
 1

ABSTRACT

 In this paper, we discuss the problem of jointly scheduling both hard deadline of periodic and
aperiodic tasks in dynamic priority systems. The proposed scheduling scheme has extended the
APS (Alternative Priority Scheduling) algorithm which is developed by the authors. The APS
algorithm has a simple slcak calculation method which in consequence makes it be practical. The
paper develops an efficient acceptance test method for hard-aperiodic requests. The on-line
acceptance test should be performed to determine whether the timing requirements of the arriving
hard aperiodic task can be met while guaranteeing all the deadlines of periodic tasks and any
already accepted but not yet completed aperiodic tasks.

1. Introduction

 In the last few years considerable researches in the areas of jointly scheduling of both hard-
deadline of periodic and aperiodic tasks have been done either in fixed-priority or dynamic priority
systems. A number of algorithms that solve this problem in fixed-priority systems can be found in
the literature [LEHOCZKY 95], [SHIN]. Thuel and Lehoczky [LEHOCZKY 95] have developed
an extension of the slack-stealing algorithm [LEHOCZKY 92], which provides the largest amount
of processing capacity for aperiodic tasks subject to guaranteeing the deadlines of the periodic tasks,
in fixed priority-systems. The algorithm tests acceptance for hard aperiodic tasks for guaranteeing
tasks at any priority level while it assumes that the periodic deadlines must all be met. Shin and
Chang [SHIN] proposed an elegant aperiodic task scheduling, called the Reservation-Based (RB)
algorithm which can guarantee all periodic-task deadlines while minimizing the probability of
missing aperiodic task deadlines. The RB algorithm reserves a fraction Rs of processor time in
each unit cycle, which is defined as the greatest common divisor of all task periodics, for the
executing aperiodic tasks without missing any periodic task deadline. They also formally derive
the value of Rs that maximizes the processor time reservable for the execution of aperiodic tasks
without missing any periodic task deadline. However, the RB algorithm has some limitations.
First, if the length of unit cycle is big enough, then it is hard to predict the success ratio of the
aperiodic tasks even though the value of Rs is large. Second, it assumes that the relation between
Rs and the probability of guaranteeing aperiodic tasks is establish for the case when the execution
time of aperiodic tasks is exponentially distributed. Moreover, RB algorithm assumes that the
probability of guaranteeing an aperiodic task is a monotonic increasing function of Rs which is not
all the true in real world.

 Less attention has been made to the same problem in the context of dynamic priority systems.

A Scheduling of Hard-Aperiodic Request in Dynamic Priority Systems

Hyungill Kimϑ, Sungyoung Leeϑ, and Jongwon Leeϑϑ

Department of Computer Engineering, Kyung Hee University, Seoul, Koreaϑ
Software Research Lab., Korea Telecom, Seoul, Koreaϑϑ

 2

Work on the on-line scheduling of hard aperiodic tasks in dynamic priority methods has been
reported by Chetto and Chetto [CHETTO], and Schwan and Zhou [SCHWAN]. Their work
assumes that all periodic tasks are scheduled according to the Earliest Deadline algorithm [LIU].
Especially a point to note is that Schwan and Zhou's algorithm does not give any preferential
treatment to the periodic tasks, unlike common approaches to soft-aperiodic tasks in fixed-priority
preemptive systems. Every task is subject to an acceptance-rejection test upon arrival. The
algorithm, however, may lead to an undesirable implementation overhead if the real-time workload
is mainly periodic. Tia [TIA] introduced an optimal scheduling, called algorithm SD (for Sporadic,
Dynamic) which has linear time complexity, of aperiodic requests in dynamic priority systems
based on the slack stealing approach. The main idea of their algorithm is to partition the periodic
requests in sets such that the slack of all the requests in the same set is affected by the same
scheduling events. Spuri, Buttazzo, and Sensini [SPURI] have introduced Total Bandwidth Server
based on the integration of an efficient aperiodic server and technique including a rejection and a
reclaiming strategies. This approach, however, still has a remaining problem; how to reserve an
optimal bandwidth preservation level.

