
Alternative Priority Scheduling in Dynamic Priority Systems* 

Hyungill Kim t ,  Sungyoung Lee ? , and Jongwon Lee ’ ? 

Department of Computer Engineering, Kyung Hee University, Seoul, Korea 
hikim@oslab.kyunghee.ac.kr, slee@nms.kyunghee.ac.kr 
Software Research Lab., Korea Telecom, Seoul, Korea? ’ 

jwlee@coral.kotel.co.kr 

ABSTmCT 

The major drawback of the slack-stealing based 
I schedulings for aperiodic requests is a high 

computational complexity to calculate the slack which in 
consequence makes them not be practical. In this paper, 
we present a sofi-aperiodic task scheduling algorithm, 
called Alternative Priority Scheduling (APS), which has a 
simple slack calculation method in &namic priority 
systems. The proposed algorithm has been extended the 
EDF-CTI (Earliest Deadline First-Critical Task 
Indicating;) Algorithm f 6J,[8’ developed by the authors. 
The APS algorithm references the off-line built CTI table 
and chooses either an EDF or a CEF (Critical Execution 
time First) algorithm alternatively at run-time. This 
paper also demcmtrates the optimality of the APS 
algorithm. Our ,simulation study shows that the APS 
algorithm, in most cases, is slightb better than the EDF- 
CTI algorithm and the other so$-aperiodic schedulings in 
terms of the short response time of aperiodic requests, 
and considerably improves the previous algorithms in a 
high workload 

1. Introduction 

The problem of jointly scheduling hard deadline 
periodic tasks and soft deadline aperiodic tasks in real 
time systems is much more challenging than scheduling 
of periodic tasks alone. In the last few years 
considerable researches in the areas of jointly scheduling 
periodic and aperiodic tasks have been done in fixed 
priority systems [2],[14] such as the polling server, the 
bandwidth preservation [9],[17],[18] and the slack 
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stealing algorithms [3],[10],[11]. On the other hands, 
less attention has been made to the same problems in the 
context of dynamic priority systems. Recently, Tia [ 191 
introduced an optimal scheduling of aperiodic requests in 
dynamic priority systems based on the slack stealing 
approach. The main idea of their algorithm is to 
partition the periodic requests in sets such that the slack 
of all the requests in the same set is affected by the same 
scheduling events. Consequently, their algorithm can 
determine the mini”  slack available at any time in 
O(n) time where n is the number of periodic tasks and is 
an optimal one in that it minimizes the response times of 
aperiodic requests. Homayoun and Ramanathan [5] 
extended the deferrable server scheduling algorithm to 
work with the EDF algorithm. The deferrable server 
algorithm, however, does not always fully utilize the 
processor due to the fact that the response times for 
aperiodic requests are sometimes not the minimum 
possible. Spuri and Buttazzo [15],[16] proposed four 
on-line schedulings for aperiodic requests in dynamic 
priority systems: the dynamic priority exchange, the total 
bandwidth, the EDL (Earliest Deadline as Late as 
possible) and the improved priority exchange algorithm. 
Although only the EDL algorithm among them is optimal, 
its run time overhead, however, is higher than that of 
Tia’s algorithm. 

In this paper, we present a new strategy for joint 
scheduling of soft-aperiodic and periodic tasks, called 
AlZemative Priority Scheduling (APS)  algorithm, which 
is optimal in dynamic priority systems. Some optimal 
schedulings for soft-aperiodic requests in dynamic 
priority systems already exist, so a natural question 
arises: why another? The answer is that none of the 
existing optimal schedulings satisfies the requirement of 
practicality in real-world applications due to their 
computational expenses for the slack calculation. Our 
goal, consequently, is to find another optimal scheduling 
for soft-aperiodic requests in the CTI (Critical Task 
Indicating) scheduling [7] framework, which preserves a 
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simple slack calculation scheme and well copes with &e 
practicality. 

