
Event Query Processing in EPC Information Services.

Tuyen Nguyen, Young-Koo Lee, Byeong-Soo Jeong, Sungyoung Lee
Department of Electronic and Information

KyungHee University, Korea
ntttuyen@oslab.khu.ac.kr, yklee, jeong@khu.ac.kr, sylee@oslab.khu.ac.kr

Abstract

Radio Frequency Identification (RFID) technology is an
excellent substitute for barcodes in industry. However, the
management of a large amount of RFID data, together with
complicated relationships between data, in the context of
responding to different kinds of queries is not well sup-
ported by traditional databases. Therefore, 1) an event-
based model for managing data and 2) an algorithm for
responding to event queries are proposed for RFID reposi-
tories in this paper. Our approach is based on the specifica-
tion of the EPC Information Services (EPCIS) to meet the
overall data requirements of the RFID community. Specif-
ically, the object-oriented model is built on the top of rela-
tional databases so as to make the proposed combined data
model highly flexible and semantic comprehensive. Based
on this data model, various complicated predicates implied
in different parameters of the predefined event query are in-
terpreted into one single request to the database.

1 Introduction

In the last couple of years, the technology maturity and
deploying cost decrease have made RFID become more
attractive as a prominent solution for wireless identifica-
tion. The ability to automatically identify and track individ-
ual objects with a unique Electronic Product Code (EPC)
in RFID technology promises a great automation revolu-
tion in many areas, e.g. supply chain management, mili-
tary, aviation or health care[2]. Nevertheless, RFID data
is generated from various dynamic interactions, at a very
high frequency, between tagged objects and different static
business contexts. Data, thus, is massive and semantic-
implicit[14][1][2][15]. The data needs to be classified and
represented carefully in such a logical way so as to be easily
queried.

Therefore, the data bridge between the RFID physical
world and high-level applications, called EPC Information
Service (EPCIS), is needed in any RFID system. It cap-

tures, manages data and allows accessing applications to
query data easily. To achieve these, the EPCIS repository
essentially needs a data model that organizes both static and
timestamped data with preserving all logical relationships.
Such a data model should not only facilitate the processing
of EPC data queries, but also meet the basic standards of
EPC-related data identified by the RFID community so as
to leverage the data sharing between disparate applications.
These standards are defined clearly in the EPCIS specifica-
tion by EPCGlobal [3], a leading organization that devel-
ops industry-driven standards for EPC systems. However,
the EPCIS specification is difficult for relational databases
to support in an efficient and semantic comprehensive way.
Two main problems are: 1) to represent different kinds of
data together with various relationships including inheri-
tance and 2) to respond to the predefined event query whose
predicates, including hierarchical retrieval, are concealed in
complicated parameters.

First, the EPCIS repository maintains two categories of
data: event data and master data [5]. Both of them need se-
mantic comprehensive representations that cover all phys-
ical storage details so as to be easily looked up. As for
event data, its compactness, extensibility, its hierarchical
relationships and object associations need to be considered
carefully. In many cases, traditional databases do not well
support these requirements.

Second, the event exchange between applications is also
a big issue in heterogeneous RFID networks. To solve this
problem, the Simple Event Query is predefined by the EP-
CIS specification to support a simple way for an accessing
application to request events from an EPCIS that is not un-
der its control. The Simple Event Query is easily requested
by providing the query interface with the query name and
parameters. Processing this query, on the contrary, is com-
plicated. All the constraints on the result events are implied
in the parameters. There are some constraints that typical
relational databases do not provide mechanisms to deal with
or can handle but in a clumsy way with many database re-
quests. Those are the problems of: database retrieval of
events in generalization hierarchy; semantic integrity of re-

Copyright © SITIS - 146 -

turned events and predicates on metadata.
This paper combines the strength of both object-oriented

and relational database concepts to address the above issues.
An event-based data model with two flexible layers and al-
gorithms for responding to event queries are proposed. Ad-
vantages of our model include: 1) the applicability on ex-
isting relational RFID databases without drastic changes; 2)
more efficient query processing for the Simple Event Query;
3) the flexibility in the future evolvement; 4) the semantic
expressivity and comprehensive of the data model; 5) more
succinct query statements. Based on this data model, the
processing of the Simple Event Query is simplified. Con-
straints implied in given parameters are interpreted into one
single SQL DML statement placed on the root of the event
hierarchy. Thus, each query of this type just needs one
database request. The query performance is based on the
existing optimization mechanisms of relational databases.

