
Abstract

This paper introduces a next-generation public
traffic information system, which facilitates the
WWW(World-Wide Web) to provide users with easier
access and use. The proposed system is composed of
three subsystems: client/server interface, knowledge
based path search system and traffic data storage
system. The user interface utilizes Java language to
furnish users with multimedia data accessibility and
interactiveness. The path search system produces
optimal solutions based on dynamic traffic data,
while previous search systems are limited to use
static traffic data such as bus/subway route
information. The storage system is designed to give
the search system more efficient access to the traffic
information. The consisting sub-systems are
interconnected on the WWW using CGI(Common
Gateway Interface). A client requests the server to
search a path. The server asks the search system
through CGI to get a result from the database, and
returns it to the client. The system can be extended
to an integrated navigation system which includes a
variety of information on the Internet as well as the
traffic information.

1. Introduction1)

The notorious traffic congestion in the metropolitan
area can be relieved by directing people to the public
transportations. One of the many ways to achieve the
goal is to provide people with an easy-to-access and
user-friendly public traffic information system.
However, most of the current traffic

information systems are limited to show
bus/subway routes to people standing at stations. Some
advanced systems have been proposed with search
engines based on the static traffic data such as the

* This paper was partially supported by Information Super
Highway Application Project under grant No. 96-147, ETRI,
1996.

distance between two stations to show optimal paths.
But, much remains to be desired to satisfy the various
users' needs. The system should be accessed more
easily by users and have more friendly user interface.
Even people who are not familiar with computer
environments should be able to use the system at any
convenient places such as bus/subway stations, public
institutions and home. It should also be equipped with
more efficient search engine to produce optimal paths
within a reasonable time based on the dynamic traffic
information such as current traffic situation or weather
condition.
This paper proposes a public traffic information

system where users can access the system easier than
ever before. It utilizes the WWW, CGI and the Java
programming language to provide the 'state-of-the-art'
user interfacing techniques, and AI-based path search
algorithms to produce results within "real-time" and in
a more efficient way. On the Web, through a graphical
browser such as Netscape or MS-explorer, users can
activate a hyperlink, read multimedia traffic
informations, or download a file within a single mouse
click. In the path search system, a modified A*

algorithm with a conditional pruning technique is used
to consider various search conditions such as the
number of routes to search or transfers, instead of
using the dynamic programming technique which is
generally used to search a shortest path.
The remainder of this paper is organized as follows.

In Section 2, we review the client/server interface on
the Web. Section 3 discusses the AI-based optimal
path search engine. The characteristics of the integrated
system are described in Section 4. Finally, conclusions
appear in Section 5.

2. Client/Server Interface on World
Wide Web

The WWW(sometimes called just 'the Web') is a
collection of information stored on computers over the
world that are connected to the Internet. The Web is
the largest, most comprehensive, and most widely used
electronic information system in the world. It is
popular. It is easy to use; you move to new topic by

Toward the Next Generation Public Traffic Information System
Using Internet*

Seokhoon Lee , Jongill Ahn , Sungyong Lee , Tae-Choong Chung , Hyonwoo Seung

Department of Computer Engineering, Kyung Hee University, Korea
Department of Computer Science, Seoul Women's University, Korea
{shlee@oslab.kyunghee.ac.kr, slee@nms.kyunghee.ac.kr}

pressing a key or clicking a mouse button.
Since the proposed public traffic information system

is mounted on the Web through the Internet, it can
be used on PCs, NCs(Network Computers) or Internet
TVs, while the previous traffic guidance systems use
exclusive terminals furnished at bus/subway stations or
public institutions.
The system is built on a client-server model. The

client and the server communicate with each other
using a common protocol, HTTP(Hyper-Text Transfer
Protocol) over the TCP/IP. The client requests a traffic
information, and the server answers. The client has a
Web browser such as Netscape or MS-Explorer as its
user interface. The browser provides the graphical user
interface(GUI) that enables users to see Web pages and
to access other pages with the click of a mouse
button. A Web page can have any multimedia traffic
information such as formatted or unformatted text,
images, sounds and videos included in it. The browser
loads such pages and displays them. The traffic
information contained on the pages is formatted in
HTML(Hyper-Text Markup Language) and Java
Applet/Script. In order to provide various multimedia
traffic information, many Plug-In programs are used:
Real Audio and Toolvox for sound data and Quick
Time and Stream Works for graphics. The client(Web
browser) interfaces with the path search system and the
traffic data storage system through CGI.

