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Abstract Recently, in the field of face recognition, Two- Draper et al. [12] proposed using ICA for face representation
dimensional Principal Component Analysis (2DPCA) has been pro- and found that it was better than PCA when cosines were used
posed in which image covariance matrices can be constructed directly as the similarity measure (however, their performance was
using original image matrix. In contrast to the covariance matrix not different if the Euclidean distance is used).
of traditional PCA, the size of the image covariance matrix using sing 1dniicPa
2DPCA is much smaller As a result, it is easier to evaluate the Yang [13] used Kernel PCA for face feature extraction and
covariance matrix accurately, computation cost is reduced and the recognition and showed that the Kernel Eigenfaces method
performance is also improved. In an effort to improve and perfect the outperforms the classical Eigenfaces method. However, ICA
performance offace recognition system, in this paper; we propose a and Kernel PCA are both computationally more expensive than
Kernel-based 2DPCA (K2DPCA) method which can extract nonlinear
principal components based directly on input image matrices. Similar mental results in [13] showed the ratio of the
to Kernel PCA, K2DPCA can extract nonlinear features efficiently computation time required by ICA, Kernel PCA, and PCA is,
instead of carrying out the nonlinear mapping explicitly. Experiment on average, 8.7: 3.2: 1.0.
results show that our method achieves better performance in com- In all previous PCA-based face recognition technique, the
parison with the other approaches. 2D face image matrices must be previously transformed intoKeywords-PCA, Kernel PCA, 2DPCA, Face Recognition. ID image vectors. The resulting image vectors of faces usually

lead to a high dimensional image vector space, where it is
I. INTRODUCTION difficult to evaluate the covariance matrix accurately due to its

Principal component analysis (PCA), also known as large size and the relatively small number of training samples.
Karhunen-Loeve expansion, is a classical feature extraction Fortunately, the eigenvectors can be calculated efficiently
and data representation technique widely used in the areas of using the SVD techniques and the process of generating the
pattern recognition and computer vision. Sirovich and Kirby covariance matrix is actually avoided. However, this does not
[1] [2] first used PCA to efficiently represent pictures of human imply that the eigenvectors can be evaluated accurately in
faces. They argued that any face image could be reconstructed this way since the eigenvectors are statistically determined by
approximately as a weighted sum of a small collection of the covariance matrix, no matter what method is adopted for
images that define a facial basis (eigenimages), and a mean obtaining them. So recently in [14], a new PCA approach
image of the face. Within this context, Turk and Pentland [3] called 2DPCA, is developed for image feature extraction.
presented the well-known Eigenfaces method for face recog- As opposed to conventional PCA, 2DPCA is based on 2D
nition in 1991. Since then, PCA has been widely investigated matrices rather than ID vectors. That is, the image matrix
and has become one of the most successful approaches in does not need to be transformed into vector. Instead, an image
face recognition [4] [5] [6] [7]. Penev and Sirovich [8] discussed covariance matrix can be constructed directly using original
the problem of the dimensionality of the "face space" when image matrices. In contrast to the covariance matrix of PCA,
eigenfaces are used for representation. Zhao and Yang [9] tried the size of the image covariance matrix using 2DPCA is much
to account for the arbitrary effects of illumination in PCA- smaller. As a result, 2DPCA has two important advantages
based vision systems by generating an analytically closedform over PCA. First, it is easier to evaluate the covariance matrix
formula of the covariance matrix for the case with a special accurately. Second, less time is required to determine the
lighting condition and then generalizing to an arbitrary illumi- corresponding eigenvectors. In an effort to improve and perfect
nation via an illumination equation. However, Wiskott et al. the performance of face recognition system, in this paper, we
[10] pointed out that PCA could not capture even the simplest propose a Kernel-based 2DPCA (K2DPCA) method which
invariance unless this information is explicitly provided in the can extract nonlinear principal components based directly on
training data. They proposed a technique known as elastic input image matrices. Similar to Kernel PCA, K2DPCA can
bunch graph matching to overcome the weaknesses of PCA. extract nonlinear features efficiently instead of carrying out
Recently, two PCA-related methods, independent component the nonlinear mapping explicitly. The remainder of this paper
analysis (ICA) and kernel principal component analysis (Ker- is organized as follows: In Section 2, the traditional PCA and
nel PCA) have been of wide concern. Bartlett et al. [11] and KPCA methods are reviewed. Section 3 comes with 2DPCA.
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The proposed Kernel-based 2DPCA method is described in lie in the span of Jb(X ), .., Jb (XN), and there exist coefficient
Section 4. In Section 5, experimental results are presented vector a = [ai, ,o NIT such that
for the ORL and Yale face image databases to demonstrate N
the effectiveness of our methods. Finally, conclusions are w = ai(xi) = At a (7)
presented in Section 6. =

