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Abstract— Clustering is an effective approach to hierarchically
organizing network topology for efficient data aggregation in
wireless sensor networks. Distributed protocols with simple local
computations to accomplish a desired global goal, offer a good
prospect for achieving energy efficiency. This paper presents
MEPA – an energy-efficient distributed clustering protocol using
simple and local message-passing rules. Our proposed clustering
protocol combines both node residual energy and network topol-
ogy features to recursively elect a near-optimal set of cluster
heads. Simulation results show that MEPA can produce a set
of cluster heads with compelling characteristics, and effectively
prolong the network lifetime.

I. INTRODUCTION

Wireless sensor networks (WSN) consist of thousands of
tiny nodes deployed to collect environmental parameters and
transmit the collected data to external observers. The dense
deployment, resource constraints, and unattended nature of
WSNs make the issue of energy efficiency a primary design
goal in this field [1].

Clustering has been shown to be an effective approach to
hierarchically organizing network topology for efficient data
aggregation [2], [3], [4]. Sensor clustering essentially identifies
a set of cluster heads (CHs) from the network population, and
then forms small clusters of the remaining nodes with these
heads. In each cluster, the cluster head acts as a coordinator
to which the cluster-member nodes can communicate their
measurements directly (intracluster communications). These
cluster heads then forward the aggregated data to the exter-
nal observers through other CHs on behalf of their clusters
(intercluster communications).

There have been many clustering approaches proposed for
WSNs, which can be differentiated depending on whether
clustering is performed in a centralized or distributed man-
ner [5]. Centralized clustering algorithms (e.g. [6], [7]) are
often executed at a base station (BS) after all necessary
information about the network topology is collected. Since
huge communication overhead is involved in gathering such
information, centralized protocols are very time and energy
inefficient. Distributed (localized) clustering algorithms [8]
rely only on local parameters and are executed on each node
to achieve a desired global goal. These local parameters can be
obtained from node’s k-hop neighbors, such as residual energy,
node degree, mobility, average distance to neighbors, etc.

Distributed algorithms are thus very scalable and preferable
in large-scale WSNs.

Energy-efficient clustering (e.g. [2], [3], surveys [5] and
[9], and references therein) focuses on prolonging the net-
work lifetime by selecting the CHs among nodes with higher
residual energy, balancing energy consumption between CHs,
or by ensuring rapid convergence with low message overhead
during the construction of clusters. The hybrid energy-efficient
distributed (HEED) clustering approach in [3], is one of
the most recognized energy-efficient clustering protocols. In
HEED, the clustering process is divided into a number of
iterations, and in each iteration, nodes which are not covered
by any CH double their probability of becoming a CH. Since
these energy-efficient clustering protocols enable every node
to independently and probabilistically decide on its role in the
clustered network, they cannot guarantee optimal elected set
of CHs in terms of residual energy. Furthermore, during the
CH election process, the selecting criterion is based solely
on node residual energy, while network topology features
(e.g. node degree, distances to neighbors) are only used as
secondary parameters to break tie between candidate CHs,
thus the resulting set of CHs may not be optimal in terms
of network connectivity.

In this paper, we present a new approach to energy-efficient,
distributed clustering in WSNs. Our proposed clustering pro-
tocol takes into account both node residual energy and net-
work topology features during cluster head election process.
Furthermore, it does not assign any probability for node to
become a CH; instead, the near-optimal set of cluster heads
emerges after a bounded number of iterations using simple
and localized message-passing rules (thus named MEPA).
The MEPA clustering protocol is totally distributed, location-
unaware., and very scalable to the network size. Simulation
results show that our protocol can produce clusters with
compelling characteristics e.g. CHs with high residual energy,
and prolonged network lifetime.

The remainder of this paper is organized as follows. We
present our network model, clustering parameter, and the
clustering procedure along with the pseudocode in Section II.
In Section III, we evaluate the proposed protocol through sim-
ulation, and compare its effectiveness to the HEED protocol.
Finally, we give concluding remarks and future extensions in
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Section IV.

II. THE MEPA PROTOCOL

A. Assumptions on WSN Model

Consider a network of N sensors. In the sequel we use
the terms ”sensor” and ”node” interchangeably. Let G be a
undirected graph defined by a set of vertices (or nodes) V =
{1,...,N} and a set of edges (or links) E . Nodes i and j are
neighbors if they are connected by an edge, i.e. (i, j) ∈ E.
Let N (i) := j|(i, j) ∈ E denote the set of neighbors of node i
and N (i)\j denote the set obtained by excluding j from N (i).
The WSN model we are focusing has some basic assump-
tions. First, we assume the sensor nodes are quasi-stationary,
location-unaware, and left unattended after deployment. Sec-
ond, every node is assumed to use the same, fixed power
level for intracluster communication (e.g. broadcasting, and
communicating with CH). For intercluster communications,
CHs are capable of increasing its transmission power level
to reach other CHs or the base stations (Berkeley Motes [10]
are typical examples). Third, the communications are assumed
to be symmetric, i.e. if node i can communicate with node j,
then node j can also communicate with node i using the same
transmission power level. Finally, we assume all sensors are
synchronized by employing some mechanism, such as the one
described in [11].