2.1 User Interface on Client

Most of the information available on the Web today
is formatted in HTML(HyperText Markup Language),
which is a set of symbols that specify the structure of
a document. However, in a public traffic information
system where interactiveness is very important, it is
not adequate to use the hypermedia system since
HTML itself is static in a sense that you access one
page, then click on a link, and another page appears.
One solution is to use Java. With Java, data are no
longer restricted to a page-by-page display. So, we can
have updated traffic information appearing "live" on the
browser window. Java, developed by Sun
Microsystems, is built as an extension to HTML and
can be included in WWW pages. Rather than execution
on the HTTP server, a Java application actually is
downloaded and executed by the Web browser. When
a Java program(called an Applet) is accessed over the
Internet, the entire application is downloaded to the
browser. The browser then executes the code. In order
to do this, the browser must include a Java interpreter.
The Java interpreter and the interpreter built into a
Web browser act as a virtual machine to run the Java
code [see Figure 1]. This means that the language is
fast, like a compiled language, but also is
platform-independent[2][15][17].
The public traffic information system proposed in

this paper uses AWT(Abstract Window Toolkit)
classes[7], Windows-version of Java to provide menus,
buttons, dialogboxes, to represent traffic maps, to select
the source/destination, and to produce the output of
search results. Plug-In programs are also used to show
traffic conditions in videos at the spots users want to
see, or current traffic/weather informations in sound. A

Plug-In is an API(Application Programming Interface)
added to the Web browser to process various kinds of
multimedia data. Plug-Ins used in the system are
Real-audio and Toolvox for sound and Stream Works
and Quicktime for motion pictures.

2.2 System Interface on Server

To access HTML documents, Web browsers have to
know where to look. They get this information from a
Uniform Resource Locator(URL). The URL contains
the pieces of information a Web browser requires to
locate a page on the Web.

However, this mechanism simply allows users to use
hyperlinked HTML documents. It does not allow them
to use existing databases or dynamically created data.
The Common Gateway Interface(CGI) is one way to
overcome this limitation. CGI is a mechanism that
allows Web clients to execute programs or access
databases on a Web server and to receive their
output[3][4][9][13]. [Figure3] shows how the
mechanism works.

The CGI programming is used in the proposed
public traffic information system in order to
interconnect the client(Web browser) to the server
where the knowledge based path search system and
traffic data storage system reside. Following is the
normal process how CGI works in the system:
1) The user calls a CGI program to issue a search
request on the Web browser

[Figure 1: Execution of Java program]

Java
Program

Java Byte-
CodesCompilation

Java Byte-
Codes

Verification

INTERNET

Source Computer

Your Computer

Execution
Restricted

Virtual Machine

[Figure 2: Data transport between a Web
browser and a Server]

Web
Browser

Web ServerURL

HTML
document

HTML
documen

t

[Figure 3: Data transport between a Web
browser, and a Server using CGI]

Web
Browser

Web
Server

URL

HTML
document

HTML
docum

ent

CGI Routine
(C/C++, perl,

tcl, etc)

Parameter,

Standard I/O

Standard I/O

2) The Web browser contacts the Web server asking
for permission to run the CGI program

3) The Web server checks if the requester is allowed
access to the CGI program

4) The CGI program executed
5) The resulting paths produced by the CGI program
are returned in the HTML format to the Web
browser

6) The Web browser displays the CGI output
[Figure 4] illustrates the CGI's role on the server.

3. Path Search System

The path problem has been a hot research topic for
decades not only in academic fields but in the real life
applications. Many algorithms have been developed to
find optimal solutions. Among them, A* algorithm has
been received more attention than any other algorithms.
Although A* algorithm proved to be successful, it
quickly runs out of space even for problem instances
of moderate size when searching for optimal solutions
since it requires exponential space. Furthermore, it
produces the best solution only. It does not produce
the alternate solutions sometimes needed in many
applications.
To overcome such problems, we propose a modified

A* algorithm which produces more than one optimal
solutions and utilizes a conditional pruning technique
for the time efficiency[1].
The objective in the system is to produce more than

one optimal paths from source to destination in the
cost value order. Path problems can be classified into
four categories [8]:
1) single source/single destination shortest paths
2) all pairs shortest paths
3) K-th shortest paths(first, second, ...)