II. PCA AND KERNEL PCA Denoting an NxN matrix K by

One approach to cope with the problem of excessive dimen- Kij = k(xi, xj) = N x)T.D(xj) = (A" )T A" (8)
sionality of the image space is to reduce the dimensionality Then the kernel PCA problem (5) becomes
by combining features. Linear combinations are particular,
attractive because they are simple to compute and analyt- Ab (A@)T A"a = AA"a
ically tractable. In effect, linear methods project the high- X A"Ka = A"Aa (9)
dimensional data onto a lower dimensional subspace. Suppose = Ka = Aa
that we have Nsample images {Xi1,'2, ., XN} taking valuest So firstly, we solve the equation Ka = Aa. We can nowin an n-dimensional image space. Let us also consider a lin- projected the vectors in . to a lower dimensional space
ear transformation mapping the original n-dimensional image s b t e

spanned by the eigenvectors w . Let x be a test sample whosespace into an m-dimensional feature space, where m < n. projection is Nx) in Rf, then the projection of Nx) onto the
The new feature vectors Yk C R' are defined by the following

w is:

linear transformation:
N N

Yk Xk () W ()= a, (bD(Xi)T.D(X)) = aik(xi, xj) (IO)
where k = 1,2, ..,N and W CRe x is a matrix with ii
orthonormal columns. Different objective functions will yield We can extract the first m (1 < m < N-1) nonlinear
different algorithms with different properties. PCA aims to principal components corresponding to first m non-increasing
extract a subspace in which the variance is maximized. Its eigenvalues of (5) using the kernel function without the
objective function is as follows: expensive operation that explicitly projects samples to high

dimensional space Rf. Some kernel functions can be seen in
Wopt = [WlW2...Wm] = argmax |WTStW| (2) Table 1., and in this paper, we use polynomial kernel function.

W Compared to other techniques for nonlinear feature extraction,
with the total scatter matrix is defined as

N Kernel k(xi,X2)
St (xk I1)(Xk - 1)T (3) Polynomiial (X X2) 2

k=1 Gaussian (radial basis function) - 2,2

and ,u e RT is the mean of all samples. The optimal projection Sigmoid Itanh(axX2 + b)
wopt = [WlW2 ...Wm] is the set of n-dimensional eigenvectors Table 1. Some kernel functions can be used in Kernel PCA.

of St corresponding to the m largest eigenvalues, i.e:.
kernel PCA has the advantages that (1) it does not require

Stw' ' '~w~ i 1, 2, m (4)nonlinear optimization but just the solution of an Eigenvalue
In kernel PCA, each vector xi is projected from the input problem and (2) by the possibility to use different kernels it
space, lTor Rn, to a high dimensional feature space, .For Rf, comprises a fairly general class of nonlinearities that can be
by a nonlinear mapping function :n -> Rf, f > n. In used [15].
Rf, the corresponding eigenvalue problem (4) becomes III. Two-DIMENSIONAL PCA

S(wD = Aw& (5) In 2D approach, the image matrix does not need to be
previously transformed into a vector, so a set of N sample

Without losing the generality, we assume that the projected images is represented as {X1,X2, .. ,XN} with Xi E Rkxs,
samples Nx(i) are centered in Jf (see [15] for a method to which is a matrix space of size kxs. The total scatter matrix
center the vector (D(xi) in Wf). The total scatter matrix can is re-defined as
be re-calculated in Jf as follow: N

SNxk)Nxk)T A' (A') (6) = (V

whr o [(i,.,1x) samti hs oun with ,ux Z Xi C Rkxs is the mean image of all samples.
are Nxzi). We can see that, all solution wb of (5) with A 7t 0 Gt C RSXS is also called image covariance (scatter) matrix. A
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dot-product but never explicitly calculating I for any
input matrix. The nonlinear nature of map 4 means that
the associated component analysis back in input space 1T
is nonlinear.