The proposed algorithm has adopted a new type of 
scheduling scheme which chooses either an EDF or a 
CEF (Critical Execution time First) scheduling policy 
alternatively for a given periodic task set at run-time 
while referencing information in the CTI table [7] built 
off-line. The CTI table is created by the deadkinewise 
preassignment scheduling policy in which tasks are 
preassigned toward deadlines at their maximum. The 
scheduling information in the CTI table enables a 
scheduler to have a predictability and reduces the overall 
computational complexity at run time. Building a CTI 
table is very similar to the reverse schedule of the EDF 
introduced by Ghetto and Chetto [I]. However, there 
are differences between the two approaches in terms of 
their applications and pursuing goals which are shown in 
[7]. Recall that the CTI algorithm [7] considers the 
problem of the joint scheduling of periodic and aperiodic 
tasks. The algorithm basically performs the on-line 
scheduling based on either a fured-priority or a dynamic- 
priority scheduling while referencing the scheduling 
information in the off-line built CTI table. 

The CEF scheduling gives the highest priority to a 
periodic task which has the largest amount of criticaZ 
task3 execution time (cd) at on-line. We define that a 
critical task is a periodic task which must be scheduled at 
certain time t, otherwise its deadline could not be 
guaranteed. We also define a cef as the time differences 
between all the computation requirement (Cri(t)) and all 
the computation processing completed (Cp&)) in the CTI 
table for each periodic task until time t: (Crz(Q-Cpi@)). 
The cef is used to evaluate whether the preassigned 
periodic tasks in the CTI table must be executed or not to 
meet their deadlines. The major reason for 
introducing an alternative scheduling policy is to get a 
fast response time for aperiodic requests. We will 
discuss more details in subsection 4.2. 

Meanwhile, the proposed algorithm newly introduces 
the concept of an opfimistic slack calculation method 
rather than a minimal method which is used in the slack- 
stealing based schedulings. The term minimal method 
means that the slack stealing algorithm [lO],[ll] uses the 
actual slack as the minimum slack value of all periodic 
requests to ensure that all the lower priority periodic 
deadlines are met. On the other hands, the term 
optimistic means that a scheduler regards all the time as 
the slack except for the execution time of a given 
periodic task set to guarantee their deadlines. The 
opfimistic approach therefore, is to maximize the 

reclaiming of unused computation time and not 
necessarily to search the slack in all the levels of periodic 
tasks. Thus, the computational overhead to calculate 
slack can be reduced. 

The remainder of this paper is organized as follows. 
Section 2 establishes a system model and assumptions 
used in the paper. Section 3 describes the basic concept 
of the deadlinewise preassignment scheduling policy. 
Section 4 describes the optimistic slack calculation 
approach, explains operations of the APS algorithm, 
demonstrates the opthality, and gives an example of the 
algorithm. Section 5 shows the simulation results of the 
proposed algorithm and compares it with the EDF-CTI 
algorithm [SI. Finally, we conclude the paper in section 
6. 

2, Task Model and Assumptions 

Consider a uniprocessor real-time system with a set T of 
n independent, preemptable periodic tasks, (TI, T ~ ,  ..., T~). 
Each task, Ti, has a worst-case computation requirement 
Ci, a period Ti, an initiation time or an offset (si relative 
to some time origin, and a deadline di. Hence, we 
denote the system T = {Ti(Ci,Ti,di): 1 5 i 5 n). In 
response to external events which occur at random time 
instants, the aperiodic tasks, (Jk, k 1 1) are introduced. 
Each aperiodic request Jl(ai ci) is characterized by its 
arrival time ai and its worst-case computation time ci. 
Let hyperperiod, H, be the least common multiple of all 
the periodic task‘s periods. For simplicity, the algorithm 
uses the following assumptions. 
(Al)  Deadline for a periodic task’s instance is equal to the 

next request of the task. 
(A2) Preemption over a periodic or an aperiodic task is 

always possible 
(A3) All overhead for context switching is counted into 

the conesponding periodic or aperiodic task’s 
computation requirements. 

(A4) All initiation times or relative offsets {bj, 1 I i I n> 
are synchronized to 0. 

