
Alternative Priority Scheduling in Dynamic Priority Systems*

Hyungill Kim t , Sungyoung Lee ? , and Jongwon Lee ’ ?

Department of Computer Engineering, Kyung Hee University, Seoul, Korea
hikim@oslab.kyunghee.ac.kr, slee@nms.kyunghee.ac.kr
Software Research Lab., Korea Telecom, Seoul, Korea? ’

jwlee@coral.kotel.co.kr

ABSTmCT

The major drawback of the slack-stealing based
I schedulings for aperiodic requests is a high

computational complexity to calculate the slack which in
consequence makes them not be practical. In this paper,
we present a sofi-aperiodic task scheduling algorithm,
called Alternative Priority Scheduling (APS), which has a
simple slack calculation method in &namic priority
systems. The proposed algorithm has been extended the
EDF-CTI (Earliest Deadline First-Critical Task
Indicating;) Algorithm f 6J,[8’ developed by the authors.
The APS algorithm references the off-line built CTI table
and chooses either an EDF or a CEF (Critical Execution
time First) algorithm alternatively at run-time. This
paper also demcmtrates the optimality of the APS
algorithm. Our ,simulation study shows that the APS
algorithm, in most cases, is slightb better than the EDF-
CTI algorithm and the other so$-aperiodic schedulings in
terms of the short response time of aperiodic requests,
and considerably improves the previous algorithms in a
high workload

1. Introduction

The problem of jointly scheduling hard deadline
periodic tasks and soft deadline aperiodic tasks in real
time systems is much more challenging than scheduling
of periodic tasks alone. In the last few years
considerable researches in the areas of jointly scheduling
periodic and aperiodic tasks have been done in fixed
priority systems [2],[14] such as the polling server, the
bandwidth preservation [9],[17],[18] and the slack

This work was supported in part by the KOSEF under Grant No. 95-
0100-07-01-3.

stealing algorithms [3],[10],[11]. On the other hands,
less attention has been made to the same problems in the
context of dynamic priority systems. Recently, Tia [191
introduced an optimal scheduling of aperiodic requests in
dynamic priority systems based on the slack stealing
approach. The main idea of their algorithm is to
partition the periodic requests in sets such that the slack
of all the requests in the same set is affected by the same
scheduling events. Consequently, their algorithm can
determine the mini” slack available at any time in
O(n) time where n is the number of periodic tasks and is
an optimal one in that it minimizes the response times of
aperiodic requests. Homayoun and Ramanathan [5]
extended the deferrable server scheduling algorithm to
work with the EDF algorithm. The deferrable server
algorithm, however, does not always fully utilize the
processor due to the fact that the response times for
aperiodic requests are sometimes not the minimum
possible. Spuri and Buttazzo [15],[16] proposed four
on-line schedulings for aperiodic requests in dynamic
priority systems: the dynamic priority exchange, the total
bandwidth, the EDL (Earliest Deadline as Late as
possible) and the improved priority exchange algorithm.
Although only the EDL algorithm among them is optimal,
its run time overhead, however, is higher than that of
Tia’s algorithm.

In this paper, we present a new strategy for joint
scheduling of soft-aperiodic and periodic tasks, called
AlZemative Priority Scheduling (APS) algorithm, which
is optimal in dynamic priority systems. Some optimal
schedulings for soft-aperiodic requests in dynamic
priority systems already exist, so a natural question
arises: why another? The answer is that none of the
existing optimal schedulings satisfies the requirement of
practicality in real-world applications due to their
computational expenses for the slack calculation. Our
goal, consequently, is to find another optimal scheduling
for soft-aperiodic requests in the CTI (Critical Task
Indicating) scheduling [7] framework, which preserves a

0-8186-7614-0196 $5.00 0 1996 IEEE

239

Authorized licensed use limited to: SAMSUNG ELECTRONICS DMC. Downloaded on March 16,2010 at 10:14:57 EDT from IEEE Xplore. Restrictions apply.

simple slack calculation scheme and well copes with &e
practicality.

