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Abstract 
 

Context reasoning refers to the process of giving 
high-level context deduction from a set of low-level 
contexts. It plays an indispensable role in ubiquitous 
computing. Most existing reasoning methods are 
proposed with the assumption that the knowledge of 
low-level context which is relevant to the given high-
level context reasoning is available. When this 
information is lack, the existing methods blindly select 
some possible low-level contexts for reasoning, so that 
useless context might be included. These useless 
contexts have no or little favorable effect for reasoning 
and increase computation burden as well as repository 
burden. To deal with this problem, we use information 
gain-based method for context selection in our work. 
Only selected contexts are used for reasoning. 
Experimental results show that our proposed approach 
is promising.   
 
1. Introduction 
 

One import factor that differentiates ubiquitous 
computing from traditional distributed computing is 
context. Context is any information that can be used to 
characterize the situation of an entity. An entity could 
be a person, place, or object that is considered relevant 
to the interaction between a user and an application, 
including the user and applications themselves [1]. 
Context can be divided into low-level context and 
high-level context. In general, low-level context is 
simple and can be directly got from sensors or other 
sources. While, high-level context is abstract and need 
to be inferred from a piece of low-level context. High-
level context can be as simple as taking in a name and 
returning the corresponding email address. It can also 
be more complex as taking in the number of people in 
a room, the relative gaze directions, the audio level, 
and the time of day, and returning whether or not a 
meeting was occurring. Most applications [2][3][4] 

show more interest in high-level context. Hence, 
context reasoning plays an indispensable role for 
context-aware systems. 

Many approaches have been proposed for context 
reasoning, including rule-based reasoning [5][6][7][8] 
and machine learning methods [9]. However, most 
context reasoning methods are proposed with the 
assumption that users have the knowledge about which 
kinds of low-level contexts are useful for a given high-
level context reasoning. This knowledge is called 
“context relationship” in our work. In some cases, 
users do have this knowledge. However, context 
relationship is not always available, e.g. in mood 
reasoning, it is difficult for us to define which factors 
should be used for mood reasoning since it concerns 
many factors. When lack of information about context 
relationship, most reasoning methods blindly selects 
many possible low-level contexts for reasoning, so that 
useless context might be included. These useless 
contexts have no or little favorable effect on both rule-
based reasoning and machine learning methods. 
Sometimes, they generate adverse effects. In addition 
to influence reasoning performance, using them also 
increase computation burden and repository burden.  

In this paper, we use information gain-based 
method to solve the above problem. Experimental 
result shows that our approaching is promising. 

This work is organized as follows. In section 2, we 
present the effects of context selection on reasoning. In 
section 3, the theory of information gain is presented. 
Section 4 shows the experiment result of our approach. 
At last, we present conclusions in section 5. 
 
2. Context selection 
 

Rule-based reasoning has proved itself an effective 
decision maker for many types of problems. However, 
the accuracy of such systems is highly dependent upon 
the accuracy of the user’s domain theory. When users 
learn or create a set of rules they are subject to a 
number of hindrances. As a result, the user-defined 
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rules are always incomplete or erroneous. In ubiquitous 
environment, the rules for high-level context reasoning 
might follow this format: If 1 1lc x=  and/or 

2 2lc x= ….and/or n nlc x= , then hc M=  where 

ilc (i=1,2,...n) represents low-level context and hc  
represents high-level context. It is easy to show that 
hc is determined by the value of ilc . In ubiquitous 
environment, the number of different types of low-
level context is huge. And it is hard for users to 
determine exactly which low-level context should be 
selected. As a result, many useless low-level contexts 
are mistakenly selected to deduce a given high-level 
context. To solve this problem, rules refinement is 
urgently needed.  

Compared with user-defined rules, the accuracy of 
learning models utilizing machine learning methods is 
improved. However, one potential problem still exits. 
We take user mood as an example of high-level 
context. This high-level context deduction is treated as 
a classification problem since mood can be divided 
into several classes. Classification systems depend 
upon having the best set of input features from which a 
classification decision can be made. This is true both 
for the classifiers themselves and the learning models 
might be used to classify. This drives us to select the 
“relevant” low-level contexts for training, instead of all 
low-level contexts.  