3. The Deadlinewise Preassignment 

In &is section, we explain the basic concept of the 
deadlinewise preassi-gent policy which is the off-line 
scheduling of the CTI algorithm. For simplicity, we 
describe the off-line scheduling of the CTI algorithm in 
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the fmed priority systems. The deadlinewise 
preassignment for 2% periodic task set in a hyperperiod 
produces a scheduling table, called the CTI table, which 
is used in the on-line assignment. Note that the fixed 
priority based deadlinewise CTI scheduling concept can 
be easily extended to a dynamic priority based 
scheduling. 

A periodic task scheduling method is classified to a 
fured priority deadlinewise preassignment if the tasks are 
assigned one after another according to the given fixed 
priority in such a way that all the tasks are preassigned 
toward deadlines at their maximum. The priority 
preemptions in a deadlinewise preassignment take place 
in a similar manner to the other futed priority scheduling 
methods (e.g. rate monotonic priority assignment) except 
that the part or all of the preempted task instance should 
be assigned prior to the preempting task instance. 

Example 1. Suppose that a periodic task set with two 
tasks, ‘51 and ‘52, having the computation requirements, 
C1=l and C2=2, and the periods, T1=3 and T2=5, 
respectively, is to be preassigned over a single 
hyperperiod, H=15, using the rate monotonic fixed- 
priority deadlinewise preassignment. The preassigning 
process is depicted in Figure 1. At start time, two task 
instances, ‘11 and 721, are arrived and assigned 
toward the deadlines, D11=3 and %1=5, respectively. At 
time 6, the task instance ~ 1 3  preempts ‘22. Also, at 
time 12, another preemption is occurred. 

‘2 C , = 2 , T 2 = 5  

bperper.d 

Figure 1. An example of the preassigning process 
using the deadlinewise preassignment. 

Next we establish some of the basic notions used to 
analyze the feasibility of the deadliewise preassignment 
for a given periodic task set. For a set of periodic tasks 
preassigned according to the deadlinewise preassignment, 
we say that an underflow occurs at t if a task is forced out 
of its given period beginning at t as a result of the others’ 
preemptions. The concept of overflow is applicable to 
both the on-line and the off-line fxed-priority 

schedulings, but on the other hand that of underflow only 
to the off-line fixed-priority schedulings. A 
deadlinewise critical instant for a given periodic task 
preassigned according to the deadlinewise preassignment 
is an instant at which the execution of a request for that 
task will begin, so that the largest time interval is 
required to its completion. The periodic interval for a 
periodic task having the shortest waiting time from the 
request to the start of the execution contains its 
deadlinewise critical instant. A deadlinewise critical 
zone for a given periodic task preassigned according to 
the deadlinewise preassignment is the time interval 
between a deadlinewise critical instant and the deadline 
for the corresponding request. The above two 
definitions are hinted at the defmitions of the normal 
critical instant and critical time zone presented in 11131. 
The only difference between the normal and the 
deadlinewise is that the latter counts on the deadlines 
instead of the requests. Any periodic task set with a 
fixed-priority order is deadlinewisely preassignable if no 
underflow occurs through all the deadlinewise critical 
zones for all the tasks over a single hyperperiod. 

Example 2. Figure 1 shows two deadlinewise critical 
instants, execution start points of and ‘ c ~ ~  at 
priority level 2 and consequently two deadlinewise 
critical zones, 17,101 and 112,151, respectively. Moreover, 
the periodic task set is deadlinewisely preassignable 
because no underflow occurs through all the 
deadlinewise critical zones. Note that every execution 
start point of the task instances at the priority level 1 is a 
deadlinewise critical instant. 

Meanwhile the property of the deadlinewise 
preassignment scheduling scheme in the fixed priority 
systems can be directly implied to the dynamic priority 
systems. 