 This paper discusses the problem of jointly scheduling both hard deadline periodic and
aperiodic tasks using dynamic priority systems. As per Lehoczky [LEHOCZKY 95], hard
deadline aperiodic tasks are special importance since they alert conditions or from failures of hard
deadline periodic tasks which fail the responsibility checks to validate their results and must be
retried and completed before the original deadline elapses. When not all of the timing
requirements of the periodic and aperiodic tasks can be met simultaneously, we have to choose as to
which tasks to accept for processing. Generally, the on-line acceptance test should be performed
to determine whether the timing requirements of the arriving hard aperiodic task can be met while
guaranteeing all the deadlines of periodic tasks and any already accepted but not yet completed
aperiodic tasks. In this paper we present a simple acceptance test mechanism for hard aperiodic
requests which is an extension of the APS algorithm [KIM].

 The APS algorithm developed by the authors has adopted a new type of scheduling scheme
which chooses either an EDF or a CEF (Critical Execution time First) scheduling policy
alternatively for a given periodic task set at on-line while referencing information in the off-line
built CTI (Critical Task Indicating) table [LEE]. The CTI table is created by the deadlinewise
preassignment scheduling policy in which tasks are preassigned toward deadlines at their
maximum. The scheduling information on the CTI table enables a scheduler to have a
predictability and reduces the overall computational complexity at run time. Building a CTI table
is very similar to the reverse schedule of the EDF introduced by Chetto and Chetto [CHETTO].
However, there are differences between the two approaches in terms of their applications and
pursuing goals which are shown in [LEE]. Recall that the CTI algorithm considers the problem of
the joint scheduling of periodic and aperiodic tasks. The algorithm basically performs the on-line
scheduling based on either a fixed-priority or a dynamic-priority scheduling while referencing the
scheduling information on the off-line built CTI table.

 The CEF scheduling gives the highest priority to a periodic task which has the largest amount of

 3

critical task's execution time (cet) at on-line. The critical task is a periodic task which must be
scheduled at certain time t, otherwise its deadline should not be guaranteed. The cet is the time
differences between all the computation requirement (Cri(t)) and all the computation processing
completed (Cpi(t)) on the CTI table for each periodic task until time t: (Cri(t)-Cpi(t)). The cet is
used to evaluate whether the preassigned periodic tasks in the CTI table must be executed or not to
meet their deadlines. The major reason for introducing an alternative scheduling policy is to get a
fast response time for aperiodic requests.

 The APS algorithm introduced the concept of an optimistic slack calculation scheme rather than
a minimal method which is used in the slack-stealing based schedulings. The term minimal
method means that the slack stealing algorithm [LEHOCZKY 92] uses the actual slack as the
minimum slack value of all periodic requests to ensure that all the lower priority periodic deadlines
are met. On the other hands, the term optimistic means that a scheduler regards all the scheduling
time as the slack except for the execution time of a given periodic task set to guarantee their
deadlines. The optimistic approach therefore, is to maximize the reclaiming of unused
computation time and not necessarily to search the slack in all the levels of periodic tasks. Thus,
the computational overhead to calculate slack can be reduced.

 An acceptance test of the APS algorithm is to perform when an aperiodic task arrives it
determines whether there is enough time available during the interval between the arrival time and
the deadline to complete the execution while ensuring that all the periodic tasks as well as
previously accepted aperiodic tasks meet their deadlines. This acceptance test mechanism is to
merely modify the optimistic slack calculation scheme to serve the hard-aperiodic requests.

 The remainder of this paper is organized as follows. Section 2 establishes a system model and
assumptions used in this paper. Section 3 describes the optimistic slack calculation approach and
discussion, shows an acceptance test method, explains operation of the APS algorithm, and gives an
example of the algorithm. Finally, we conclude the paper in section 4.

