Step 1

Compute l2eigenvectors {ΦR(k+1)
i }l2

i=1of the matrix SR =
N∑

i=1

XT
i L(k)L(k)T Xi corresponding to the largest l2 eigen-

values and formR(k+1) = [Φ
R(k+1)
1 ..Φ

R(k+1)
l2

].
Step 2

Compute l1eigenvectors {ΦL(k+1)
i }l1

i=1of the matrix SL =
N∑

i=1

XiR
(k+1)R(k+1)T XT

i corresponding to the largest l1

eigenvalues and formL(k+1) = [Φ
L(k+1)
1 ..Φ

L(k+1)
l1

].
Step 3
IfL(k+1),R(k+1)are not convergent then set increasekby 1
and go to Step 1, othervise proceed to Step 4.
Step 4
LetL∗ = L(k+1),R∗ = R(k+1)and computeY ∗

i =
L∗T XiR

∗fori = 1..N .

of matrices. By solving an optimization problem, which aims
to minimize the reconstruction (approximation) error, they
derive an iterative algorithm, namely GLRAM, which stands
for the Generalized Low Rank Approximations of Matrices.
GLRAM reduces the reconstruction error sequentially, and
the resulting approximation is thus improved during succes-
sive iterations. Formally, they consider the following opti-
mization problem

min
L,R,Yi

N∑
i=1

∥∥Xi − LYiR
T
∥∥2

F

s.t. LT L = I1, R
T R = I2

(12)

where L ∈ <r×l1 , R ∈ <c×l2 , Yi ∈ <l1×l2 for i = 1..N ,
I1 ∈ <l1×l1 and I2 ∈ <l2×l2 are identity matrices, where
l1 6 r and l2 6 c. An iterative procedure for computing L
and R is presented in Table 2.

2.5 2DLDA
In [9], they proposed a novel LDA algorithm, namely

2DLDA, which stands for 2-Dimensional Linear Discrimi-
nant Analysis. 2DLDA aims to find the two-sided optimal
transformations (projections L and R) such that the class
structure of the original high-dimensional space is preserved
in the low-dimensional space. A natural similarity metric
between matrices is the Frobenius norm. Under this metric,
the (squared) within-class and between-class distances Dw

and Db can be computed as follows:

Dw =
C∑

j=1

∑
Xi∈Πj

‖Xi −Mj‖2F

= tr

(
C∑

j=1

∑
Xi∈Πj

(Xi −Mj)(Xi −Mj)
T

) (13)

Db =
C∑

j=1

Nj ‖Mj −M‖2F

= tr

(
C∑

j=1

Nj(Mj −M)(Mj −M)T

) (14)

In the low-dimensional space resulting from the linear trans-
formations L and R, the with-in and between-class distances
D̃w and D̃b can be computed as follows:

D̃w = tr




C∑
j=1

∑
Xi∈Πj

LT (Xi −Mj)RRT (Xi −Mj)
T L




(15)

D̃b = tr

(
C∑

j=1

NjL
T (Mj −M)RRT (Mj −M)T L

)
(16)

The optimal transformations L and R would maximize F (L, R) =

D̃b/D̃w. Let us define

SR
w =

∑
Xi∈Πj

(Xi −Mj)RRT (Xi −Mj)
T (17)

SR
b =

C∑
j=1

Nj(Mj −M)RRT (Mj −M)T (18)

SL
w =

∑
Xi∈Πj

(Xi −Mj)
T LLT (Xi −Mj) (19)

SL
b =

C∑
j=1

Nj(Mj −M)T LLT (Mj −M) (20)

After defining those matrices we can derive the 2DLDA al-
gorithm as in Table 3.

3. WHITENED LDA
In this part, we first review data whitening and then derive

the WLDA in details.