B. Clustering Parameters

To prolong network lifetime, CH selection should be in
favor of nodes with higher residual energy. We assume that
each node is readily equipped with some mechanism for
estimating its residual energy up to some accepted level of
accuracy [12]. Residual energy is the primary parameter in our
energy-efficient clustering algorithm, which is proportional to
the preference of one node to select another node as its CH in
a localized point of view. On the other hand, from the network
topology point of view, high-degree nodes are also preferred
to be selected as CHs, since they play an important role in
connecting other nodes and act as data fusion/aggregation
centers.

These observations motivate us to use the normalized
preference as our clustering parameter, which is essentially
node residual energy divided by the total residual energy of
neighboring nodes. Let us consider a sensor node i in Fig. 1.
The normalized preference of sensor i for one of its neighbors,
sensor j, is defined as:

pi (j|j ∈ N (i)) =
rej∑

j′∈N (i)

rej′
(1)

We can observe that the normalizing factor
∑

j′∈N (i)

rej′ implic-

itly captures network topology feature by taking into account
the neighboring nodes of i.

There are several important implications from the nor-
malized preference in Equation 1. First, the self-normalized
preference, pi(i) = rei∑

j′∈N(i)
rej′

, indicates the willingness of a

Fig. 1. A snapshot of a Wireless Sensor Network

node to be a CH. With the same level of residual energy, a
node is more willing to become a CH when its neighboring
nodes have less residual energy. Second, the higher normalized
preferences a node receives from all of its neighbors, the
higher chances are that it will be elected as a CH.

C. Near-Optimal Clustering

From the above discussions, CH selection favors the nodes
receiving higher preferences from its neighbors. Thus the
sensor clustering issue now becomes finding a subset of nodes
in the whole network which maximizes the total preferences
they receive. It is known that exactly maximizing the net
preference is computationally intractable, since a special case
of this maximizing problem is the NP-hard k-mean problem in
data clustering [13]; we can only find approximate solutions
which are heuristic in nature. We propose a new approach
for recursively finding a near-optimal clustering that maxi-
mizes the net preference, using the max-sum algorithm, a
message-passing procedure that operates in a factor graph [14].
Message-passing algorithms were first invented in information
theory to derive the best error correction algorithms to date
[15], and recently used in belief-propagation [16] to obtain
impressive results in probabilistic inference problems [17],
computer vision [18], and many other disciplines [19]. Due to
space limitation, we just briefly introduce the concepts here,
and present the derived message-passing rules for the near-
optimal clustering issue.

D. Message-Passing Rules for Near-Optimal Clustering

Factor graphs [14] can be used to represent a complicated
global function that is a product of simpler “local” functions,
each of which depends on a subset of the variables. In a factor
graph, the sum-product algorithm can compute, either exactly
or approximately, various marginal functions using a single,
simple computational message-passing rule. The technique can
be modified to find the most probable state, giving rise to
the max-sum algorithm [20]. For our near-optimal clustering
problem, we first represent the net preference function using
a factor graph, and then apply max-sum algorithm to recur-
sively search for the near-optimal cluster configuration that
maximizes the net preference. The derived message passing
rules [19] are quite simple:

• Request message reqi(j) sent from sensor i to its neigh-
bor j, reflects the accumulated suitability for sensor i to
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select neighbor j as its CH, taking into account other
neighboring CH candidates j′ of sensor i.

reqi(j) = pi(j)− max
j′∈N (i)/j

[pi(j′) + resi(j′)] (2)

• Response message resi(j) sent to sensor i from its
neighbor j, reflects the accumulated appropriateness for
sensor i to choose neighbor j as its CH, taking into
account the requests from other neighbors j′ of sensor
j.

resi(j) = min

[
0, reqj(j)

+
∑

j′∈N (j)/i

max(0, reqj(j′))

]
(3)

resi(i)
(self−response)

=
∑

j∈N (i)

max(0, reqi(j)) (4)

These are localized, simple computational rules that are easy
to implement, and well-suited to a WSN setup; since messages
are only passed between pairs of neighboring nodes. The opti-
mal set of CHs emerges from this message-passing procedure.
At any time, the (intermediate) CH candidate of node i can
be decided by the value that maximizes the sum:

CHi = arg max
j∈N (i)∪{i}

[resi(j) + pi(j)] (5)

The procedure on each node may terminate if the message
changes are smaller than some threshold, or the intermediate
set of CHs is unchanged after several iterations.