4) shortest paths going through specified nodes

[Figure 5] shows the classification tree. The kind of
algorithm applied in the proposed system falls under
the single source/single destination K-th shortest path
search algorithm.
Since (vehicle) transfers must be considered in the

proposed system, a heuristic search technique, A*

algorithm, has been modified and applied which has
been proven time-efficient in certain problem
domains[10][11][12][16].

3.1 Modified A* Algorithm

While A* algorithm finds the least g(n) + h*(n)
value first and uses dynamic programming technique to
search a shortest path, the modified A* algorithm
proposed in this paper uses a conditional pruning
technique to consider various search conditions such as
the number of routes to search or transfers[14]. The
differences are illustrated in [Figure 6].

[Figure 6: Comparison between the A* and the
modified A* algorithm]

A*
algorithm

Best First search +
under estimation +
dynamic programming

modified
A*

algorithm

Best First search +
proper estimation +
conditional pruning +
management of changing vehicles

3.2 Heuristic Functions

Two heuristic functions are considered when time or
distance is used as search criteria. When the search
criteria is distance, the Euclidean Distance(UD) is used.
In case of time, UD*TD*R is used as the heuristic
function, where TD stands for the average time/distance
calculated from the database scoring traffic cost values
and R is the weight value between 0 and 1. In
addition, transfer cost must be considered as well.
Those search criteria and transfer cost can be given by
users. [Figure 7] summarizes both heuristic functions[6].

[Figure 7: Differences between the time cost
and the distance cost]

Time Distance

g(n)
Time(min)

+ transfer cost
*number of transfers

Distance(km)
+ transfer cost
*number of
transfers

h* UD * TD * R UD
(UD : Euclidian Distance
TD : average time cost/distance in DB
R : real number between (0 ~ 1))

As shown in [Figure 8], when time is used as cost
value, g(n) is calculated using the formula : T +
(cost(T)*num(T)), where T is summation of time cost
of each edge from the start node to the n-th node
(min.), cost(T) is time cost of each transfer (min.),
num(T) is number of transfers. When cost value is

[Figure 4: CGI role on the Server]

Traffic
Information

DBMS

WWW Server

CGI
(Common
Gateway
Interface)

DB Connection
Standard I/O

AI-based
optimal

path search

S
e
a
r
c
h
 r

e
q
u
e
s
t

a
n
d
 r

e
s
u
lt

D
B
 C

on
ne

ct
io

n

[Figure 5: Classification of the optimal path
search algorithms]

Shortest Path Problems

Unconstrained path Constrained path

The
Shortest

Path

 with
 cycles

 Path has
specified

 number of
 arcs

 Path must
 go through
 specified
 nodes

 Sub
 Optima

 Path

 K-th
 Shortest

 Path

All nodes
 are

sources

Multiple
Source

Single
Source

One-to-allOne-to-one

distance, D is used instead of T. In that case,
D is summation of distance cost of each edge from
the start node to the n-th node (km).

3.3 Simulation of the Heuristic Function

We examine number of nodes expanded, execution
time, and relative cost error for values of R(weight for
TD) in case time is selected as the search criteria. For
the simulation, we created a 300-node graph based on
the data collected from real bus/subway routes. The
cost between two adjacent nodes n and m is calculated
using the following formula:
cost(n,m) = h*(n,m) * TD * R, where h*(n,m) is the

Euclidean Distance between node n and m. The values
of R are real numbers from 0 to 1. For a given value
of R, we chose a pair of source/destination at random
and executed 200 times. Then we averaged the number
of nodes expanded, the execution time, and the relative
cost error. The results are shown in [Figure 8, 9 and
10]. The relative cost error, E, was calculated as
follows:

[Figure 8: Average number of nodes expanded]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
40

50

60

70

80

90

100

110

n
u
m

b
e
r
o
f

n
o
d
e
s
 e

xp
a
n
d
e

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R(weight for TD)

[Figure 9: Average execution time]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

e
xe

c
u
ti
o
n
 t
im

e
(/

1
8
.0

 s
e
c

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R(weight for TD)

[Figure 8] illustrates a remarkable reduction in the
average number of nodes expanded as R comes close
to 1. Accordingly, the execution time, proportional to
the number of nodes expanded, also reduces as shown
in [Figure 9]. [Figure 10] shows the average relative
cost error is under 3%.