The proposed algorithm has adopted a new type of
scheduling scheme which chooses either an EDF or a
CEF (Critical Execution time First) scheduling policy
alternatively for a given periodic task set at run-time
while referencing information in the CTI table [7] built
off-line. The CTI table is created by the deadkinewise
preassignment scheduling policy in which tasks are
preassigned toward deadlines at their maximum. The
scheduling information in the CTI table enables a
scheduler to have a predictability and reduces the overall
computational complexity at run time. Building a CTI
table is very similar to the reverse schedule of the EDF
introduced by Ghetto and Chetto [I]. However, there
are differences between the two approaches in terms of
their applications and pursuing goals which are shown in
[7]. Recall that the CTI algorithm [7] considers the
problem of the joint scheduling of periodic and aperiodic
tasks. The algorithm basically performs the on-line
scheduling based on either a fured-priority or a dynamic-
priority scheduling while referencing the scheduling
information in the off-line built CTI table.

The CEF scheduling gives the highest priority to a
periodic task which has the largest amount of criticaZ
task3 execution time (cd) at on-line. We define that a
critical task is a periodic task which must be scheduled at
certain time t, otherwise its deadline could not be
guaranteed. We also define a cef as the time differences
between all the computation requirement (Cri(t)) and all
the computation processing completed (Cp&)) in the CTI
table for each periodic task until time t: (Crz(Q-Cpi@)).
The cef is used to evaluate whether the preassigned
periodic tasks in the CTI table must be executed or not to
meet their deadlines. The major reason for
introducing an alternative scheduling policy is to get a
fast response time for aperiodic requests. We will
discuss more details in subsection 4.2.

Meanwhile, the proposed algorithm newly introduces
the concept of an opfimistic slack calculation method
rather than a minimal method which is used in the slack-
stealing based schedulings. The term minimal method
means that the slack stealing algorithm [lO],[ll] uses the
actual slack as the minimum slack value of all periodic
requests to ensure that all the lower priority periodic
deadlines are met. On the other hands, the term
optimistic means that a scheduler regards all the time as
the slack except for the execution time of a given
periodic task set to guarantee their deadlines. The
opfimistic approach therefore, is to maximize the

reclaiming of unused computation time and not
necessarily to search the slack in all the levels of periodic
tasks. Thus, the computational overhead to calculate
slack can be reduced.

The remainder of this paper is organized as follows.
Section 2 establishes a system model and assumptions
used in the paper. Section 3 describes the basic concept
of the deadlinewise preassignment scheduling policy.
Section 4 describes the optimistic slack calculation
approach, explains operations of the APS algorithm,
demonstrates the opthality, and gives an example of the
algorithm. Section 5 shows the simulation results of the
proposed algorithm and compares it with the EDF-CTI
algorithm [SI. Finally, we conclude the paper in section
6.

2, Task Model and Assumptions

Consider a uniprocessor real-time system with a set T of
n independent, preemptable periodic tasks, (TI, T ~ , ..., T~).
Each task, Ti, has a worst-case computation requirement
Ci, a period Ti, an initiation time or an offset (si relative
to some time origin, and a deadline di. Hence, we
denote the system T = {Ti(Ci,Ti,di): 1 5 i 5 n). In
response to external events which occur at random time
instants, the aperiodic tasks, (Jk, k 1 1) are introduced.
Each aperiodic request Jl(ai ci) is characterized by its
arrival time ai and its worst-case computation time ci.
Let hyperperiod, H, be the least common multiple of all
the periodic task‘s periods. For simplicity, the algorithm
uses the following assumptions.
(Al) Deadline for a periodic task’s instance is equal to the

next request of the task.
(A2) Preemption over a periodic or an aperiodic task is

always possible
(A3) All overhead for context switching is counted into

the conesponding periodic or aperiodic task’s
computation requirements.

(A4) All initiation times or relative offsets {bj, 1 I i I n>
are synchronized to 0.