E. Protocol Execution

From the local rules of message passing and update, derived
above, we now describe the localized clustering algorithm
executed at each sensor node which can achieve the global
goal: Electing the near-optimal set of CHs. We divide the
lifetime of WSN into a number of rounds; each round begins
with a clustering phase, followed by a network operation phase
(TOP ) when data is sent from the cluster-member nodes to
the CHs and onto the observers [2]. The clustering phase in
MEPA consists of three procedures, as described in Fig. 2. In
the initialization phase, each node calculates the normalized
preferences (for all of its neighbors and for itself) using
Equation 1.

The CH election procedure – the main procedure – is
essentially comprised of receiving, updating, and broadcast-
ing operations on the request/response message pairs. Dur-
ing each iteration, every sensor has to collect all incoming
messages broadcasted by its neighbors before updating its
requests/responses using Equations 2, 3, and 4 (lines 4 and
7 of phase II in the pseudo code). These procedures take
some time to finish, thus timeout periods have to be added
in real implementation. Only one outgoing request/response
message is broadcasted by each sensor, by marshalling all
<neighborID, update value> pairs into one “compact” packet.
The procedure terminates if the temporary cluster head ID
(CHtemp estimated in Equation 5) is unchanged after a number
of conv iter iterations, or when the maximum number of

iterations max iter is reached. These are two key parameters
that need to be carefully selected in real implementation,
since the more number of recursions, the better approximation
of the optimal clustering, at the cost of more messages
to be broadcasted. Through our results of 100 runs, under
different simulation setups, good upper bounds for conv iter
and max iter were found to be 5 and 15 respectively.

I. INITIALIZATION

1. SNBR ← {j| one-hop neighborhood}
2. broadcast(nodeID, renodeID);
3. for j∈SNBR∪ {nodeID}
4. computePreference(nodeID,j);
5. resnodeID(j)← 0;
6. end
7. SCH ← 0 //Set of candidate CHs

II. CLUSTERHEAD ELECTION

1. repeat
2. updateAllRequest();
3. broadcastCompactRequest();
4. collectAllRequest();
5. updateAllResponse();
6. broadcastCompactResponse();
7. collectAllResponse();
8. updateAllResponse();
9. CHtemp ← arg max

j∈SNBR

[resnodeID(j) + pnodeID(j)]

10. until TERMINATE

III. CLUSTER FORMATION

1. if CHtemp = nodeID
2. CH ← nodeID;
3. announceCH(nodeID, cost);
4. collectJoinCluster();
5. else
6. collectAnnounceCH();
7. SCH ← {j| incoming announceCH(j)};
8. CH ← j| (j∈SCH AND j has least cost); //tie-breaking
9. joinCluster(nodeID,CH);
10. end

Fig. 2. MEPA Clustering Protocol Pseudocode

In the subsequent cluster forming procedure, if one sensor
identifies itself as a CH, it will broadcast an announcement
message carrying a cost value (line 3 of phase III). This
secondary parameter reflects the intracluster communication
cost when a node joins the cluster under this CH [3]. In case
there are several candidate CHs are within the radio range of
a non-CH node, using this cost the node can decide to join
a more energy-efficient cluster. Minimum node degree proved
to be a rough yet effective tie-breaking condition, as it tends
to balance the load between CHs and thus extending network
lifetime [3].
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Fig. 3. Characteristics of selected CHs a) Ratio of average number of CHs, b) Ratio of average CH degree c) Average residual energy of selected CHs

III. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of our clus-
tering protocol through two simulation setups. In the first
simulation we analyze the clustering characteristics of MEPA
protocol in clustering phase only, while in the second simu-
lation we study the energy efficiency of the protocol during
the network lifetime of a clustering application. We choose
the HEED protocol [3] as the baseline to compare our results,
and repeated the simulation setup of HEED using MATLAB.

A. Distributed Clustering Analysis

We assume that 1,000 nodes were randomly deployed in a
field of size 2,000 meters × 2,000 meters. Residual energy of
each sensor was first randomly generated between 0.1 and 1
Joule. We vary the radio range for intracluster communications
from 25m to 400m to evaluate the protocol in different node
density. For each cluster radius, 100 trials were conducted in-
dependently, and then the results are averaged for comparison.