[Figure 10: Average relative cost error]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

re
la

ti
ve

 c
o
s
t
e
rr
o
r
(%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R(weight for TD)

4. The System

4.1 Goals and the whole Picture

The goals we try to achieve in the system are
two-fold:
1) to provide users with optimal paths from the

places where they are to destinations based on "live"
traffic informations through home PCs, NCs and
exclusive terminals furnished at bus/subway stations or
public institutions.
2) to allow users to access various Web services

such as public informations from government
institutions or private companies, and on-line shopping,
etc.

[Figure 11] illustrates the whole system. Clients are
connected to the server through Internet
platform-independently. Any PCs, NCs or exclusive
terminals where Web browsers can be operated on are
possible clients. Java and Plug-Ins are used to build
the user interface on clients. The server is coupled
with the AI-based path search system and the traffic
databases through CGI.

4.2 Using the System

The user from a client sees the first screen [Figure
12] upon connection to the server using a Web
browser such as Netscape or MS-Explorer.

[Figure11: System architecture]

Traffic
information

DBMS

Client 1

Client 2

Client 3

WWW Server

CGI
(Common
Gateway
Interface)

Standard I/O
DB

connectionInternet

WWW
Browser

WWW
Browser

WWW
Browser

AI-based optimal
path search

S
e
a
rc

h
 r

e
q
u
e
s
t

a
n
d
 r

e
s
u
lt

D
B
 c
o
nn

ec
ti
o
n

[Figure 12: First screen upon connection]
Display current traffic information and News

Select search
condition

Web browser like netscape or MS-explore

Start point

Dest point

By scrolling display detailed
traffic information

The picture shows the metropolitan area, Seoul, as a
whole. At the bottom of the screen, current traffic
spot news such as car accidents, jammed areas, roads
under construction or weather informations can be
displayed like an electric sign. The user can move
down to detailed pictures(maps) to select the
source/destination he/she wants. A source/destination is
selected by simply clicking a mouse on a spot. While
moving around the map, several places are displayed
around the mouse pointer to help the user to pinpoint
the place he/she wants.

[Figure 13: A detailed map]
Display current traffic information and news

Search
condition

Web browser like Netscape or MS-Explore

start point

dest point

By scrolling Display detailed
traffic information

[Figure 13] shows a detailed map. On the detailed
map, the user selects the source and destination after
he/she sets up search conditions such as shortest
distance or time, least cost, number of transfers. The
information the user creates is transmitted through URL
to the server.

[Figure14: Search results]

Display traffic information and news

Web browser like netscape and MS-explore

BUS 83

Search result

1. route 1
2. route 2
3. route 3

sadang

namsan

Using the information, together with the
geographical data stored in the database, the server
finds the best path(s) and send the result back to the
client. The client displays the result in text and
graphics as in [Figure 14]. The bold line shows an
optimal path from source to destination under certain
conditions.
Not only the traffic information provided by the

system itself, but traffic related services provided by
the other institutions such as the Traffic Broadcasting
Station, newspaper companies or Seoul Metropolitan
Police Headquarters can also be accessed using the
system [Figure 15].

[Figure 15: Connecting to the other traffic
related sites]

Display Traffic information and news

Web browser like netscape and MS-explore

* Traffic related server

 (0) Police headquarters
 (0) Traffic broadcasting
 (0) KBS(Korea broadcasting S.)
 (0) MBC(Munhwa broadcasting)
 (0) SBS(Seoul Broadcasting..)
 (0) meteorological observatory
 (0) dongailbo(nowspaper)
 (0) chosunilbo(newspaper)
 (0) joongangilbo(newspaper)

* sight-seeing, office.