3.1 Data Whitening
Let x ∈ <n denote a random vector with mean µ and

positive semi-definite covariance matrix Cx. We wish to
whiten the vector x ∈ <n using a whitening transformation
P to obtain the random vector y = P (x − µ), which is a
zero-mean random vector and the covariance matrix Cy of y
is equal to identity matrix I. Thus we seek a transformation
P such that

Cy = PCxP T = I (21)

We refer any matrix P satisfying (21) as a whitening trans-
formation matrix. Given a covariance matrix Cx, there are
many ways to choose a whitening transformation P satisfy-
ing (21). One popular method for whitening is to use the
eigen-value decomposition (EVD) of the covariance matrix.
By using EVD, we can diagonalize or factor the covariance
matrix Cx with r = rank(Cx) in the following way

Cx = UΛUT (22)

where U ∈ <n×r is the orthogonal matrix of eigenvectors
corresponding to non-zero eigenvalues of covariance matrix
Cx and Λ = diag(σ1, σ2, ..., σr) ∈ <r×r, σ1 ≥ σ2 ≥ ... ≥
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Table 3: Algorithm – 2DLDA

Algorithm – 2DLDA
Step 0
Initialize R = R(0) = [I2, 0]T , and set k = 0.
Step 1
Compute

S
R(k)
w =

∑
Xi∈Πj

(Xi −Mj)R
(k)R(k)T (Xi −Mj)

T

S
R(k)
b =

C∑
j=1

Nj(Mj −M)R(k)R(k)T (Mj −M)T

Step 2

Compute l1 eigenvectors {ΦL(k)
i }l1

i=1 of the matrix

(S
R(k)
w )−1S

R(k)
w and form L(k) = [Φ

L(k)
1 ..Φ

L(k)
l1

].
Step 3
Compute

S
L(k)
w =

∑
Xi∈Πj

(Xi −Mj)
T L(k)L(k)T (Xi −Mj)

S
L(k)
b =

C∑
j=1

Nj(Mj −M)T L(k)L(k)T (Mj −M)

Step 4

Compute l2 eigenvectors {ΦR(k)
i }l2

i=1 of the matrix

(S
L(k)
w )−1S

L(k)
w and form R(k+1) = [Φ

R(k)
1 ..Φ

R(k)
l1

].
Step 5
If L(k),R(k+1) are not convergent then set increase k by 1
and go to Step 1, othervise proceed to Step 6.
Step 6
Let L∗ = L(k),R∗ = R(k+1) and compute Y ∗

i = L∗T XiR
∗

for i = 1..N .

σr > 0 is the diagonal matrix of non-zero eigenvalues. Then
whitening a random vector x with mean µ and covariance
matrix Cx can be obtained by performing the following cal-
culation with whitening transformation matrix P = Λ−1/2UT

y = P (x− µ) = Λ−1/2UT (x− µ) (23)

Thus, the output of this transformation has expectation

E{y} = Λ−1/2UT (E{x} − µ) = Λ−1/2UT (µ− µ) = 0 (24)

Due to E{y} = 0 and covariance matrix Cy can be written
as

Cy = E{yyT } = E
{

Λ−1/2UT (x− µ)(x− µ)T UΛ−1/2
}

= Λ−1/2UT CxUΛ−1/2 = I
(25)

Thus, with the above transformation, we can whiten the
random vector to have zero mean and the identity covariance
matrix.

3.2 Whitened LDA
The key idea of WLDA is that we apply data whiten-

ing before perform LDA. So we first perform data whiten-
ing by diagonalizing total covariance matrix St with r =
rank(St) = N − 1 as

St = UΛUT (26)

where U ∈ <n×r is the orthogonal matrix of eigenvectors
corresponding to non-zero eigenvalues of covariance matrix
St and Λ = diag(σ1, σ2, ..., σr) ∈ <r×r, σ1 ≥ σ2 ≥ ... ≥ σr >

0 is the diagonal matrix of non-zero eigenvalues. Then we
can form the whitening transformation matrix P = Λ−1/2UT

and obtain the whitened data as

yi = P (xi − µ) = Λ−1/2UT (xi − µ) ∈ <r (27)

where i = 1..N . Then the between-class scatter matrix Gb

and the within-class scatter matrix Gw after data whitening
are re-defined as

Gb =
1

N

C∑
i=1

Niηiη
T
i (28)

Gw =
1

N

C∑
i=1

∑
yk∈Πi

(yk − ηi)(yk − ηi)
T (29)

where ηi is the mean of whitened data in class ith, i = 1..C
and defined as

ηi = 1
Ni

Ni∑
k=1

yk = 1
Ni

Ni∑
k=1

P (xk − µ)

= P

(
1

Ni

Ni∑
k=1

xk − µ

)
= P (µi − µ)

(30)

Theorem 1. Given the whitened data, the between-class
scatter matrix Gb and the within-class scatter matrix Gw

defined as in (28) and (29), then we have

Gb + Gw = Ir

where Ir ∈ <r×r is an identity matrix.