2. Task Model

 Consider a uniprocessor real-time system with a set T of n independent, preemptable periodic
tasks, (τ1, τ2, ..., τn). Each task, τi , has a worst-case computation requirement Ci, a period Ti, an
initiation time or an offset φi relative to some time origin, and a deadline di. Hence, we denote the
system T = {τi(Ci,Ti,di): 1 ≤ i ≤ n}. In response to external events which occur at random time
instants, the aperiodic tasks, {Jk, k ≥ 1} are introduced. Each hard aperiodic request Ji(ai, ei, Di) is
characterized by its arrival time ai, its worst-case execution time ei, and its deadline Di. Let
hyperperiod, H, be the least common multiple of all the periodic task's periods. For simplicity, the
algorithm uses the following assumptions.
(A1) Deadline for a periodic task's instance is equal to the next request of the task.
(A2) Ti = di and all initiation times or relative offsets {φi, 1 ≤ i ≤ n} are synchronized to 0.
(A3) Preemption over a periodic or an aperiodic task is always possible
(A4) All overhead for context switching is counted into the corresponding periodic or aperiodic
 task's computation requirements.

 4

(A5) The aperiodic task sequence is not known in advance, however, its execution time and
deadline as are known when an aperiodic tasks arrives

3. Alternative Priority Scheduling

3.1 Slack Calculation

 The major motivation of the APS algorithm lies how to calculate the slack in a simple manner.
In the conventional joint schedulings of aperiodic and periodic tasks, the scheduling time interval [0,
t] is filled up by the execution time of periodic task instances Pij (t), the execution time for
aperiodic requests A(t), and the idle time I(t). The formula (1) depicts this concept.

 t P t A t I tij
i j

= + +∑ () () ()
,

 L (1)

 The slack within [0, t], denoted by S0(t), is generally defined as an available time for the
aperiodic requests while guaranteeing the deadlines of the given periodic requests. Thus, S0(t) is a
total amount of time from 0 to t except for the sum of the execution time of periodic requests. The
actual slack for aperiodic requests, however, is less than or equal to S0(t) because it includes idle
time (see formula (2)).

S t A t I t0 0 0() () ()= + L (2)

 The slack stealing algorithm [LEHOCZKY 92], [LEHOCZKY 95] uses the actual slack as the
minimum slack value of all periodic requests to ensure that all the lower priority periodic deadlines
are met (see formula (3)).

S t min S t1 i n i
*

{ }() ()= ≤ ≤ L (3)

 On the contrary, in the APS algorithm, we have newly introduced the concept of an optimistic
slack calculation method to get a maximum slack S(t) at current time t. The idea of the optimistic
approach is that a scheduler regards whole of the scheduling time as a slack except for the
execution time of the given periodic tasks to meet their deadlines. Thus, the optimistic approach
is not necessarily to calculate slack at all the levels of periodic tasks which in turn reduces the
computational complexity to calculate slack.

S t t t t1 2 2 1 i
i 1

n

(,) = − −
=
∑δ L (4)

 The formula (4), which shows a way of an optimistic slack calculation, demonstrates an actual
value of slack (S(t1, t2)) in [t1, t2]. The S(t1, t2) can be obtained by subtracting the minimum

amount of the execution time of periodic tasks (δ i
i=1

n

∑) from (t2 -t1).

 In order to calculate slack efficiently, we can decompose a hyperperiod into a set of scheduling

 5

zones, denoted by [t, Z(t)] where Z(t) can be calculated by the formula (5). The meaning of [t,
Z(t)] is a time interval from t to the earliest deadline of a periodic task. The reason for introducing
the decomposition strategy is to perform an efficient slack calculation by using Z(t) as a scheduling
checkpoint. For example, when an aperiodic request happens at any arbitrary time t, the foremost
concern is how to schedule that aperiodic task while guaranteeing the very following deadline of
periodic task's instance. By this way, we can easily evaluate the slack availability while
considering the deadlines of periodic tasks. Notice that Z(t) can be obtained from the sequences of
periodic tasks' instances in the CTI table.

Z t min d 1 i n j t
Tij

i

() { | , }= ≤ ≤ =
⎡

⎢
⎢

⎤

⎥
⎥ L (5)

 Figure 1 depicts an example of how to obtain Z(t) for the given three periodic tasks τ1(1,5,5),
τ2(1,7,7), τ3(3,10,10) where the parameters are the worst case computation time, deadline, and
period of the tasks, respectively.