3. The Deadlinewise Preassignment

In &is section, we explain the basic concept of the
deadlinewise preassi-gent policy which is the off-line
scheduling of the CTI algorithm. For simplicity, we
describe the off-line scheduling of the CTI algorithm in

240

Authorized licensed use limited to: SAMSUNG ELECTRONICS DMC. Downloaded on March 16,2010 at 10:14:57 EDT from IEEE Xplore. Restrictions apply.

the fmed priority systems. The deadlinewise
preassignment for 2% periodic task set in a hyperperiod
produces a scheduling table, called the CTI table, which
is used in the on-line assignment. Note that the fixed
priority based deadlinewise CTI scheduling concept can
be easily extended to a dynamic priority based
scheduling.

A periodic task scheduling method is classified to a
fured priority deadlinewise preassignment if the tasks are
assigned one after another according to the given fixed
priority in such a way that all the tasks are preassigned
toward deadlines at their maximum. The priority
preemptions in a deadlinewise preassignment take place
in a similar manner to the other futed priority scheduling
methods (e.g. rate monotonic priority assignment) except
that the part or all of the preempted task instance should
be assigned prior to the preempting task instance.

Example 1. Suppose that a periodic task set with two
tasks, ‘51 and ‘52, having the computation requirements,
C1=l and C2=2, and the periods, T1=3 and T2=5,
respectively, is to be preassigned over a single
hyperperiod, H=15, using the rate monotonic fixed-
priority deadlinewise preassignment. The preassigning
process is depicted in Figure 1. At start time, two task
instances, ‘11 and 721, are arrived and assigned
toward the deadlines, D11=3 and %1=5, respectively. At
time 6, the task instance ~ 1 3 preempts ‘22. Also, at
time 12, another preemption is occurred.

‘2 C , = 2 , T 2 = 5

bperper.d

Figure 1. An example of the preassigning process
using the deadlinewise preassignment.

Next we establish some of the basic notions used to
analyze the feasibility of the deadliewise preassignment
for a given periodic task set. For a set of periodic tasks
preassigned according to the deadlinewise preassignment,
we say that an underflow occurs at t if a task is forced out
of its given period beginning at t as a result of the others’
preemptions. The concept of overflow is applicable to
both the on-line and the off-line fxed-priority

schedulings, but on the other hand that of underflow only
to the off-line fixed-priority schedulings. A
deadlinewise critical instant for a given periodic task
preassigned according to the deadlinewise preassignment
is an instant at which the execution of a request for that
task will begin, so that the largest time interval is
required to its completion. The periodic interval for a
periodic task having the shortest waiting time from the
request to the start of the execution contains its
deadlinewise critical instant. A deadlinewise critical
zone for a given periodic task preassigned according to
the deadlinewise preassignment is the time interval
between a deadlinewise critical instant and the deadline
for the corresponding request. The above two
definitions are hinted at the defmitions of the normal
critical instant and critical time zone presented in 11131.
The only difference between the normal and the
deadlinewise is that the latter counts on the deadlines
instead of the requests. Any periodic task set with a
fixed-priority order is deadlinewisely preassignable if no
underflow occurs through all the deadlinewise critical
zones for all the tasks over a single hyperperiod.

Example 2. Figure 1 shows two deadlinewise critical
instants, execution start points of and ‘ c ~ ~ at
priority level 2 and consequently two deadlinewise
critical zones, 17,101 and 112,151, respectively. Moreover,
the periodic task set is deadlinewisely preassignable
because no underflow occurs through all the
deadlinewise critical zones. Note that every execution
start point of the task instances at the priority level 1 is a
deadlinewise critical instant.

Meanwhile the property of the deadlinewise
preassignment scheduling scheme in the fixed priority
systems can be directly implied to the dynamic priority
systems.

4. Alternative Priority Scheduling

4.1 Slack Calculation

The major motivation of the proposed algorithm lies
how to calculate the slack in a simple manner. In the
conventional joint schedulings of aperiodic and periodic
tasks, the scheduling time interval [0, t] is filled up by the
execution time of periodic task instances Pg (I) , the
execution time for aperiodic requests A(t), and the idle
time Z(t>. The formula (1) depicts this concept.

241

Authorized licensed use limited to: SAMSUNG ELECTRONICS DMC. Downloaded on March 16,2010 at 10:14:57 EDT from IEEE Xplore. Restrictions apply.