To achieve this function, firstly, we utilize 
information gain based method to find the most 
relevant low-level context for a given high-level 
context. Then, different inductive learning methods are 
used to deduce the learning models. Many work 
[10][11] showed that the learning models deduced 
from relevant features (low-level context) are much 
improved. In addition to refine rules and learning 
models, other advantages using information gain-based 
method include: 

 Saving sensors. Only useful sensors need to be 
deployed since useless low-level contexts could be 
detected by using information gain-based method. As a 
result, the cost to build a smart environment is reduced.  

 Saving context database size. Effectively mining 
useful low-level context can avoid data explosion.  

 Decreasing computational burden. With the number 
of context decreases, the requirement of computational 
power is also decreased. 

 Reducing reasoning uncertainty. Sensors have their 
inherent uncertainty. So the more sensors used for 
reasoning, the more uncertainty is arising.  
The effects of context selection are shown in Fig. 1.  
 

 
 

Figure 1. Effects of context selection 
 
3. Information gain 
 

In our work, context selection is determined by the 
weight of each low-level context. Instead of learning 
weights through a generic algorithm or other machine 
learning method, we use the information gain of each 
attribute, proposed by Qulilan [12], as its weight. The 
basic motivation for this study comes from the power 
of ID3 classification algorithm since ID3 is one of the 
best classifiers until now and it uses the concept of 
information gain as the criterion to select an attribute. 

Let X be an attribute and C be the class variable. 
The following equations define the entropy of the class 
before and after observing the attribute respectively: 

2( ) ( ) log ( )
c C

H C p c p c
∈

= − ∑  (1) 

2( ) ( ) ( ) log ( )
x X c C

H C X p x p c x p c x
∈ ∈

= − ∑ ∑   (2) 

where x is a feature value and c is a class label. The 
amount by which the entropy of the class decreases 
after observing an attribute reflects the additional 
information about the class provided by that attribute 
and is called information gain: ( ) ( )IG H C H C X= − . 
In other words, it measures how well a given feature 
separates the observed instances according to their 
given class categories. Without losing generality, 
suppose that there are N attributes (or features): 1x , 

2x , …, Nx . Each attribute ix , i = 1, 2,…, N, is 
assigned a score based on the information gain over the 
class entropy due to observing itself: 

( ) ( )i iIG H C H C X= −  (3) 

The ranking of the attributes is then done with 
respect to the values of iIG in a descending order, 
reflecting the intuition that the higher an IG value, the 
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more information the corresponding attribute has to 
offer regarding the class.  

Note that to compute the information gain, data sets 
with numeric features are required to be discretized. 
Many alternative methods can be applied for this. In 
the present work, we simply handle the discretizaiton 
of continuous valued attributes by partitioning the 
range of values into a finite number of subsets, each of 
which has the same length.  

 
4. Experimental results 
 

To test the feasibility of our reasoning engine, we 
make a set of experiments based on a publicly 
available context database (Provided by PERVASIVE 
2004). This database includes information about 
human’s activity and some low-level sensor data. 
These sensor data are used to infer human’s activity 
through reasoning engine. In our experiments, 10 basic 
activities are considered. They are Lying, Kneeling, 
Sitting, Standing, Walking, Running, Climbing Stairs, 
Descending Stairs, Bicycling and Jumping. Totally 40 
accelerometers are used in the experiments. They are 
strapped loosely to common trousers, 20 sensors per 
leg, starting from the ankle to the hip. Totally 2315 
sample readings are used in our experiments. Two 
third of them are used as training set and the left as test 
set. Two machine learning methods are adopted in our 
experiment. They are back-propagation neural 
networks (BP) and k-nearest neighbors (KNN). In fact, 
many parameters in these two methods will influence 
the reasoning performance. For example, the node 
number of each hidden layer is an important parameter 
for BP network. Also, the number of hidden layers is 
important. As for KNN, K is the decisive parameter. 
How to set the parameters to achieve best classification 
result is beyond our discussion since our main purpose 
is comparing the reasoning result before information 
gain and after information gain. In our experiments, we 
construct a three layers BP neural networks for 
reasoning. The node number for the input layer is n, 
the low-level context number used for classification. 
The node number for the hidden layer is 2*n+1. The 
output layer is 10, number of activities. As for KNN, 
we set K=5.   