4. Alternative Priority Scheduling 

4.1 Slack Calculation 

The major motivation of the proposed algorithm lies 
how to calculate the slack in a simple manner. In the 
conventional joint schedulings of aperiodic and periodic 
tasks, the scheduling time interval [0, t] is filled up by the 
execution time of periodic task instances Pg ( I ) ,  the 
execution time for aperiodic requests A(t), and the idle 
time Z(t>. The formula (1) depicts this concept. 
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The slack within IO, t ] ,  denoted by So(t), is generally 
defined as an available time for the aperiodic requests 
while guaranteeing the deadlines of the given periodic 
requests. Thus, So(t) is a total amount of time from 0 to 
t except for the sum of the execution time of periodic 
requests. 
The actual slack for aperiodic requests, however, is less 
than or equal to So{S, because it includes idle time (see 
formula (2)). 

The slack stealing algorithm [lO],[11] uses the actual 
slack as the mini" slack value of all periodic requests 
to ensure that all the lower priority periodic deadlines are 
met (see formula (3)). 

' 

the contrary, in the APS algorithm, we have 
newly introduced the concept of an optimistic slack 
calculation method to get a maximurn slack S{t) at 
current time t. The idea of the optimistic approach is 
that a scheduler regards whole of the rime as a slack 
except for the execution time of the given periodic tasks 
to meet their deadlines. Thus, the optimistic approach 
is not necessarily to calculate slack at all the levels of 
periodic tasks which in tum reduces the computational 
complexity to calculate slack. 

" 
S(t,,t,> = t, -t, -x6i * - -  

i=I 
The formula (4), which shows a way of an 

optimistic slack calculation, demonstrates an actual 
value of slacks in [ i ~ ,  f z ] .  S(tl, tZ, can be obtained by 
subtracting the minimum amount of the execution time of 

periodic tasks (c 4 ) fiom (tz -tI). 
n 

r=l 
In order to get slack efficiently, we can decompose a 

hyperpepiod into a set of scheduling zones, denoted by it, 
Z(t)] where Z(9 can be calculated by the formula (5) .  
The meaning of [f, Z(Q] is a time interval from t to the 
earliest deadline of a periodic task. The reason for 
introducing the decomposition strategy is to perfom an 
efficient slack calculation by using Z(t) as a scheduling 
checkpoint. For example, when an aperiodic request 
happens at any arbitrary time f ,  the foremost concern is 
how to schedule that aperiodic task while guaranteeing 
the very following deadline of periodic task's instance. 

By this way, we can easily evaluate the slack availability 
while considering the deadlines of periodic tasks. 
Notice that Z{Q can be obtained fi-om the sequences of 
periodic tasks' instances in the CTI table. 

r i  

Z(r) = min(d,.]I I i 5 n, j = (5) 

Consequently, Z{g is a parameter to calculate slack from 
current time f to the earliest deadline of the periodic task. 
Ths, we can calculate the slack as follows: 

n 

S( t )  =S(t ,Z( t ) )  = Z ( t ) - t - C 6 ,  - . *  

r=l 
In the formula (6) which can be easily induced from 

the formula (4), we call Sj as the cd  and it can be 
obtained from the CTI table. Recall that the cet is used 
to evaluate whether the preassigned periodic tasks in the 
CTI table should be executed or not to meet their 
deadlines. To clarify the term cet, we introduce two 
notations; one is the cumulation of all the computation 
processing completed (Cp;(Q) and the other is the 
cumulation of all the computation requirement (Cr;(Z(;t))) 
in the CTI table. Hence, we can formally define the set 
as foilows: 

--. (7) 0, 
(Cq (Z(  t )) - Cpi ( t )), 

if (Cz; (Z(t)) - Cp, (0) < 0 
otherwise 

s i =  { 
For simple notation, we define the SM of c& at 

time t as follow: 
n 

A(t) = 6, 
1 = I  

4 2  Operation of the Algorithm 

As we mentioned before, the A P S  algorithm chooses 
either an EDF or a CEF scheduling altematively at on- 
line for a given periodic task set based on 6 ( t  ) while 
referencing information in the off-line built CTI table. 

