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ABSTRACT 
 

 In this paper, we discuss the problem of jointly scheduling both hard deadline of periodic and 
aperiodic tasks in dynamic priority systems.  The proposed scheduling scheme has extended the 
APS (Alternative Priority Scheduling) algorithm which is developed by the authors.  The APS 
algorithm has a simple slcak calculation method which in consequence makes it be practical.  The 
paper develops an efficient acceptance test method for hard-aperiodic requests. The on-line 
acceptance test should be performed to determine whether the timing requirements of the arriving 
hard aperiodic task can be met while guaranteeing all the deadlines of periodic tasks and any 
already accepted but not yet completed aperiodic tasks.  
 
1. Introduction 
 
 In the last few years considerable researches in the areas of jointly scheduling of both hard-
deadline of periodic and aperiodic tasks have been done either in fixed-priority or dynamic priority 
systems.  A number of algorithms that solve this problem in fixed-priority systems can be found in 
the literature [LEHOCZKY 95], [SHIN].  Thuel and Lehoczky [LEHOCZKY 95] have developed 
an extension of the slack-stealing algorithm [LEHOCZKY 92], which provides the largest amount 
of processing capacity for aperiodic tasks subject to guaranteeing the deadlines of the periodic tasks, 
in fixed priority-systems.  The algorithm tests acceptance for hard aperiodic tasks for guaranteeing 
tasks at any priority level while it assumes that the periodic deadlines must all be met.  Shin and 
Chang [SHIN] proposed an elegant aperiodic task scheduling, called the Reservation-Based (RB) 
algorithm which can guarantee all periodic-task deadlines while minimizing the probability of 
missing aperiodic task deadlines.  The RB algorithm reserves a fraction Rs of processor time in 
each unit cycle, which is defined as the greatest common divisor of all task periodics, for the 
executing aperiodic tasks without missing any periodic task deadline.  They also formally derive 
the value of Rs that maximizes the processor time reservable for the execution of aperiodic tasks 
without missing any periodic task deadline.  However, the RB algorithm has some limitations. 
First, if the length of unit cycle is big enough, then it is hard to predict the success ratio of the 
aperiodic tasks even though the value of Rs is large.  Second, it assumes that the relation between 
Rs and the probability of guaranteeing aperiodic tasks is establish for the case when the execution 
time of aperiodic tasks is exponentially distributed.  Moreover, RB algorithm assumes that the 
probability of guaranteeing an aperiodic task is a monotonic increasing function of Rs which is not 
all the true in real world.  
 
 Less attention has been made to the same problem in the context of dynamic priority systems. 
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Work on the on-line scheduling of hard aperiodic tasks in dynamic priority methods has been 
reported by Chetto and Chetto [CHETTO], and Schwan and Zhou [SCHWAN].  Their work 
assumes that all periodic tasks are scheduled according to the Earliest Deadline algorithm [LIU].  
Especially a point to note is that Schwan and Zhou's algorithm does not give any preferential 
treatment to the periodic tasks, unlike common approaches to soft-aperiodic tasks in fixed-priority 
preemptive systems.  Every task is subject to an acceptance-rejection test upon arrival.  The 
algorithm, however, may lead to an undesirable implementation overhead if the real-time workload 
is mainly periodic. Tia [TIA] introduced an optimal scheduling, called algorithm SD (for Sporadic, 
Dynamic) which  has linear time complexity, of aperiodic requests in dynamic priority systems 
based on the slack stealing approach.  The main idea of their algorithm is to partition the periodic 
requests in sets such that the slack of all the requests in the same set is affected by the same 
scheduling events.  Spuri, Buttazzo, and Sensini [SPURI] have introduced Total Bandwidth Server 
based on the integration of an efficient aperiodic server and technique including a rejection and a 
reclaiming strategies.  This approach, however, still has a remaining problem; how to reserve an 
optimal bandwidth preservation level.    
 