Fig. 3(a) shows the ratio of the average numbers of clusters
generated by MEPA and HEED, in which MEPA generates
15% to 25% less number of clusters than HEED. As a result,
the average CH degrees is slightly higher in MEPA, up to 9%
compared to HEED, as shown in Fig. 3(b). This is because
node degree is just secondary parameter for CH election in
HEED, while MEPA favors nodes with high residual energy
as well as high degree, as presented in section II - clustering
parameter. Thus, compared to HEED, MEPA produces less
number of CHs with higher CH degree to cover the whole
network.

In HEED, optimal CH selection is not guaranteed, since it
randomly selects tentative cluster heads based on their residual
energy. This is not the case of MEPA, since the message-
passing algorithm identifies a near-optimal set of CHs having
relatively high residual energy. Fig. 3 (c) compares the two
protocols in terms of average cluster head residual energy.
The results show that the CHs selected in MEPA, in average,
have much higher residual energy, up to 25% compared to
those selected in HEED. Especially, when the cluster range
increases from 25m to 400m, the number of neighboring nodes
having high residual energy for one node to select as CH also
increases, thus the average CH residual energy approaches 1.

From the above characteristics of the elected cluster heads,
we can see that compared to HEED, MEPA shows better

performance by producing less number of clusters with higher
residual energy CHs.

B. Hierarchical Data Aggregation Analysis

In this simulation setup, we analyze the effectiveness of
our clustering protocol for sensor applications that require
efficient data aggregation and prolonged network lifetime, e.g.
environmental monitoring applications. We consider a network
of size (150m x 150m), with one external sink located at
(200m, 75m). The re-clustering process is triggered every
TOP TDM frames, which is set to 10 in our simulations.
Designing an optimal re-clustering process to distribute energy
consumption evenly among sensor nodes, and to overcome CH
failures, is left for future work. In each TDM frame, every
node sends its data to the CH according to the specified TDMA
schedule. Each CH then performs data fusion and sends the
fused data packets to the sink. Any ad hoc routing, such as
Directed Diffusion [21] or Dynamic Source Routing (DSR)
[22], can also be employed for intercluster routing. Since the
issue of local data correlation is not our main focus [23], we
assume perfect data correlation, thus only one data packet is
enough to send all the aggregated data from each CH to the
sink in each TDM frame [2]. The packet sizes are listed in
Table I. We use the simple radio model used in LEACH and
HEED, in which the power amplifier setting is free space (d2

power loss) channel model when the distance between the
CH and the sink is less than a threshold do; otherwise, the
multipath fading (d4 power loss) channel model is used [24].
The simulation parameters of the radio model are set to the
same values with those used in [3].

TABLE I

PACKET SIZES IN MEPA

Parameter Value
Data packet size 200 bytes
Broadcast packet size
(ADV, Announce-CH, Join-CH)

10 bytes

Compact REQ/RES packet size 40 bytes
Packet header size 10 bytes

We measure the network lifetime by the number of rounds
until the first/last node dies. We conducted 100 independent
simulations for each simulation setting, and then calculated the
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average network lifetime. Fig. 4(a) and (b) compare average
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Fig. 4. Average network lifetime until a) the first and b) the last node dies

network lifetime when the first/last node dies between MEPA
and HEED. MEPA constantly improves network lifetime over
HEED for all node density settings, despite the fact that MEPA
requires more messages to be sent and received during the
clustering phase compared to HEED. This is mainly because
in MEPA, the set of CHs is approximately optimally elected
through the message-passing recursions, while in HEED, every
node independently and probabilistically elects itself to be a
cluster head.

IV. CONCLUSION AND FUTURE WORK

We have introduced MEPA, a new energy-efficient dis-
tributed clustering protocol for WSNs. To prolong the network
lifetime, the MEPA protocol takes into account both node
residual energy and network topology features in its clustering
parameter. By applying simple and localized message-passing
rules, the near-optimal set of cluster heads emerges after a
bounded number of iterations. Simulation results show that
our clustering protocol elects CHs with high residual energy,
and effectively prolongs network lifetime.

We are currently investigating the robustness of MEPA pro-
tocol in the presence of communication failures. We also plan
to extend the MEPA protocol by considering node mobility,
multi-hop clustering, and other practical issues in deployment.
These issues include how to ensure intercluster connectivity,
how and when to optimally initiate re-clustering process to
rotate the role of CHs or to recover from CH failures, how
to flexibly decide the optimal cluster size, and how to design
an efficient MAC layer scheduling for concurrent intracluster
and intercluster transmissions to minimize collision and inter-
ference.
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