The major reason to introduce an alternative 
scheduling policy is to get fast response time for 
aperiodic requests. Suppose there is no aperiodic 
request. At that time, if the scheduler performs on-line 
scheduling using EBF only, then some periodic tasks 
(non-critical tasks) of which deadlines are earlier than 
those of the crifical tasks may be scheduled fEst (in case 
of a deadline of a non-critical task is earlier than that of a 
crifical task.) In this case, the scheduler fmds no more 
slack available since the value of slack obtained from 
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formula (6) turns to be negative. Note that a critical 
?ask does not mean a periodic task which has the earliest 
deadlie in a given periodic task set. Therefore, as the 
value of A(t) is increased, in consequence, the value of 
slack is decreased. Consequently, an aperiodic task may 
not be scheduled under EDF policy even though the slack 
is available. On the other hand, in the CEF algorithm, 
since the scheduler allocates the minimum amount of 
execution of periodic tasks within Z(r) based on the 
information in the off-line built CTI table, the slack value 
obtained fiom the formula (6) will never be a negative 
which in turn has higher probability to find more slack. 

Recall that we define that the CEF scheduling gives 
the highest priority to the periodic task which has the 
largest value of the cet. Thus, if there is periodic task(s) 
in the ready queue and A(t) > 0, then service the periodic 
task with the CEF scheduling policy. Obviously, we 
can get the A(t) fkom information in the CTI table. In 
other words, if cet :> 0, then the scheduler must follow the 
information in the CTI table that instructs the scheduling 
(assignment sequence) of periodic tasks. 

1 
2 
3 
4 
5 
6 

7 

8 
9 

.o 

. I  

.2 

.3  

4 
15 
,6 

17 

18 
19 
!O 

!1 

Build off-line CTI table 
Initialize counters 
while TRUE do 

Calculate S(Q and Cri(Z(0); 
while (1 Z(t)) do 
if(there is slack and there is aperiodic task in 

the queue) #hen 
while (S(0 > 0 and there is aperiodic task in 

the: queue) do 
Service the aperiodic task; 
update S(t) 

/* reduce the ;amount of service time from S(t) */ 
&e if(there is periodic task in the queue) tken 

if( d (t)>o) then 
Service the periodic task with the CEF; 

Update Cpi(t) 
/* add the amount of processing time */ 

else 
Service the periodic task with the EDF; 
Update C’i(Q 

Update S(0 
/* add the amount of processing time */ 

/* reduce the mount of processing time */ 
else 

Process idle state; 
Update S(Q 

/* reduce the :mount of idle time */ 
endwhile 

!2 endwhile 
Figure 2 A pseudocode of the APS algorithm 

In this subsection, we describe the APS algorithm as 
well as its operational behavior using Statechart [4]. 
The following Figure 2 depicts a pseudocode of the 
algorithm. 

At line 1 and 2 in Figure 2, the off-line CTI table is 
created and the scheduling parameters are initialized. 
At line 4, the scheduler calculates slack. From line 6 to 
9, aperiodic tasks are serviced if slack is available and 
there are aperiodic tasks in the queue. At line 10 and 1 1, 
if there are periodic tasks, the algorithm alternatively 
chooses either an EDF or a CEF scheduling based on A(t). 
At line 19, if there is no periodic and aperiodic task to be 
serviced, the scheduler is idle. 

In order to clarify the operational behavior of the 
APS algorithm, we demonstrate its state transition using 
the Statechart [4]. In Figure 3, the transition diagram 
consists of A, I, and P states which stand for aperiodic 
task service, idle, and periodic task service respectively. 
Further, P state is divided into an EDF and a CEF state. 
Note that QP@, Q& and S(t) denote the sum of the 
execution time of periodic tasks at time t, the execution 
time of aperiodic tasks at time ?, and the available slack 
respectively. 

CREATE 
CTI TABLE 

SCHEDUUNG_RI 

Figure 3. The behavior of the APS algorithm 

The description of each state is as follows; 
0 A state: This is a state of the aperiodic service. If a 

slack value is greater than 0 and there is an aperiodic 
task (S(t).Qa(r) > 0), then a transition will occur from 
P or I to this state. In this state, the slack value will 
be decreased as much amount as the aperiodic service 
is done. 