 This paper discusses the problem of jointly scheduling both hard deadline periodic and 
aperiodic tasks using dynamic priority systems.  As per Lehoczky [LEHOCZKY 95], hard 
deadline aperiodic tasks are special importance since they alert conditions or from failures of hard 
deadline periodic tasks which fail the responsibility checks to validate their results and must be 
retried and completed before the original deadline elapses.  When not all of the timing 
requirements of the periodic and aperiodic tasks can be met simultaneously, we have to choose as to 
which tasks to accept for processing.  Generally, the on-line acceptance test should be performed 
to determine whether the timing requirements of the arriving hard aperiodic task can be met while 
guaranteeing all the deadlines of periodic tasks and any already accepted but not yet completed 
aperiodic tasks.  In this paper we present a simple acceptance test mechanism for hard aperiodic 
requests which is an extension of the APS algorithm [KIM]. 
                 
 The APS algorithm developed by the authors has adopted a new type of scheduling scheme 
which chooses either an EDF or a CEF (Critical Execution time First) scheduling policy 
alternatively for a given periodic task set at on-line while referencing information in the off-line 
built CTI (Critical Task Indicating) table [LEE].  The CTI table is created by the deadlinewise 
preassignment scheduling policy in which tasks are preassigned toward deadlines at their 
maximum.  The scheduling information on the CTI table enables a scheduler to have a 
predictability and reduces the overall computational complexity at run time.  Building a CTI table 
is very similar to the reverse schedule of the EDF introduced by Chetto and Chetto [CHETTO].  
However, there are differences between the two approaches in terms of their applications and 
pursuing goals which are shown in [LEE].  Recall that the CTI algorithm considers the problem of 
the joint scheduling of periodic and aperiodic tasks.  The algorithm basically performs the on-line 
scheduling based on either a fixed-priority or a dynamic-priority scheduling while referencing the 
scheduling information on the off-line built CTI table. 
 
 The CEF scheduling gives the highest priority to a periodic task which has the largest amount of 
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critical task's execution time (cet) at on-line.  The critical task is a periodic task which must be 
scheduled at certain time t, otherwise its deadline should not be guaranteed.  The cet is the time 
differences between all the computation requirement (Cri(t)) and all the computation processing 
completed (Cpi(t)) on the CTI table for each periodic task until time t: (Cri(t)-Cpi(t)).  The cet is 
used to evaluate whether the preassigned periodic tasks in the CTI table must be executed or not to 
meet their deadlines.  The major reason for introducing an alternative scheduling policy is to get a 
fast response time for aperiodic requests.   
 
 The APS algorithm introduced the concept of an optimistic slack calculation scheme rather than 
a minimal method which is used in the slack-stealing based schedulings.  The term minimal 
method means that the slack stealing algorithm [LEHOCZKY 92] uses the actual slack as the 
minimum slack value of all periodic requests to ensure that all the lower priority periodic deadlines 
are met.  On the other hands, the term optimistic means that a scheduler regards all the scheduling 
time as the slack except for the execution time of a given periodic task set to guarantee their 
deadlines.  The optimistic approach therefore, is to maximize the reclaiming of unused 
computation time and not necessarily to search the slack in all the levels of periodic tasks.  Thus, 
the computational overhead to calculate slack can be reduced.  
 
 An acceptance test of the APS algorithm is to perform when an aperiodic task arrives it 
determines whether there is enough time available during the interval between the arrival time and 
the deadline to complete the execution while ensuring that all the periodic tasks as well as 
previously accepted aperiodic tasks meet their deadlines.  This acceptance test mechanism is to 
merely modify the optimistic slack calculation scheme to serve the hard-aperiodic requests. 
 
  The remainder of this paper is organized as follows. Section 2 establishes a system model and 
assumptions used in this paper. Section 3 describes the optimistic slack calculation approach and 
discussion, shows an acceptance test method, explains operation of the APS algorithm, and gives an 
example of the algorithm. Finally, we conclude the paper in section 4. 
  