The slack within IO, t] , denoted by So(t), is generally
defined as an available time for the aperiodic requests
while guaranteeing the deadlines of the given periodic
requests. Thus, So(t) is a total amount of time from 0 to
t except for the sum of the execution time of periodic
requests.
The actual slack for aperiodic requests, however, is less
than or equal to So{S, because it includes idle time (see
formula (2)).

The slack stealing algorithm [lO],[11] uses the actual
slack as the mini" slack value of all periodic requests
to ensure that all the lower priority periodic deadlines are
met (see formula (3)).

'

the contrary, in the APS algorithm, we have
newly introduced the concept of an optimistic slack
calculation method to get a maximurn slack S{t) at
current time t. The idea of the optimistic approach is
that a scheduler regards whole of the rime as a slack
except for the execution time of the given periodic tasks
to meet their deadlines. Thus, the optimistic approach
is not necessarily to calculate slack at all the levels of
periodic tasks which in tum reduces the computational
complexity to calculate slack.

"
S(t,,t,> = t, -t, -x6i * - -

i=I
The formula (4), which shows a way of an

optimistic slack calculation, demonstrates an actual
value of slacks in [i ~ , f z] . S(tl, tZ, can be obtained by
subtracting the minimum amount of the execution time of

periodic tasks (c 4) fiom (tz -tI).
n

r=l
In order to get slack efficiently, we can decompose a

hyperpepiod into a set of scheduling zones, denoted by it,
Z(t)] where Z(9 can be calculated by the formula (5) .
The meaning of [f, Z(Q] is a time interval from t to the
earliest deadline of a periodic task. The reason for
introducing the decomposition strategy is to perfom an
efficient slack calculation by using Z(t) as a scheduling
checkpoint. For example, when an aperiodic request
happens at any arbitrary time f , the foremost concern is
how to schedule that aperiodic task while guaranteeing
the very following deadline of periodic task's instance.

By this way, we can easily evaluate the slack availability
while considering the deadlines of periodic tasks.
Notice that Z{Q can be obtained fi-om the sequences of
periodic tasks' instances in the CTI table.

r i

Z(r) = min(d,.]I I i 5 n, j = (5)

Consequently, Z{g is a parameter to calculate slack from
current time f to the earliest deadline of the periodic task.
Ths, we can calculate the slack as follows:

n

S(t) =S(t ,Z(t)) = Z (t) - t - C 6 , - . *

r=l
In the formula (6) which can be easily induced from

the formula (4), we call Sj as the cd and it can be
obtained from the CTI table. Recall that the cet is used
to evaluate whether the preassigned periodic tasks in the
CTI table should be executed or not to meet their
deadlines. To clarify the term cet, we introduce two
notations; one is the cumulation of all the computation
processing completed (Cp;(Q) and the other is the
cumulation of all the computation requirement (Cr;(Z(;t)))
in the CTI table. Hence, we can formally define the set
as foilows:

--. (7) 0,
(Cq (Z(t)) - Cpi (t)),

if (Cz; (Z(t)) - Cp, (0) < 0
otherwise

s i = {
For simple notation, we define the SM of c& at

time t as follow:
n

A(t) = 6,
1 = I

4 2 Operation of the Algorithm

As we mentioned before, the A P S algorithm chooses
either an EDF or a CEF scheduling altematively at on-
line for a given periodic task set based on 6 (t) while
referencing information in the off-line built CTI table.

The major reason to introduce an alternative
scheduling policy is to get fast response time for
aperiodic requests. Suppose there is no aperiodic
request. At that time, if the scheduler performs on-line
scheduling using EBF only, then some periodic tasks
(non-critical tasks) of which deadlines are earlier than
those of the crifical tasks may be scheduled fEst (in case
of a deadline of a non-critical task is earlier than that of a
crifical task.) In this case, the scheduler fmds no more
slack available since the value of slack obtained from

242

Authorized licensed use limited to: SAMSUNG ELECTRONICS DMC. Downloaded on March 16,2010 at 10:14:57 EDT from IEEE Xplore. Restrictions apply.

formula (6) turns to be negative. Note that a critical
?ask does not mean a periodic task which has the earliest
deadlie in a given periodic task set. Therefore, as the
value of A(t) is increased, in consequence, the value of
slack is decreased. Consequently, an aperiodic task may
not be scheduled under EDF policy even though the slack
is available. On the other hand, in the CEF algorithm,
since the scheduler allocates the minimum amount of
execution of periodic tasks within Z(r) based on the
information in the off-line built CTI table, the slack value
obtained fiom the formula (6) will never be a negative
which in turn has higher probability to find more slack.