Proof. We can re-write the between-class scatter matrix
Gb

Gb = 1
N

C∑
i=1

Niηiη
T
i

= 1
N

C∑
i=1

NiP (µi − µ)(µi − µ)T P T = PSbP
T

(31)

and the within-class scatter matrix Gw as

Gw = 1
N

C∑
i=1

∑
yk∈Πi

(P (xk − µ)− P (µi − µ))

(P (xk − µ)− P (µi − µ))T =

1
N

C∑
i=1

∑
yk∈Πi

P (xk − µi)(xk − µi)
T P T = PSwP T

(32)

From (31) and (31), we have

Gb + Gw = PSbP
T + PSwP T

= P (Sb + Sw)P T = PStP
T = Ir

(33)

Proof is done.

Now we can formulate the Whitened LDA problem as fol-
lowing optimization problem

JWLDA(v) = max
v

vT Gbv

vT Gwv
(34)

where v ∈ <r. The solution of this optimization problem
can be obtained based on Theorem 2.

Theorem 2. The optimization problem in (34) is equal
to the following optimization problem

max
vT v=1

vT Gbv (35)
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Proof. Applying the fact that Gb + Gw = Ir from The-
orem 1, we can re-write the optimization problem in (34)
as

max
v

vT Gbv

vT Gwv
= max

v

vT Gbv

vT (Ir−Gb)v
= max

v

vT Gbv

vT v−vT Gbv
(36)

We can see that if v = v0 is an optimal vector of (36) then
cv is also an optimal solution of (36), where c scalar value.
So we constrain v to unit length, i.e. vT v = 1. Now, the
problem in (36) can be written with constraints as follow,

max
vT v=1

vT Gbv

vT v − vT Gbv
(37)

It’s easy to see from (37) that the solution for optimization
problem in (34) can be obtained by solving the following
simple eigenvalue problem

max
vT v=1

vT Gbv (38)

Proof is done.

It’s easy to see that the optimal projection matrix V =
[v1v2...vm] for (38) is the set of r-dimensional eigenvectors
of Gb corresponding to the m largest eigenvalues. Finally
the optimal projection matrix for WLDA can be calculated
as WWLDA = P T V . One should note that in WLDA we
find the optimal projection vector wopt among all vector w
in the form of

w = P T v , ∀v ∈ <r (39)

Re-writing (39), we have

w = P T v = UΛ−1/2v , ∀v ∈ <r

⇔ w ∈ span{u1, u2, .., ur} = range(St)
(40)

Now we can see that the WLDA search optimal projection
vectors in the range space of St which is actually the sub-
space that contain all the discriminant projection vectors.
This fact is based on Theorem 3.

Theorem 3. All discriminant projection vectors can be
found in the range space of St

Proof. Let V be the range space St, V ⊥ be the null
space of St. Equivalently,

V = span{αk|Stαk 6= 0, k = 1, .., r} (41)

and

V ⊥ = span{αk|Stαk = 0, k = r + 1, .., n} (42)

where r is the rank of St, {α1, .., αd} is an orthonormal
set and {α1, .., αr} is the set of orthonormal eigenvectors
corresponding to the non-zero eigenvalues of St. Since <n =
V ⊕ V ⊥, every vector a ∈ <n has a unique decomposition
of the form a = b + c, where b ∈ V and c ∈ V ⊥. And the
projected value corresponding to xk on the projection vector
a can be formed as

y
(a)
k = aT (xk − µ) = bT (xk − µ) + cT (xk − µ)

= bT (xk − µ)
(43)

From (43) we see that we can find the all discriminant pro-
jection vectors from range space of St. Proof is done.