τ1(1,5,5)

τ2(1,7,7)

τ3(3,10,10)

Figure 1. Example of how to decide Z(t)

 Consequently, Z(t) is a parameter to calculate slack from current time t to the earliest deadline
of the periodic task. Thus, we can calculate the slack as follows:

S t S t Z t Z t t i
i 1

n

() (, ()) ()= = − −
=
∑δ L (6)

 In the formula (6) which can be easily induced from the formula (4), we call δi as the cet and it
can be obtained from the CTI table. Recall that the cet is used to evaluate whether the preassigned
periodic tasks in the CTI table should be executed or not to meet their deadlines. To clarify the
term cet, we introduce two notations; one is a cumulating all the computation processing completed
(Cpi(t)) and the other is a cumulating all the computation requirement (Cri(Z(t))) in the CTI table.
Hence, we can formally define the cet as follows:

δi =
− <

−

 if
 otherwi

 {
se

0, Cr Z t Cp t 0
Cr Z t Cp t

i i

i i

((()) ())
((() ()),

L (7)

 6

 For simple notation, we define the sum of cets at time t as follow:

 ∆()t i
i 1

n

=
=
∑δ L (8)

3.2 Discussion

 As we mentioned before, the APS algorithm chooses either an EDF or a CEF scheduling
alternatively at on-line for a given periodic task set based on ∆ ()t while referencing information
on the off-line built CTI table. The major reason to introduce an alternative scheduling policy is
to get fast response time for aperiodic requests. Consequently, the APS algorithm can find more
slack which in turn may increase an acceptance ratio of the hard-aperiodic tasks. Suppose there is
no aperiodic request. At that time, if the scheduler performs on-line scheduling using EDF only,
then some periodic tasks (non-critical tasks) of which deadlines are earlier than those of the critical
tasks may be scheduled first (in case of a deadline of a non-critical task is earlier than that of a
critical task.) In this case, the scheduler finds no more slack available since the value of slack
obtained from formula (6) turns to be negative.

 Note that a critical task does not mean a periodic task which has the earliest deadline in a given
periodic task set. Therefore, as the value of ∆(t) is increased, in consequence, the value of slack is
decreased. Consequently, an aperiodic task may not be scheduled under EDF policy even though
the slack is available. On the other hand, in the CEF algorithm, since the scheduler allocates the
minimum amount of execution of periodic tasks within Z(t) based on the information in the off-line
built CTI table, the slack value obtained from the formula (6) will never be a negative which in turn
has higher probability to find more slack. Recall that we define that the CEF scheduling gives the
highest priority to the periodic task which has the largest value of the cet. Thus, if there is
periodic task(s) in the ready queue and ∆(t) > 0, then service the periodic task with the CEF
scheduling policy. Obviously, we can get the ∆(t) from information on the CTI table. In other
words, if cet > 0, then the scheduler must follow the information on the CTI table that instructs the
scheduling (assignment sequence) of periodic tasks.

3.3 Acceptance Test

 An acceptance test of the APS algorithm is to perform that when a hard aperiodic task arrives
the scheduler determines whether there is sufficient time available during the interval between the
arrival time and the deadline to complete the execution while ensuring that all the periodic tasks as
well as previously accepted aperiodic tasks meet their deadlines. An available time for a hard
aperiodic request in [t1, t2] is as follows.

S(t1, t2) = | t1 - t2 | - ∆(t1, t2) ... (9)

 An available time for aperiodic tasks, called the slack, during the interval between the current
time t and the deadline of hard aperiodic task (D) is dependent on the periodic tasks' execution time

 7

during that interval. Consequently, the available slack (S(t1, t2)), can be calculated by subtracting
the cet from the time interval [t1, t2]. From the formula (9), we can get the ∆(t1, t2) using the
definition ∆(t) which is appeared on the formula (8) as follow (formula 10).