I state: This is an idle state. If there is no periodic or 
aperiodic task (Qp@+Qa(t,, = 0), then a transition 
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will happen fkom A or P to this state. In this case, 
the slack value will be decreased as the same amount 
of the idle time. 

P state: This is a state of the periodic service. If there 
is no aperiodic task or the value of slack is 0 
(S(t).Qa(t) = 0), then a transition will be triggered 
from A state. Also, if a periodic task arrives (ep(?) > O), then a transition will occur from I to this 
state. 

0 CEF state: If A(t) > 0, then a transition will occur fkom 
the EDF to this state. 

e EDF state: If A(t) = 0, then a transition from the CEF to 
this state will be occw. 

4.3 Optimality of the Algorithm 

In order to show optimality of the algorithm in the 
CTI scheduling h e w o r k ,  we introduce the following 
theorems. 

Theorem I :  At the startingpoint of the hypeperiod, 
the EDF deadiinmise preassignmenf 131 in a dynamic 
priority system, as an off-line scheduling, is an opt&" 
scheduling for the aperiodic requests, 

Proof. At the start time of the hyperperiod, the 
deadlinewise preassignment is a special case of the EDL 
since the EDL has the property that assign the periodic 
tasks as late as possible. The EDL, meanwhile, is known 
to be an optimal aperiodic scheduling in the EDF 
framework which was proven by Chetto and Chetto [ 11. 

Theorem 2: In the CTI scheduIingfiammork, fhe 
APS algorithm can find maximm slack af any 
arbitrary time t during on-line scheduling. 

Suppose there is an algorithm X which can 
€id more slack than that found by the APS algorithm in 
[t, Z(t)]. Also, suppose all of the slack found by the 
algorithm X was consumed for the aperiodic tasks. 
Then sometimes later than Z(Q, the algorithm X, in worst 
case, may not guarantee the deadlines of periodic tasks 
because it can not consider the executions and deadlines 
of upcoming periodic tasks to be scheduled after Z(0. 
In other words, since the cef is preserved as the minimum 
time to guarantee the deadline of periodic tasks to Z(t), 
the algorithm X ,  which found more slack than APS, is 
consequently can not guarantee the deadlines of periodic 
tasks after Z(0. Further, if a certain greedy scheduling 
algorithm in dynamic priority system can fmd a 
maximum slack, then it is an optimal algorithm in term of 
fast response time of aperiodic requests. Thus, the A€'§ 

roof. 

a l g o r i h  is optimal within the CTI scheduling 
framework which can fmd the maximum slack at 
arbitrary time t U 

4.4 An Example 

In this subsection, we demonstrate an example of 
scheduling using the APS algorithm. Suppose there are 
three periodic tasks 21(1,5,5), ~2(1,7,7), ~3(3,10,10) where 
the parameters are the worst case computation time, 
deadline, and period of the tasks, respe 
assume that the first aperiodic task J i  arrives at a d  with 
its computation time CI=~.  Then, we can calculate the 
slack S(0) as follow: 

3 

SjO) = S(O,Z(O)) = S(02) = 5 - 0 - cs,  
i=l 

= 5-(1+0+0) 
= 4  

Thus, the available slack within [0, 51 becomes 4 
units. Since there is no aperiodic task at t=O, the critical 
task TH is invoked by the CEF algorithm. From t=l to 
t4, TZI and T31 are invoked by the EDF algorithm and 3 
units of the slack value are consumed which means 
S(4)=1. At time t=4, the aperiodic task J1 arrives. 
Since one unit of slack is available by e 5 ,  J i  is serviced 
immediately. At t=59 S(5 )  can be obtained as follows: 

3 

S(5) =S(5,Z(s>)=S(5,10)=10-5-~6, 

5 - (1 -I- 0 + 1) 
r=l  

= 3  

Since TZI is already completed its execution before 
t-5, the next earliest absolute deadline is +IO. Thus, 
Z(5)=10 instead of 7. Meanwhile, because S(5)=3, the 
remaining 2 units of aperiodic task's execution time will 
be invoked. 
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5. Simulation1 

In this section, we observe the average response time 
for aperiodic requests. The performance of the APS 
scheduling will be compared to that of all the 
combinations of a fEed- or dynamic-CTI table built off- 
line and an on-line fDted- or dynamic-priority assignment. 
Thus, four different types of combinations are available. 