2. Task Model  
 
 Consider a uniprocessor real-time system with a set T of n independent, preemptable periodic 
tasks, (τ1, τ2, ..., τn).  Each task, τi , has a worst-case computation requirement Ci, a period Ti, an 
initiation time or an offset φi relative to some time origin, and a deadline di.  Hence, we denote the 
system T = {τi(Ci,Ti,di): 1 ≤ i ≤ n}.   In response to external events which occur at random time 
instants, the aperiodic tasks, {Jk, k ≥ 1} are introduced. Each hard aperiodic request Ji(ai, ei, Di) is 
characterized by its arrival time ai, its worst-case execution time ei, and its deadline Di.  Let 
hyperperiod, H, be the least common multiple of all the periodic task's periods.  For simplicity, the 
algorithm uses the following assumptions. 
(A1) Deadline for a periodic task's instance is equal to the next request of the task. 
(A2) Ti = di and all initiation times or relative offsets {φi, 1 ≤ i ≤ n} are synchronized to 0.  
(A3) Preemption over a periodic or an aperiodic task is always possible 
(A4) All overhead for context switching is counted into the corresponding periodic or aperiodic  
 task's computation requirements. 
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(A5) The aperiodic task sequence is not known in advance, however, its execution time and 
deadline as are known when an aperiodic tasks arrives 

 
3. Alternative Priority Scheduling  
 
3.1 Slack Calculation 
 
 The major motivation of the APS algorithm lies how to calculate the slack in a simple manner.  
In the conventional joint schedulings of aperiodic and periodic tasks, the scheduling time interval [0, 
t] is filled up by the execution time of periodic task instances Pij (t), the execution time for 
aperiodic requests A(t), and the idle time I(t).  The formula (1) depicts this concept.  
 

 t P t A t I tij
i j

= + +∑ ( ) ( ) ( )
,

   L   (1) 

 The slack within [0, t], denoted by S0(t), is generally defined as an available time for the 
aperiodic requests while guaranteeing the deadlines of the given periodic requests.  Thus, S0(t) is a 
total amount of time from 0 to t except for the sum of the execution time of periodic requests.  The 
actual slack for aperiodic requests, however, is less than or equal to S0(t) because it includes idle 
time (see formula (2)). 

S t A t I t0 0 0( ) ( ) ( )= +    L   (2) 
 

 The slack stealing algorithm [LEHOCZKY 92], [LEHOCZKY 95] uses the actual slack as the 
minimum slack value of all periodic requests to ensure that all the lower priority periodic deadlines 
are met (see formula (3)). 

S t min S t1 i n i
*

{ }( ) ( )= ≤ ≤   L  (3) 
 

 On the contrary, in the APS algorithm, we have newly introduced the concept of an optimistic 
slack calculation method to get a maximum slack S(t) at current time t.  The idea of the optimistic 
approach is that a scheduler regards whole of the scheduling time as a slack except for the 
execution time of the given periodic tasks to meet their deadlines.   Thus, the optimistic approach 
is not necessarily to calculate slack at all the levels of periodic tasks which in turn reduces the 
computational complexity to calculate slack.  
 

S t t t t1 2 2 1 i
i 1

n

( , ) = − −
=
∑δ    L  (4) 

 
 The formula (4), which shows a way of an optimistic slack calculation, demonstrates an actual 
value of slack (S(t1, t2)) in [t1, t2].  The S(t1, t2) can be obtained by subtracting the minimum 

amount of the execution time of periodic tasks ( δ i
i=1

n

∑ ) from (t2 -t1).  

 
 In order to calculate slack efficiently, we can decompose a hyperperiod into a set of scheduling 
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zones, denoted by [t, Z(t)] where Z(t) can be calculated by the formula (5).  The meaning of [t, 
Z(t)] is a time interval from t to the earliest deadline of a periodic task.  The reason for introducing 
the decomposition strategy is to perform an efficient slack calculation by using Z(t) as a scheduling 
checkpoint.  For example, when an aperiodic request happens at any arbitrary time t, the foremost 
concern is how to schedule that aperiodic task while guaranteeing the very following deadline of 
periodic task's instance.  By this way, we can easily evaluate the slack availability while 
considering the deadlines of periodic tasks.  Notice that Z(t) can be obtained from the sequences of 
periodic tasks' instances in the CTI table. 
 