Figure 1: Twenty sample images from ORL face
database

Figure 2: Ten sample images from Yale face
database

4. EXPERIMENTAL RESULTS
This section evaluates the performance of PCA [5], Fish-

erface [1], Direct-LDA [11], NLDA [4], 2DPCA [6], GLRAM
[7], 2DLDA [9] and our new approach WLDA based on using
Yale face database and ORL face database. In this paper, we
apply the nearest-neighbor classifier for its simplicity. The
Euclidean metric is used as our distance measure. In short,
the recognition process has three steps. First, we calcu-
late the face subspace from the training set of face images;
then the new face image to be identified is projected into
low-dimensional subspace. Finally, the new face image is
identified by a nearest neighbor classifier.Some sample im-
ages from ORL and Yale databases are shown in Fig. 1. and
Fig. 2.

4.1 Yale Face Database
The Yale face Database contains 165 grayscale images in

GIF format of 15 individuals. There are 11 images per
subject, one per different facial expression or configuration:
center-light, w/glasses, happy, left-light, w/no glasses, nor-
mal, right-light, sad, sleepy, surprised, and wink. A ran-
dom subset with k(k = 2, 3, 4, 5) images per individual was
taken with labels to form the training set. The rest of the
database was considered to be the testing set. 10 times

Table 4: Comparison of the top recognition accuracy
(%) on Yale database.

k 2 3 4 5
PCA 75.556 83.333 84.762 87.778
Fisherfaces 84.444 86.667 93.333 93.333
DLDA 80 83.333 91.429 91.111
NLDA 85.185 87.5 94.286 93.333
2DPCA 76.296 83.333 88.571 88.889
GLRAM 74.2 84.35 84.762 88.1
2DLDA 82.1 84.3 89.2 90
WLDA 86.481 89.167 94.524 96.111
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Table 5: Comparison of the top recognition accuracy
(%) on ORL database.

k 2 3 4 5
PCA 81.875 87.5 90 90.5
Fisherfaces 81.563 85.714 86.667 82.5
DLDA 84.375 87.857 90.833 92.5
NLDA 84.063 87.857 91.25 91.5
2DPCA 84.063 86.071 89.167 91.5
GLRAM 81.875 86.75 89.45 90
2DLDA 82.175 84.234 90 90.75
WLDA 88.875 89.857 92.417 94

of random selection for training examples were performed
and the average recognition result was recorded. The train-
ing samples were used to learn the subspace. The testing
samples were then projected into the low-dimensional rep-
resentation subspace. Recognition was performed using a
nearest-neighbor classifier. We tested the recognition rates
with different number of training samples. We show the best
results obtained by PCA [5], Fisherface [1], Direct-LDA [11],
NLDA [4], 2DPCA [6], GLRAM [7], 2DLDA [9] and our new
approach WLDA in Table 4.

4.2 ORL Face Database
In the ORL database, there are ten different images of

each of 40 distinct subjects. For some subjects, the images
were taken at different times, varying the lighting, facial ex-
pressions (open / closed eyes, smiling / not smiling) and fa-
cial details (glasses / no glasses). All the images were taken
against a dark homogeneous background with the subjects
in an upright, frontal position (with tolerance for some side
movement). A random subset with k(k = 2, 3, 4, 5) images
per individual was taken with labels to form the training set.
The rest of the database was considered to be the testing
set. 10 times of random selection for training example were
performed and the average recognition result was recorded.
The experimental protocol is the same as before. The best
recognition result of each method are shown in Table 5.

Next, in order to test the performance of these LDA-
based algorithms versus the reduced dimensions, we vary
the reduced dimension m from 1 to 39 and perform these
approaches based on image ORL database. Fig. 3,4,5,6.
show the recognition accuracy versus reduced dimension of
LDA-based algorithms and our algorithm, corresponding to
the number of training sample k = 2, 3, 4, 5.

5. CONCLUSIONS
In this paper, we propose a new LDA algorithm that can

overcome some disadvantages of previous work. The key
idea of WLDA is that we apply data whitening before per-
form LDA. With some nice properties of whitened data, we
show how to turn the generalized eigenvalue problem of LDA
into simple eigenvalue problem, leading to low computation
cost of algorithm. While in previous works, some discrimi-
nant information lost during performing algorithms, WLDA
has the ability of keeping all discriminant information. Ex-
periment results show us the effectiveness of our algorithm.
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Figure 3: Comparison of the recognition accuracy
(%) versus reduced dimension m (1 to 39) on ORL
database with training sample k = 2
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Figure 4: Comparison of the recognition accuracy
(%) versus reduced dimension m (1 to 39) on ORL
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