Let us analyze more in detail the procedure. In kernel-based
2DPCA, each image Xi, is projected from the input matrix
space, fTor XZxs, to a high dimensional feature space, For
Rkxf, by a nonlinear mapping function T4: kxs > kxf,

Fig. 1. Ten sample images from Yale face database f > s. Let Xii e ERlxs be the j row of matrix Xi C ykxs
where j 1..k, then nonlinear mapping function T4: ykxs
|Xkxf can be defined as follow:

l ! 11 r @~~~~~~~~~~~~~~~I ( T

FLD ((Xj )T)T 1

Fig. 2. Twenty sample images from ORL face database Note that here, 1 Rs Rf is a nonlinear mapping function
defined in a similar way as in section 2. With a similar way
used in KPCA, the total scatter matrix in K2DPCA can be

linear transformation mapping the original kxs image space re-calculated in ERkxf as follow:
into an kxm feature space, where m < s. The new feature N
* 1cmk G(l = F(X ATF(X Amatrices Y, C Rkx are defined by the following linear G

transformation: [D ((xl*)T)T T
cD ((Xl*)T)

yi (Xi-_ X)W C Rkxm (12) =E ... ll...where i ~~ ~ ~ ~ ~ (12) N ~~~~~~TcD((xJk*)T) 1 [D 1(k))
where = 1,2,...,N and W E Rsxn is a matrix with L J((X *)T)T JL (Qxk*T)T J
orthonormal columns. In 2DPCA, the projection Wpt is N <X) ((XJ*)T 1
chosen to maximize tr(WTGtW). The optimal projection = [1((Xl*)T) ,..., ((Xk*)T)] ...

Wopt = [W1W2 ... Wl] with {w i =I1,2,...2,m} is the set L<((X*)T)T J
of s-dimensional eigenvectors of Gt corresponding to the N k T
mlargest eigenvalues. After a transformation by 2DPCA, a ZE E ( (QXi'*)T)T ((Xi*)T)
feature matrix is obtained for each image. Then, a nearest i=(j=)
neighbor classifier is used for classification. Here, the distance From above equation (15), because (Xk*)T is vector in Rs,
between two arbitrary feature matrices Yi and Yj is defined we can see that the total scatter matrix Gb can be calculated
by using Euclidean distance as follows: on the rows of all the training images. By this observation,

|k s K2DPCA could be performed based on KPCA. Consider each
d(Yi Yj) EE (Y,(u, v) Yyj (u, v))2 (13) row of all training image matrices as a column vector sample,

\ U= V=1 K2DPCA can be done by performing KPCA on these reformed
samples. A summary of K2DPCA algorithm can be seen as

Given a test sample Yi, if d(Yt, Yc) mi d(Yt, Yj), then the follow:
resulting decision is Yt belongs to the same class as Y, Idea - Consider each row of all training image matrices as a

column-vector sample and apply KPCA.
I*.KERNEL-BASED 2DPCA Input - A set of Nsample images is represented as

Kernel-based 2DPCA proposed here is an unsupervised kxs T s

feature extraction method closely related to 2DPCA. And it XN with Xi e R Let
r Xj* e s

is based on the following ideas: where (i 1..N,j
.

k) and 1 k(i -1) +j, be a columniS based on the following ideas:
vector which is the transpose of the row 'th of image matrix

Nonlinearly mapping input matrix space IT or Rkxs to jth
a high-dimensional matrix feature space F or Ikxf Algorithm
T : T -> X, where standard 2DPCA is performed; this