Z t min d 1 i n j t
Tij

i

( ) { | , }= ≤ ≤ =
⎡

⎢
⎢

⎤

⎥
⎥   L (5) 

 
 Figure 1 depicts an example of how to obtain Z(t) for the given three periodic tasks τ1(1,5,5), 
τ2(1,7,7), τ3(3,10,10) where the parameters are the worst case computation time, deadline, and 
period of the tasks, respectively.  
 

τ1(1,5,5)

τ2(1,7,7)

τ3(3,10,10)

 
Figure 1. Example of  how to decide Z(t) 

 
 Consequently, Z(t) is a parameter to calculate slack from current time t to the earliest deadline 
of the periodic task.  Thus, we can calculate the slack as follows: 
 

S t S t Z t Z t t i
i 1

n

( ) ( , ( )) ( )= = − −
=
∑δ   L (6) 

 
 In the formula (6) which can be easily induced from the formula (4), we call δi as the cet and it 
can be obtained from the CTI table.  Recall that the cet is used to evaluate whether the preassigned 
periodic tasks in the CTI table should be executed or not to meet their deadlines.  To clarify the 
term cet, we introduce two notations; one is a cumulating all the computation processing completed 
(Cpi(t)) and the other is a cumulating all the computation requirement (Cri(Z(t))) in the CTI table.  
Hence, we can formally define the cet as follows: 
 

δi =
− <

−
  

       if 
   otherwi

   {
se

0, Cr Z t Cp t 0
Cr Z t Cp t

i i

i i

( ( ( )) ( ))
( ( ( ) ( )),

L (7) 
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  For simple notation, we define the sum of cets at time t as follow: 
 

                    ∆( )t i
i 1

n

=
=
∑δ                          L (8)  

 
3.2 Discussion 
 
 As we mentioned before, the APS algorithm chooses either an EDF or a CEF scheduling 
alternatively at on-line for a given periodic task set based on ∆ ( )t while referencing information 
on the off-line built CTI table.  The major reason to introduce an alternative scheduling policy is 
to get fast response time for aperiodic requests.  Consequently, the APS algorithm can find more 
slack which in turn may increase an acceptance ratio of the hard-aperiodic tasks.  Suppose there is 
no aperiodic request.  At that time, if the scheduler performs on-line scheduling using EDF only, 
then some periodic tasks (non-critical tasks) of which deadlines are earlier than those of the critical 
tasks may be scheduled first (in case of a deadline of a non-critical task is earlier than that of a 
critical task.)  In this case, the scheduler finds no more slack available since the value of slack 
obtained from formula (6) turns to be negative.   
 
 Note that a critical task does not mean a periodic task which has the earliest deadline in a given 
periodic task set.  Therefore, as the value of ∆(t) is increased, in consequence, the value of slack is 
decreased.  Consequently, an aperiodic task may not be scheduled under EDF policy even though 
the slack is available.  On the other hand, in the CEF algorithm, since the scheduler allocates the 
minimum amount of execution of periodic tasks within Z(t) based on the information in the off-line 
built CTI table, the slack value obtained from the formula (6) will never be a negative which in turn 
has higher probability to find more slack.  Recall that we define that the CEF scheduling gives the 
highest priority to the periodic task which has the largest value of the cet.  Thus, if there is 
periodic task(s) in the ready queue and ∆(t) > 0, then service the periodic task with the CEF 
scheduling policy.  Obviously, we can get the ∆(t) from information on the CTI table.  In other 
words, if cet > 0, then the scheduler must follow the information on the CTI table that instructs the 
scheduling (assignment sequence) of periodic tasks.  
 