Recall that we define that the CEF scheduling gives
the highest priority to the periodic task which has the
largest value of the cet. Thus, if there is periodic task(s)
in the ready queue and A(t) > 0, then service the periodic
task with the CEF scheduling policy. Obviously, we
can get the A(t) fkom information in the CTI table. In
other words, if cet :> 0, then the scheduler must follow the
information in the CTI table that instructs the scheduling
(assignment sequence) of periodic tasks.

1
2
3
4
5
6

7

8
9

.o

. I

.2

.3

4
15
,6

17

18
19
!O

!1

Build off-line CTI table
Initialize counters
while TRUE do

Calculate S(Q and Cri(Z(0);
while (1 Z(t)) do
if(there is slack and there is aperiodic task in

the queue) #hen
while (S(0 > 0 and there is aperiodic task in

the: queue) do
Service the aperiodic task;
update S(t)

/* reduce the ;amount of service time from S(t) */
&e if(there is periodic task in the queue) tken

if(d (t)>o) then
Service the periodic task with the CEF;

Update Cpi(t)
/* add the amount of processing time */

else
Service the periodic task with the EDF;
Update C’i(Q

Update S(0
/* add the amount of processing time */

/* reduce the mount of processing time */
else

Process idle state;
Update S(Q

/* reduce the :mount of idle time */
endwhile

!2 endwhile
Figure 2 A pseudocode of the APS algorithm

In this subsection, we describe the APS algorithm as
well as its operational behavior using Statechart [4].
The following Figure 2 depicts a pseudocode of the
algorithm.

At line 1 and 2 in Figure 2, the off-line CTI table is
created and the scheduling parameters are initialized.
At line 4, the scheduler calculates slack. From line 6 to
9, aperiodic tasks are serviced if slack is available and
there are aperiodic tasks in the queue. At line 10 and 1 1,
if there are periodic tasks, the algorithm alternatively
chooses either an EDF or a CEF scheduling based on A(t).
At line 19, if there is no periodic and aperiodic task to be
serviced, the scheduler is idle.

In order to clarify the operational behavior of the
APS algorithm, we demonstrate its state transition using
the Statechart [4]. In Figure 3, the transition diagram
consists of A, I, and P states which stand for aperiodic
task service, idle, and periodic task service respectively.
Further, P state is divided into an EDF and a CEF state.
Note that QP@, Q& and S(t) denote the sum of the
execution time of periodic tasks at time t, the execution
time of aperiodic tasks at time ?, and the available slack
respectively.

CREATE
CTI TABLE

SCHEDUUNG_RI

Figure 3. The behavior of the APS algorithm

The description of each state is as follows;
0 A state: This is a state of the aperiodic service. If a

slack value is greater than 0 and there is an aperiodic
task (S(t).Qa(r) > 0), then a transition will occur from
P or I to this state. In this state, the slack value will
be decreased as much amount as the aperiodic service
is done.

I state: This is an idle state. If there is no periodic or
aperiodic task (Qp@+Qa(t,, = 0), then a transition

243

Authorized licensed use limited to: SAMSUNG ELECTRONICS DMC. Downloaded on March 16,2010 at 10:14:57 EDT from IEEE Xplore. Restrictions apply.

will happen fkom A or P to this state. In this case,
the slack value will be decreased as the same amount
of the idle time.

P state: This is a state of the periodic service. If there
is no aperiodic task or the value of slack is 0
(S(t).Qa(t) = 0), then a transition will be triggered
from A state. Also, if a periodic task arrives (ep(?) > O), then a transition will occur from I to this
state.