4' ' .T -* . where standard 2DPCA is performed; this Centering projected samples Nri) (see [15] for a method

* Computing dot products in high-dimensional matrix fea- to center the vector 1 (ri))ture space .F via a matrix-based kernel function in input *DeiekrlmaixKeRkkNb
matrix space f ,k fTI cfRkXkkThis allows to perform K i k(ri, rj) =Nri)T1(rj) 1

2DPCA efficiently on the data set {4'(Xi)}~i1 using the i, am. kN ad b:Q R (16)
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* Solve the eigen-problem Ka = Aa. Remember that a e Table 2. Comparison of the top recognition accuracy (%) on Yale database.
kN

RkN an k~ZaN r)eyf k 2 3 4 5
Nand w4' = E cki@(ri) e Xf. | PCA 76.30 83.33 84.76 87.78

. Projecting the image in Rkxf to a lower dimensional KPCA 76.30 83.33 85.15 88.19
space spanned by the eigenvectors w . Let X e 5kxs 2DPCA 76.30 83.33 88.57 88.89

be a sample whose projection is T(X) in Rkxf, then the
projection of T(X) onto the eigenvectors wD is:

_,[((Xl*)T)1 B. ORL Face Database
T(Xi)Wb = ... w In the ORL database, there are ten different images of each

I' ((x*)T)T of 40 distinct subjects. For some subjects, the images were

F 1 ((xl*)T)T W> taken at different times, varying the lighting, facial expressions
1 ... (open / closed eyes, smiling / not smiling) and facial details

[ k*((X, )T)T (17) (glasses / no glasses). All the images were taken against a
L

( dark homogeneous background with the subjects in an upright,
Eat (D ((X1*)T)T rt)) frontal position (with tolerance for some side movement). A
t=l k random subset with k(k = 2,3,4,5) images per individual

= Ly k was taken with labels to form the training set. The rest of
nN atk(@((f*)T) T the database was considered to be the testing set. 10 times
t=l of random selection for training example were performed and

the average recognition result was recorded. The experimental
protocol is the same as before. The best recognition result of

This section evaluates the performance of PCA algorithm each method are shown in Table 3.
[1], KPCA algorithm [13], 2DPCA [14], our new approach
K2DPCA based on using Yale face database and ORL face Table 3. Comparison of the top recognition accuracy (%) on ORL database.
database. The size of each cropped image in both ORL and k 2 3 4 5
Yale database is 32x32 pixels, with 256 gray levels per pixel. PCA 72.81 76.43 85.83 89.50
In this paper, we apply the nearest-neighbor classifier for 2DPCA 72.19 7643 86.25 89.00
its simplicity. The Euclidean metric is used as our distance K2DPCA 74.18 78.71 88.83 91.13
measure. In short, the recognition process has three steps. First,
we calculate the face subspace from the training set of face
images; then the new face image to be identified is projected

V CONCLUSIONS
into m-dimensional subspace. Finally, the new face image is
identified by a nearest neighbor classifier. Some sample images In this paper, we propose a Kernel-based 2DPCA
from Yale and ORL databases are shown in Fig. 1. and Fig. (K2DPCA) method which can extract nonlinear principal
2. components based directly on input image matrices. Similar

to Kernel PCA, K2DPCA can extract nonlinear features effi-
A. Yale Face Database ciently instead of carrying out the nonlinear mapping explic-

itly. We also proved that K2DPCA could be implemented by
The Yale face Database contains 165 grayscale images in using KPCA technique. The experiments based on ORL and

GIF format of 15 individuals. There are 11 images per subject, Yale face databases show clear improvements of recognition
one per different facial expression or configuration: center- systems. In the future, we will study kernel approach for two-
light, w/glasses, happy, left-light, w/no glasses, normal, right- dimensional Linear Discriminant Analysis.
light, sad, sleepy, surprised, and wink. A random subset with
k(k = 2, 3, 4, 5) images per individual was taken with labels ACKNOWLEDGMENTS
to form the training set. The rest of the database was con- This research was supported by the MIC(Ministry of In-
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