3.3 Acceptance Test 
 
 An acceptance test of the APS algorithm is to perform that when a hard aperiodic task arrives 
the scheduler determines whether there is sufficient time available during the interval between the 
arrival time and the deadline to complete the execution while ensuring that all the periodic tasks as 
well as previously accepted aperiodic tasks meet their deadlines.  An available time for a hard 
aperiodic request in [t1, t2] is as follows.  
 

S(t1, t2) = | t1 - t2 | - ∆(t1, t2) ... (9) 
 
 An available time for aperiodic tasks, called the slack, during the interval between the current 
time t and the deadline of hard aperiodic task (D) is dependent on the periodic tasks' execution time 
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during that interval. Consequently, the available slack (S(t1, t2)), can be calculated by subtracting 
the cet from the time interval [t1, t2]. From the formula (9), we can get the ∆(t1, t2) using the 
definition ∆(t) which is appeared on the formula (8) as follow (formula 10). 
 

∆( , ) ( , ) ( ) ( )t t t t C t C t
i

n

r
i

n

p1 2
1

1 2
1

2 2= = −
= =
∑ ∑δ ... (10) 

 
 Meanwhile, we define the surplus slack, γi, in the formula (11). The γi means that the surplus 
time for aperiodic requests, which can be calculated by subtracting sum of the cet and execution 
time of all accepted aperiodic tasks from the scheduling zone (Di-t). 

 
γ γi i i i i i iD D D D e= + − − −− − −1 1 1∆( , ) ...(11) 

       where, D t D Di i0 0 10= = ≥ −, ,  γ  
 
 Figure 2 shows an acceptance test routine of the APS algorithm for a newly arrived hard-
aperiodic task at time t. We assume that D(i), e(i) is corresponding to the deadline, the execution 
time of ith aperiodic task, respectively. 
 
 
   1  surplus_slack = 0, D(0)=t, ∆ = 0, j=1, γ(0) = 0, n = number of periodic tasks, m = number of 

hard aperiodic tasks for acceptance test; 
   2  for(j = 1; j <= m; j++) { 
 3     for ( i = 1; i <= n; i++)  ∆ += MAX(Cr(D(j)) - Cp(D(j)), 0); 
  4       γ(j) = γ(j-1) + D(j) - D(j-1) - ∆ - e(j); 
 5     if (γ(j) < 0) return Reject;  
 6 } return Accept; 

Figure 2. The pseudo-code of acceptance test mechanism in the APS algorithm 
 
 
 In Figure 2, initially a surplus slack is set to zero, D(0) is set to t, γ(0) is set to 0. At line 2, we 
are doing an acceptance test for all aperiodic task until no available slack is remained.  At line 3, 
we can get ∆ (called cet) during the time interval between the current time t and the D. At line 4, a 
surplus slack is calculated by the formula (11). At line 5 and 6, if the value of surplus slack is less 
than zero then the hard aperiodic task j is rejected, otherwise it is accepted.  Note that once an 
aperiodic task is accepted it can not be lost during its execution time. 
 
 
3.4 Operation of the Algorithm 
 
 In this subsection, we illustrate an operation of the APS algorithm.  Figure 3 shows a 
pseudocode of the APS algorithm.  At line 1 and 2, the off-line CTI table is created and the 



 8

scheduling parameters are initialized.  At line 4, the scheduler calculates slack. From line 6 to 8, 
when a hard aperiodic task arrives, an acceptance test routine will be invoked.  If the acceptance 
test routine returns a result as Accept, then the newly arrived hard aperiodic task is enqueued for 
service, otherwise it is discarded.  From line 9 to 12, an aperiodic task is serviced if slack is 
available and there are aperiodic tasks in the queue.  At line 13 and 14, if there are periodic tasks, 
the algorithm alternatively chooses either an EDF or a CEF scheduling based on ∆(t).  At line 22, 
if there is no periodic and aperiodic task to be serviced, the scheduler is idle.  Note that the 
computational complexity of the APS off-line approach is O(nlog2n) while that of the on-line 
acceptance test is O(n) where n is the number of aperiodic tasks. 
 