 (0) Police headquarters
 (0) Samsung group
 (0) ancient palace
 (0) Kyunghee university
 (0) Hotel
 (0) Museum
 (0) department store
 (0) theater
 (0) Worldcup

Traffic
broadcasting
Web service

Seoul
broadcasting
system Web
Service

Kyunghee
university
information
Web service

Stadium and game
result of
worldcup

Traffic
information by

newspaper

Service
information and
reservation of

hotel
current program
information and
reservation
service of
theater

Museum
information and
guidance web

service

[Figure 16: The system as multi-purpose
information provider]

Display traffic information and news

Web browser like netscape or MS-explore

search result

1. route 1
2. route 2
3. route 3

sadang

namsan

Lotte hotel
information and

reservation
service

theater
information and

reservation
service

newspaper
(hankukilbo)
Web server

Tour information
service

theater
information and

reservation
service

dipartment store
information and
home shopping

service

The public traffic information system mainly serves
as a traffic information provider, but it can also be a
multi-purpose information provider if connected
through its map navigating functions to the other
Internet services, such as home banking/shopping,

hotel/theater reservations, travel services or civil affairs
services.
As shown in [Figure 16], users can get informations

about the places on the map in a natural way. Let's
say a user wants to go a department store. He/she
searches paths to the store, and by simply selecting the
spot, looks into the information the store may provide,
for example, the kinds and prices of the merchandise,
opening/closing time, whether they are having a sale or
not. Such an integrated navigation system is a possible
extension of the system.

5. Conclusion

A public traffic information system is proposed to
overcome traffic problems in the metropolitan area. The
system aims to provide users with live traffic
informations in a user-friendly manner through PCs,
NCs, Internet TVs and exclusive terminals on the
Internet and WWW. To achieve the goal, an
easy-to-use user interface has been introduced utilizing
Java, CGI and Plug-Ins. An AI-based path search
technique has also been introduced which produces
optimal paths within a reasonable time under dynamic
traffic situations. The proposed system can be extended
to an integrated navigation system where a variety of
useful informations on the Internet as well as the
traffic information can be accessed.

6. References

[1] A. L. Karl, H. Kaindl, "Bidirectional Best-First
Search with Bounded Error: Summary of Results",
IJCAI, 1993, pp. 217-223.

[2] A. V. Hof, S.Shaio, O. Starbuck, Hooked On Java,
SUN Microsystems, 1996

[3] B. F. Rasmussen, "A Web to Database Interface",
Sybase WWW home page, 1995.

[4] Eric Hermann, CGI Programming with PERL in a
week, SAMS NET, 1996

[5] IBM, "DB2 World Wide Web Connection", IBM,
1995

[6] J.B.H Kwa, BS*: An Admissible Bidirectional
Staged Heuristic Search Algorihm, Artificial
Intelligence 38(2), 1989, pp. 95-109.

[7] Lemay, Perkins, Teach yourself JAVA in 21 days,
SAMS NET, 1996

[8] Judea Pearl, "Heuristics: Intelligent Search Strategy
for Computer Solving", Addison-Wesley Publishing
Company, 1984, pp. 64-99.

[9] ORACLE, "Oracle and Internet", ORACLE White
Paper, 1996

[10] Hart, Nilson and Raphael, "A Formal Basis For
The Heuristic Determination of Minimum Cost
Paths", IEEE Transaction on SSC-4(2), pp.
100-107.

[11] J.B.H Kwa, "BS* : An Admissible Bidirectional
Staged Heuristic Search Algorithm", Artificial
Intelligence 38(2), 1989, pp. 95-109.

[12] A.L. Karl, H. Kaindle,"Bidirectional Best-First
Search with Bounded Error : Summary of
Results", IJCAI, 1993, pp. 217-223.

[13] Shishir Gundavaram, CGI Programming on the

World Wide Web, O'REILLY & ASSOCIATES,
1996

[14] I.Pohl, "First Result on the Effect of Error in
Heuristic Search", In B. Meltzer and D. Michile,
editors, Machine Intelligence 5, 1970, pp.
219-236.

[15] T. Ritchey, Java, New Rider, 1995
[16] H. Kim, Dvelopping traffic route information

system usimg heuristic search and management
system, Korea Research Foundation Reprot, 1993

[17] M. Shin, H. Choi, K. Park, “Internet esperanto
Java”, Microsoftware , 1995, pp. 262-297.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