∆(,) (,) () ()t t t t C t C t
i

n

r
i

n

p1 2
1

1 2
1

2 2= = −
= =
∑ ∑δ ... (10)

 Meanwhile, we define the surplus slack, γi, in the formula (11). The γi means that the surplus
time for aperiodic requests, which can be calculated by subtracting sum of the cet and execution
time of all accepted aperiodic tasks from the scheduling zone (Di-t).

γ γi i i i i i iD D D D e= + − − −− − −1 1 1∆(,) ...(11)

 where, D t D Di i0 0 10= = ≥ −, , γ

 Figure 2 shows an acceptance test routine of the APS algorithm for a newly arrived hard-
aperiodic task at time t. We assume that D(i), e(i) is corresponding to the deadline, the execution
time of ith aperiodic task, respectively.

 1 surplus_slack = 0, D(0)=t, ∆ = 0, j=1, γ(0) = 0, n = number of periodic tasks, m = number of

hard aperiodic tasks for acceptance test;
 2 for(j = 1; j <= m; j++) {
 3 for (i = 1; i <= n; i++) ∆ += MAX(Cr(D(j)) - Cp(D(j)), 0);
 4 γ(j) = γ(j-1) + D(j) - D(j-1) - ∆ - e(j);
 5 if (γ(j) < 0) return Reject;
 6 } return Accept;

Figure 2. The pseudo-code of acceptance test mechanism in the APS algorithm

 In Figure 2, initially a surplus slack is set to zero, D(0) is set to t, γ(0) is set to 0. At line 2, we
are doing an acceptance test for all aperiodic task until no available slack is remained. At line 3,
we can get ∆ (called cet) during the time interval between the current time t and the D. At line 4, a
surplus slack is calculated by the formula (11). At line 5 and 6, if the value of surplus slack is less
than zero then the hard aperiodic task j is rejected, otherwise it is accepted. Note that once an
aperiodic task is accepted it can not be lost during its execution time.

3.4 Operation of the Algorithm

 In this subsection, we illustrate an operation of the APS algorithm. Figure 3 shows a
pseudocode of the APS algorithm. At line 1 and 2, the off-line CTI table is created and the

 8

scheduling parameters are initialized. At line 4, the scheduler calculates slack. From line 6 to 8,
when a hard aperiodic task arrives, an acceptance test routine will be invoked. If the acceptance
test routine returns a result as Accept, then the newly arrived hard aperiodic task is enqueued for
service, otherwise it is discarded. From line 9 to 12, an aperiodic task is serviced if slack is
available and there are aperiodic tasks in the queue. At line 13 and 14, if there are periodic tasks,
the algorithm alternatively chooses either an EDF or a CEF scheduling based on ∆(t). At line 22,
if there is no periodic and aperiodic task to be serviced, the scheduler is idle. Note that the
computational complexity of the APS off-line approach is O(nlog2n) while that of the on-line
acceptance test is O(n) where n is the number of aperiodic tasks.

 1 Build off-line CTI table
 2 Initialize counters
 3 while TRUE do
 4 Calculate S(t) and Cri(Z(t));
 5 while (t < Z(t)) do
 6 if (a hard aperiodic task arrive) then
 7 if ((A(t) is Accept) then add the hard aperiodic task to the aperiodic queue
 8 else Reject the hard aperiodic task
 9 if (there is slack and there is aperiodic task in the queue) then
10 while (S(t) > 0 and there is aperiodic task in the queue) do
11 Service the aperiodic task;
12 Update S(t) /* reduce the amount of service time from S(t) */
13 else if (there is periodic task in the queue) then
14 if (Δ(t)>0) then
15 Service the periodic task with the CEF;
16 Update Cpi(t) /* add the amount of processing time */
17 else
18 Service the periodic task with the EDF;
19 Update Cpi(t) /* add the amount of processing time */
20 Update S(t) /* reduce the amount of processing time */
21 else
22 Process idle state;
23 Update S(t) /* reduce the amount of idle time */
24 endwhile
25 endwhile

Figure 3. A pseudocode of the Hard-APS algorithm

3.5 An Example

 In this subsection, we demonstrate an example of scheduling using the APS algorithm.
Suppose there are three periodic tasks τ1(1,5,5), τ2(1,7,7), τ3(3,10,10) where the parameters are the
worst case computation time, deadline, and period of the tasks, respectively. We assume that the

 9

first hard aperiodic task J1 arrives at a1=4 with its execution time e1=5 and deadline D1=19 (Figure
4).