 1  Build off-line CTI table 
 2  Initialize counters 
 3  while TRUE do 
 4    Calculate S(t) and Cri(Z(t)); 
 5    while (t < Z(t)) do 
 6  if (a hard aperiodic task arrive) then 
 7   if ((A(t) is Accept) then add the hard aperiodic task to the aperiodic queue 
 8  else Reject the hard aperiodic task 
 9    if (there is slack and there is aperiodic task in the queue) then 
10       while (S(t) > 0 and there is aperiodic task in the queue) do 
11         Service the aperiodic task; 
12        Update S(t)    /* reduce the amount of service time from S(t) */ 
13    else if (there is periodic task in the queue) then  
14      if (Δ(t)>0) then 
15         Service the periodic task with the CEF; 
16          Update Cpi(t)   /* add the amount of processing time */ 
17      else 
18          Service the periodic task with the EDF; 
19          Update Cpi(t)  /* add the amount of processing time */ 
20          Update S(t)    /* reduce the amount of processing time */ 
21    else 
22      Process idle state; 
23      Update S(t)  /* reduce the amount of idle time */ 
24    endwhile 
25  endwhile 

Figure 3. A pseudocode of the Hard-APS algorithm 
 
3.5 An Example  
 
 In this subsection, we demonstrate an example of scheduling using the APS algorithm.  
Suppose there are three periodic tasks τ1(1,5,5), τ2(1,7,7), τ3(3,10,10) where the parameters are the 
worst case computation time, deadline, and period of the tasks, respectively.  We assume that the 
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first hard aperiodic task J1 arrives at a1=4 with its execution time e1=5 and deadline D1=19 (Figure 
4).  
 

τ1(1,5,5)

τ2(1,7,7)

τ3(3,10,10)

J1(4,1) arrives
CTI Table

t=4
 

 
Figure 4. An example of the APS algorithm 

 
 Then, we can calculate the slack S(0) as follow: 
 

S S Z S i
i

( ) ( , ( )) ( , )0 0 0 0 5 5 0
1

3

= = = − −
=
∑δ

                                         =  5 - (1+ 0 + 0)
                                      = 4

 

 
 Thus, the available slack within [0, 5] becomes 4 units.  Since there is no aperiodic task at t=0, 
the critical task τ11 is invoked by the CEF algorithm.  From t=1 to t=4, τ21 and τ31 are invoked by 
the EDF algorithm and 3 units of the slack value are consumed which means S(4)=1.  At time t=4, 
the aperiodic task J1 arrives.  Then the algorithm performs an acceptance test. S(4,19) can be 
calculated as follows; 

S ti
i

(4,19) = 19 4

             =15-(3+1+4)
            = 7

− −
=
∑δ ( )

1

3

 

 
 As a result, the hard-aperiodic task J1 is accepted since the amount of available slack (7) upto its 
deadline 19 is larger than the amount of execution time of J1 (5). 
 
4. Summary 
 
 In this paper, we introduced an efficient acceptance-rejection test mechanism for the hard-
aperiodic requests based on the APS scheduling policy which is has simple slack calculation 
scheme.  An acceptance test of the APS algorithm is to perform when an aperiodic task arrives it 
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determines whether there is enough time available during the interval between the arrival time and 
the deadline to complete the execution while ensuring that all the periodic tasks as well as 
previously accepted aperiodic tasks meet their deadlines. This acceptance test mechanism is to 
merely apply the optimistic slack calculation approach to serve the hard-aperiodic requests. 
 
 When developing the scheduling algorithms, we should consider the practical applications in 
real-world.  The APS algorithm, in this respect, does satisfy the practicability and predictability. 
By introducing an optimistic slack calculation method, we can achieve the implementation 
simplicity.  By using the off-line CTI scheduling policy, we can grasp the scheduling predictability.  
Our ongoing work is to enhance the algorithm to be more robust in the transient overload and to 
compare our simulation results to that of Tia [TIA] and Spuri [SPURI]. 
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