The task set in the simulation consists of 10 different 
periodic tasks, each of which has randomly generated 
period and computation requirements. All aperiodic tasks 
are generated by using both an exponential distribution 
function for their computation requirements and the 
Poisson anival function for their arrivals. An aperiodic 
workload has been coordinated by modifying the value of 
the exponential scale parameter and the arrival rate of the 
Poisson function. We arranged the periodic task set 
with 90% of CPU utilization to simulate high workload 
scheduling. It is summarized in Table 1. Note that the 
average execution time for aperiodic tasks is set to 3.5 
and21. 

l**l 
10 300 12 

Table 1. A sample periodic task set. 

In Figure 5, as the workload of aperiodic tasks is 
increased, the average aperiodic response time tends to 
be slower. The average response time is dependent more 
on the off-line scheduling if the aperiodic workload is 
low, but is dependent more on the on-line scheduling if 
the aperiodic workload is high. Fi-p-e 6 shows the 
result in case that the average execution time is set to 2 1. 
In this case, we observe that the average response time 
for soft-aperiodic tasks is dependent more on the average 
execution time; the larger average execution time for 
aperiodic tasks, the slower average response time for that 
tasks. The simulation study shows that the average 

response time for aperiodic tasks in the proposed 
algorithm is, in most cases, slightly better than that of the 

Moreover, the simulation result shows that the APS 
algorithm has slightly faster response time than the EDF- 
CTI in a high workload (over 97%). Note that the 
computational complexity of the APS off-line approach 
is O(nlo& n) [12] while that of on-line is O(n) where n is 
the number of periodic tasks. 

EDF-CTI. 

Periodic Workload 90% 

0 1  I 
0 1 2  3 4 5 6 7 8 9 9 4  

Aperiodic Workload (average acecution time = 3 5 )  

Figure 5. The simulation result in case that the average 
execution time of aperiodic requests is 3.5 

I Periodic Workload 90% 

0 1  " " " "  I 
o I z 3 I 5: 6 7 8 sa 
Ape&%c Workload (avaage e x d o n  time21.0) 

Figure 6. The simulation result in case that the average 
execution time of aperiodic requests is 21 

6. Summary 

The slack stealing based schedulings require the 
computationally expensive re-evaluation of the slack at 
each priority level. In this paper, we introduced an 
efficient method of calculating the slack. The APS 
algorithm performs on-line scheduling using either an 
EDF or a CEF scheduling policy alternatively to 
guarantee all the deadlines of the periodic tasks while 
referencing the information in the off-lime built CTI table. 
In order to reduce the computational overhead of slack 
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calculation, we newly adopted a concept of an optimistic 
approach to maximize reclaiming of unused computation 
time. Therefore, the algorithm is not necessarily 
searching the slack in all the levels of periodic tasks, 
which turns out be more practical. We also 
demonstrated that the proposed algorithm is optimal in 
terms of calculating a maximum slack when aperiodic 
request has occurs at certain time t. Our sirnulation 
study shows that the A P S  algorithm, in most cases, is 
slightly better than the EDF-CTI algorithm which is even 
superior to the other CTI-based soft-aperiodic 
schedulings in terms of the short response time of 
aperiodic requests. 

When developing the scheduling algorithms, we 
should consider the practical applications in real-world. 
Our algorithm, in this respect, does satisfy the 
practicability and simplicity. By using the alternative 
scheduling policy, we can get a fast average response 
time for aperiodic requests. By introducing the 
optimistic slack calculation method, we can achieve the 
implementation simplicity. Our ongoing work is to 
enhance the algorithm to be more robust in the transient 
overload and to compare our simulation resuits to that of 
Tia's [19]. 
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