τ1(1,5,5)

τ2(1,7,7)

τ3(3,10,10)

J1(4,1) arrives
CTI Table

t=4

Figure 4. An example of the APS algorithm

 Then, we can calculate the slack S(0) as follow:

S S Z S i
i

() (, ()) (,)0 0 0 0 5 5 0
1

3

= = = − −
=
∑δ

 = 5 - (1+ 0 + 0)
 = 4

 Thus, the available slack within [0, 5] becomes 4 units. Since there is no aperiodic task at t=0,
the critical task τ11 is invoked by the CEF algorithm. From t=1 to t=4, τ21 and τ31 are invoked by
the EDF algorithm and 3 units of the slack value are consumed which means S(4)=1. At time t=4,
the aperiodic task J1 arrives. Then the algorithm performs an acceptance test. S(4,19) can be
calculated as follows;

S ti
i

(4,19) = 19 4

 =15-(3+1+4)
 = 7

− −
=
∑δ ()

1

3

 As a result, the hard-aperiodic task J1 is accepted since the amount of available slack (7) upto its
deadline 19 is larger than the amount of execution time of J1 (5).

4. Summary

 In this paper, we introduced an efficient acceptance-rejection test mechanism for the hard-
aperiodic requests based on the APS scheduling policy which is has simple slack calculation
scheme. An acceptance test of the APS algorithm is to perform when an aperiodic task arrives it

 10

determines whether there is enough time available during the interval between the arrival time and
the deadline to complete the execution while ensuring that all the periodic tasks as well as
previously accepted aperiodic tasks meet their deadlines. This acceptance test mechanism is to
merely apply the optimistic slack calculation approach to serve the hard-aperiodic requests.

 When developing the scheduling algorithms, we should consider the practical applications in
real-world. The APS algorithm, in this respect, does satisfy the practicability and predictability.
By introducing an optimistic slack calculation method, we can achieve the implementation
simplicity. By using the off-line CTI scheduling policy, we can grasp the scheduling predictability.
Our ongoing work is to enhance the algorithm to be more robust in the transient overload and to
compare our simulation results to that of Tia [TIA] and Spuri [SPURI].

References

[CHETTO] H. Chetto and M. Chetto, "Some Results of the Earliest Deadline Scheduling Algorithm", IEEE

Transactions on Software Engineering, Vol. 15, No. 10, pp. 466-473, 1989.
[DAVIS] R. Davis and A. Wellings, "Dual Priority Scheduling", Proceedings of the IEEE Real-Time Systems

Symposium, pp. 100-109, December 1995.
[HOMAYOUN] N. Homayoun and P. Ramanathan, "Dynamic Priority Scheduling of Periodic and Aperiodic Tasks in

Hard Real-Time Systems", Real-Time Systems: The International Journal of Time-Critical Computing Systems,
Vol. 6, No. 2, pp. 207-232, 1994

[KIM] H. Kim, S. Lee and J. Lee, "Alternative Priority Scheduling Algorithm: A Soft-Aperiodic Task Scheduling in
Dynamic Priority Systems", submit to publication

[LEE] J. Lee, S. Lee and H. Kim, "Scheduling of Hard Aperiodic Tasks in Hybrid Static/Dynamic Priority Systems",
ACM SIGPLAN Notices, Vol.30, No.11, November 1995, pp. 7-19.

[LEHOCZKY 92] J.P. Lehoczky and S. Ramos-Thuel, "An Optimal Algorithm for Scheduling Soft-Aperiodic Tasks in
Fixed-Priority Preemptive Systems", Proceedings of the IEEE Real-Time Systems Symposium, pp. 110-123,
December 1992.