0 CEF state: If A(t) > 0, then a transition will occur fkom
the EDF to this state.

e EDF state: If A(t) = 0, then a transition from the CEF to
this state will be occw.

4.3 Optimality of the Algorithm

In order to show optimality of the algorithm in the
CTI scheduling h e w o r k , we introduce the following
theorems.

Theorem I : At the startingpoint of the hypeperiod,
the EDF deadiinmise preassignmenf 131 in a dynamic
priority system, as an off-line scheduling, is an opt&"
scheduling for the aperiodic requests,

Proof. At the start time of the hyperperiod, the
deadlinewise preassignment is a special case of the EDL
since the EDL has the property that assign the periodic
tasks as late as possible. The EDL, meanwhile, is known
to be an optimal aperiodic scheduling in the EDF
framework which was proven by Chetto and Chetto [11.

Theorem 2: In the CTI scheduIingfiammork, fhe
APS algorithm can find maximm slack af any
arbitrary time t during on-line scheduling.

Suppose there is an algorithm X which can
€id more slack than that found by the APS algorithm in
[t, Z(t)]. Also, suppose all of the slack found by the
algorithm X was consumed for the aperiodic tasks.
Then sometimes later than Z(Q, the algorithm X, in worst
case, may not guarantee the deadlines of periodic tasks
because it can not consider the executions and deadlines
of upcoming periodic tasks to be scheduled after Z(0.
In other words, since the cef is preserved as the minimum
time to guarantee the deadline of periodic tasks to Z(t),
the algorithm X , which found more slack than APS, is
consequently can not guarantee the deadlines of periodic
tasks after Z(0. Further, if a certain greedy scheduling
algorithm in dynamic priority system can fmd a
maximum slack, then it is an optimal algorithm in term of
fast response time of aperiodic requests. Thus, the A€'§

roof.

a l g o r i h is optimal within the CTI scheduling
framework which can fmd the maximum slack at
arbitrary time t U

4.4 An Example

In this subsection, we demonstrate an example of
scheduling using the APS algorithm. Suppose there are
three periodic tasks 21(1,5,5), ~2(1,7,7), ~3(3,10,10) where
the parameters are the worst case computation time,
deadline, and period of the tasks, respe
assume that the first aperiodic task J i arrives at a d with
its computation time CI=~. Then, we can calculate the
slack S(0) as follow:

3

SjO) = S(O,Z(O)) = S(02) = 5 - 0 - cs,
i=l

= 5-(1+0+0)
= 4

Thus, the available slack within [0, 51 becomes 4
units. Since there is no aperiodic task at t=O, the critical
task TH is invoked by the CEF algorithm. From t=l to
t4, TZI and T31 are invoked by the EDF algorithm and 3
units of the slack value are consumed which means
S(4)=1. At time t=4, the aperiodic task J1 arrives.
Since one unit of slack is available by e 5 , J i is serviced
immediately. At t=59 S(5) can be obtained as follows:

3

S(5) =S(5,Z(s>)=S(5,10)=10-5-~6,

5 - (1 -I- 0 + 1)
r=l

= 3

Since TZI is already completed its execution before
t-5, the next earliest absolute deadline is +IO. Thus,
Z(5)=10 instead of 7. Meanwhile, because S(5)=3, the
remaining 2 units of aperiodic task's execution time will
be invoked.

Authorized licensed use limited to: SAMSUNG ELECTRONICS DMC. Downloaded on March 16,2010 at 10:14:57 EDT from IEEE Xplore. Restrictions apply.

5. Simulation1

In this section, we observe the average response time
for aperiodic requests. The performance of the APS
scheduling will be compared to that of all the
combinations of a fEed- or dynamic-CTI table built off-
line and an on-line fDted- or dynamic-priority assignment.
Thus, four different types of combinations are available.