We first directly use BP networks and KNN to 
reason activities. Since there is no information gain-
based feature selection function, all 40 sensors are 
used. The reasoning result is shown in table 1.   

 
Table 1. Accuracy without information gain 

 
 Feature Number Accuracy (%) 
BP 40 95.326 

KNN 40 95.48 
 

We then adopt information gain to sort the features 
according to their importance for classification in the 
following experiment. 

To calculate information gain, the input must be 
discrete numbers. Since the inputs in our experiment 
are continuous real numbers, we handled the 
discretization of continuous valued attributes by 
partitioning the range of values into a finite number of 
subsets (subset number is 10), each of which has the 
same length. The information gains of these 40 sensors 
are shown in table 2. 

 
Table 2. Information gains of 40 sensors 

 
0.56 0.96 0.81 1.05 0.71 

1.14 0.91 1.10 0.81 1.23 
1.11 1.31 1.36 1.01 1.33 
0.95 0.93 0.85 1.37 0.90 
0.59 0.99 0.55 0.95 0.30 
1.14 0.61 0.98 1.06 0.98 
0.27 0.42 1.07 1.07 1.24 
0.78 1.05 0.65 0.13 0.78 

 
A feature’s information gain is proportional with its 

weight to deduction. We can sort sensor’s importance 
degree based on their information gains. Table 3 shows 
the sorted importance of each sensor.  

 
Table 3. Sensors’ weight ranking 

 
19 13 15 12 35 10 26 6 11 8 

33 34 29 4 37 14 22 28 30 2 

24 16 17 7 20 18 3 9 36 40 

5 38 27 21 1 23 32 25 31 39 

 
We then perform a set of experiments using 

different sensor numbers. The result is shown in table 
4. In this table, the left column is the feature number 
used in each experiment. For experiment when feature 
number is 1, it means only top 1 feature was used for 
reasoning, feature 19 in table 3. When feature number 
is 3, it means top 3 features (19,13,15) are used.   
 
Table 4. Reasoning accuracies with different sensors 
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From the experiment result, we can see that when 

we use BP Neural networks to reason activity, the 
accuracy difference between 40 sensors and 20 sensors 
is 3.44%. It means the top 20 sensors can achieve 
91.882% for reasoning, while, the other 20 sensors 
could contribute 3.44% based on it. If KNN is used for 
reasoning, the effect of information gain is clearer. 
When top ten sensors are used, the accuracy is 93.854, 
while, the accuracy is 95.48% for 40 sensors. The 
difference is only 1.63%.  
 
5. Conclusions 
 

In this paper, we utilize context selection 
mechanism before context reasoning. Information gain 
is used to filter out low-level contexts which do not 
contribute a lot for a given high-level context 
reasoning. We argue that our proposed context 
selection can refine human-defined rules and improve 
machine learning models. Simultaneously, it can 
decrease computational requirement and save 
repository size.  

Our plan for future work is to assess our reasoning 
engine in our smart office. We are currently deploying 
different sensors in our office and will use them for 
collecting empirical data. Finally more high-level 
context will be inferred to further prove the feasibility 
of our approach.  
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Features 
Number 

BP Accuracy (%) KNN Accuracy (%) 

40 95.326 95.480 
35 94.601 95.845 
30 94.765 95.776 
25 93.819 95.234 
20 91.882 94.624 

15 87.414 94.267 
10 86.357 93.854 
5 74.097 86.524 
3 66.146 83.547 
1 48.343 55.025 
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