[[LEHOCZKY 95] J.P. Lehoczky and S. R. Thuel, Scheduling Periodic and Aperiodic Tasks using the Slack Stealing
Algorithm (Chapter 8), Advances in Real-Time Systems, (ed. S. Son) Prentice-Hall, Englewood Cliffs, NJ, 1995.

[LIU] C.L. Liu and J.W. Layland, "Scheduling Algorithms for Multi-Programming in a Hard Real-Time
Environments", Journal of the Association for Computing Machinery, Vol. 20, No.1, pp. 46-61, January 1973.

[SCHWAN] K. Schwan and H. Zhou, "Dynamic Scheduling of Had Real-Time Tasks and Real-Time Threads", IEEE
Transactions on Software Engineering, Vol. 18, No. 8, August, 1992, pp.736-748.

[SHIN] K.G. Shin and Y.-C. Chang, "A Reservation-Based Algorithm for Scheduling Both Periodic and Aperiodic
Real-Time Tasks", IEEE Transactions on Computers, Vol. 44, No.12, pp. 1405-1419, December, 1995.

[SPRUNT 88] B. Sprunt, J.P. Lehoczky, and L. Sha, "Exploiting Unused Periodic Time for Aperiodic Service Using
the Extended Priority Exchange Algorithm", Proceedings of the IEEE Real-Time System Symposium, pp. 251-
258, December, 1988.

[TIA] T.S. Tia, Utilizing Slack Time for Aperiodic and Sporadic Requests Scheduling in Real-Time Systems, Technical
Report No. UIUCDCS-R-95-1906, University of Illinois, April, 1995.

Professor Heonshik Shin
Dept. of Computer Engineering,
College of Engineering, Seoul National University
Seoul, 151-742, Korea
Tel: +82-2-880-7295, Fax: +82-2-886-7589, shinhs@ce2.snu.ac.kr

June 6, 1996

Dear Professor Shin;

 We are herewith submitting 5 copies of the paper entitled “Scheduling Hard-Aperiodic
Requests in Dynamic Priority Systems” for the 3rd International Workshop on Real-Time
Computing Systems and Applications, Oct. 30-Nov. 1, 1996, Seoul, Korea. Please be advised the
following information:

 1. Author Name, Address, E-mail, and Phone Number:

 Hyungill Kim and Sungyoung Lee ,
 Dept. of Computer Engineering Kyung Hee University,
 Yongin-kun, Kyungki-do, 449-701, Korea
 E-mail: hikim@oslab.kyunghee.ac.kr
 slee@nms.kyunghee.ac.kr
 Tel: +82-331-280-2514, Fax: +82-331-281-4965

 Jongwon Lee,
 Software Research Laboratories, Korea Telecom,
 17, Woomyeon-dong, Seocho-gu, Seoul, 137-140, Korea
 E-mail: jwlee@coral.kotel.co.kr
 Tel: +822-526-6561, Fax: +822-526-5909

 2. Abstract

 In this paper, we present a hard-aperiodic task scheduling algorithm in dynamic priority systems.
The proposed algorithm has an elegant acceptance test method for hard-aperiodic requests. The
proposed scheduling scheme is based on the APS (Alternatively Priority Scheduling) algorithm
which has a simple slack calculation mechanism. The operation of the algorithm is to reference
the off-line built CTI (Critical Task Indicating) table, which is created by the deadlinewise
preassignment policy, and choose either an EDF or a CEF (Critical Execution time First)
algorithm alternatively at on-line. Since the APS algorithm adopts an optimistic slack calculation
philosophy, it resolves the drawback of the slack-stealing based schedulings such as a high
computational complexity to calculate the slack which in consequence makes them not be practical.

 3. Keywords

Real-time scheduling, dynamic priority systems, deadline guarantees, hard-aperiodic task
scheduling, acceptance test mechanism
 4. Contact Point: Sungyoung Lee

 Thank you very much for your concern to this matter.

 Sincerely yours,

Sungyoung Lee,
Dept. of Computer Engineering,
Kyung Hee University,
Yongin-kun, Kyungki-do, 449-701, Korea

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