The task set in the simulation consists of 10 different
periodic tasks, each of which has randomly generated
period and computation requirements. All aperiodic tasks
are generated by using both an exponential distribution
function for their computation requirements and the
Poisson anival function for their arrivals. An aperiodic
workload has been coordinated by modifying the value of
the exponential scale parameter and the arrival rate of the
Poisson function. We arranged the periodic task set
with 90% of CPU utilization to simulate high workload
scheduling. It is summarized in Table 1. Note that the
average execution time for aperiodic tasks is set to 3.5
and21.

l**l
10 300 12

Table 1. A sample periodic task set.

In Figure 5, as the workload of aperiodic tasks is
increased, the average aperiodic response time tends to
be slower. The average response time is dependent more
on the off-line scheduling if the aperiodic workload is
low, but is dependent more on the on-line scheduling if
the aperiodic workload is high. Fi-p-e 6 shows the
result in case that the average execution time is set to 2 1.
In this case, we observe that the average response time
for soft-aperiodic tasks is dependent more on the average
execution time; the larger average execution time for
aperiodic tasks, the slower average response time for that
tasks. The simulation study shows that the average

response time for aperiodic tasks in the proposed
algorithm is, in most cases, slightly better than that of the

Moreover, the simulation result shows that the APS
algorithm has slightly faster response time than the EDF-
CTI in a high workload (over 97%). Note that the
computational complexity of the APS off-line approach
is O(nlo& n) [12] while that of on-line is O(n) where n is
the number of periodic tasks.

EDF-CTI.

Periodic Workload 90%

0 1 I
0 1 2 3 4 5 6 7 8 9 9 4

Aperiodic Workload (average acecution time = 3 5)

Figure 5. The simulation result in case that the average
execution time of aperiodic requests is 3.5

I Periodic Workload 90%

0 1 " " " " I
o I z 3 I 5: 6 7 8 sa
Ape&%c Workload (avaage e x d o n time21.0)

Figure 6. The simulation result in case that the average
execution time of aperiodic requests is 21

6. Summary

The slack stealing based schedulings require the
computationally expensive re-evaluation of the slack at
each priority level. In this paper, we introduced an
efficient method of calculating the slack. The APS
algorithm performs on-line scheduling using either an
EDF or a CEF scheduling policy alternatively to
guarantee all the deadlines of the periodic tasks while
referencing the information in the off-lime built CTI table.
In order to reduce the computational overhead of slack

245

Authorized licensed use limited to: SAMSUNG ELECTRONICS DMC. Downloaded on March 16,2010 at 10:14:57 EDT from IEEE Xplore. Restrictions apply.

calculation, we newly adopted a concept of an optimistic
approach to maximize reclaiming of unused computation
time. Therefore, the algorithm is not necessarily
searching the slack in all the levels of periodic tasks,
which turns out be more practical. We also
demonstrated that the proposed algorithm is optimal in
terms of calculating a maximum slack when aperiodic
request has occurs at certain time t. Our sirnulation
study shows that the A P S algorithm, in most cases, is
slightly better than the EDF-CTI algorithm which is even
superior to the other CTI-based soft-aperiodic
schedulings in terms of the short response time of
aperiodic requests.

When developing the scheduling algorithms, we
should consider the practical applications in real-world.
Our algorithm, in this respect, does satisfy the
practicability and simplicity. By using the alternative
scheduling policy, we can get a fast average response
time for aperiodic requests. By introducing the
optimistic slack calculation method, we can achieve the
implementation simplicity. Our ongoing work is to
enhance the algorithm to be more robust in the transient
overload and to compare our simulation resuits to that of
Tia's [19].

eferenees

Chetto and M. Chetto, "Some Results of the Earliest
Deadline Scheduling Algorithm", IEEE Transactions on
Software Engineering, Vol. 15, No. 10, pp. 466-473,
1989.
Davis and A. Wellings, "Dual Priority Scheduling",
Proceedings of the IEEE Real-Time Systems Symposium,
pp. 100-109, December 1995.
Davis, K. Tindell and A Burns, "Scheduling Slack Time
in Fixed Priority Pre-emptive Systems", Proceedings of
the IEEE Real-Time Systems Symposium, pp. 222-231,
December 1993.
Harel, "Statecharts: A Visual Formalism for Complex
Systems," Science of Computer Programming, Vol. 8, pp.

Homayoun and P. Rammathan, "Dynamic Priority
Scheduling of Periodic and Aperiodic Tasks in Hard Real-
Time Systems", Real-Time Systems: The International
Joumal of Time-Critical Computing Systems, Vol. 6, No.

Kim, S.Y. Lee and J.W. Lee, "A Near-Optimal Algorithm
for Scheduling Soft-Aperiodic Requests in Dynamic
Priority Systems", The 8th Euromicro Workshop on Real-
Time Systems, June, 1996, to appear.

23 1-274, 1987

2, pp. 207-232, 1994

171 Lee, S.Y. Lee, and H.1 Kim, "Scheduling Hard-Aperiodic
Tasks in Hybrid StaticDynamic Priority Systems", ACM
SlGPLAN Workshop on Languages, Compilers, and
Tools for Real-Time Systems, pp. 7-19, June, 1995.

[SI Lee, H.I. Kim and J.W. Lee, "A Soft Aperiodic Task
Scheduling Algorithm in Dynamic Priority Systems
IEEE Workshop on Real-Time Computing Systems and
Applications, Tokyo, pp. 68-72, October, 1995.

[9] Lehoczky, L. Sha, and J.K. Strosnider, "Enhanced
Aperiodic Responsiveness in Hard Real-Time
Environments", Proceedings of the IEEE Real-Time
Systems Symposium, pp. 261-270, San Jose, CA,
December 1987.

[IO] Lehoczky and S. Ramos-Thuel, "An Optimal Algorithm
for Scheduling Soft-Aperiodic Tasks in Fixed-Priority
Preemptive Systems", Proceedings of the IEEE Real-Time
Systems Symposium, pp. 110-123, December 1992.

1111 Lehoczky and S. R. Thuel, Scheduling Periodic and
Aperiodic Tasks using the Slack Stealing Algorithm
(Chapter S), Advances in Real-Time Systems, (ed. S. Son)
Prentice-Hall, Englewood Cliffs, NJ, 1995.

[12] Leung and J. Whitehead, "On the Complexity of Fixed-
Priority Scheduling of Periodic Real-Time Tasks",
Performance Evaluation 2, pp. 237-250, 1982.

[13J Liu and J.W. Layland, "Scheduling Algorithms for Multi-
Programming in a Hard Real-Time Environments",
Journal of the Association for Computing Machinery, Vol.

[14] Shin and Y.-C. Chang, "A Reservation-Based Algorithm
for Scheduling Both Periodic and Aperiodic Real-Time
Tasks", IEEE Transactions on Computers, Vol. 44, No.12,
pp. 1405-1419, December, 1995.

El51 Spuri and G.C. Buttazzo, "Efficient Aperiodic Service
under Earliest Deadline Scheduling", Proceedings of
IEEE Real-Time System Symposium, pp. 2-
December, 1994.

[I61 Spuri, G.C. Buttazzo, and F. Sensini "Robust Aperiodic
Scheduling Under Dynamic Priority Systems",
Proceedings of the IEEE Real-Time System Symposium,
pp. 210-219, December, 1995.

[I71 Sprunt, J.P. Lehoczky, and L. Sha, "Scheduling Sporadic
and Aperiodic Events in a Hard Real-Time System",
Technical Report CMUISEI-89OTR-11, April, 1989.

[IS] Spwt , J.P. Lehoczky, and L. Sha, "Exploiting Unused
Periodic Time for Aperiodic Service Using the Extended
Priority Exchange Algorithm", Proceedings of the IEEE
Real-Time System Symposium, pp. 251-258, December,
1988.

E191 Tia, Utilizing Slack Time for Aperiodic and Sporadic
Requests Scheduling in Real-Time Systems, Technical
Report No. UIUCDCS-R-95-1906, University of Illinois,
April, 1995.

20, No.1, pp. 46-61, January 1973.

245

Authorized licensed use limited to: SAMSUNG ELECTRONICS DMC. Downloaded on March 16,2010 at 10:14:57 EDT from IEEE Xplore. Restrictions apply.