This paper is organized as follows. Section 2 summa-
rizes some related works and backgrounds on EPC-related
data standards. Section 3 designs the EER diagram for EPC
data and proposes the flexible two-layer data model. Sec-
tion 4 provides algorithms for processing the Simple Event
Query. Section 5 concludes our work. Section 6 summa-
rizes the experimental result and future works.

2 Related Works and Background

RFID data poses challenges to traditional relational
databases and data warehouses due to its characteristics of
large data flood, data inaccuracy and temporal data [1, 2].
During the past few years, RFID data management has
gained considerable attention. Many solutions have been
proposed to address new methods for: warehousing and
mining [9, 7, 8]; cleansing [13] and compressing [11] RFID
data. These works consider some particular issues, but do
not provide a general data model for managing RFID data.

The data models discussed in [10, 15] are perhaps the
most related to our work. In [10], Harrison et al. summa-
rizes RFID data in simple events of three dimensions: the
timestamp, the tagged object and entity that are in a dy-
namic interaction. RFID data, thus, is semantics-implicit.
And complex queries need to be decomposed into numer-
ous simple queries, which leads to multiple inefficient joins.
Later, the authors in [15] introduce state changes of tagged
objects in addition to events. The concept of state changes
makes the data model more expressive and supports track-
ing and tracking queries efficiently. They also consider
many cases of RFID applications. Yet, state changes are
materialized before-hand from events. And events are
atomic and semantics-poor. Since these models deal with
raw data and do not consider any EPC-related data standard,
they are suitable to be encapsulated in the RFID platforms
developed by the same IT vendors.

To provide a standard open system for EPC usability,
EPCGlobal [3] defines the EPC architecture framework [4]
which includes interrelated components and standard inter-
faces together with core services. EPCIS sits at the highest
level in this framework as a primary vehicle for data shar-
ing between RFID partners. Its specification [5] specifies
the generic structures for representing EPCIS data, the data
exchanged through EPCIS, their abstract structures and ser-
vice operations. Included in this specification is the Simple
Event Query. This query has many complicated parameters.
However, there appears to be little in the way of detailed
work on the efficient implementation of this query.

Our data model is different from previous models. Based
on the EPCIS specification, our data model meets the ba-
sic standards of EPC-related data identified by most enter-
prises. Besides, we do not deal with preliminary sensor
readings as previous models, but meaningful events pushed
up by RFID middlewares. Especially, a virtual object-
relational layer is introduced on the top of relational tables
so as to make our data model more comprehensive in terms
of semantics and more flexible in terms of applicability on
existing databases and future extensibility.

Our work is extended from [12]. The paper proposed an
event-based data model for EPCIS with two efficient layers.
However, it did not go into the details of how to process
the Simple Event Query based on that proposed data model.
In this work, we do focus on summarizing the data model
and addressing the algorithms to process the Simple Event
Query with one database request.

In the EPCIS repository, data falls into two categories:
event data and mater data. Event data is timestamped
and collected throughout objects’ lifecycles, whereas mas-
ter data is almost static and related to business entities and
product/service groups. RFID data is viewed as events that
are classified into a hierarchical tree of various types. More
event types can be added, specialized or deleted according
to each particular enterprise. However, there are four pri-
mary types:

• Object Event: any observation or assertion about
tagged objects.

• Aggregation Event: containment relationship between
a group of tagged objects that are contained in another
one.

• Quantity Event: inventory report about the number of
instances of a specific object class counted in a certain
business context.

• Transaction Event: association or disassociation of
tagged objects in business transactions.

All events are temporal with two timestamp fields: event-
time, when events occurred and recordtime, when they are
recorded in repositories. Each core event also has fields for

- 147 -

four key dimensions: the objects, the date and time, the lo-
cations and the business context [5]. The values of these
fields are of primitive types or vocabulary elements from
master data.

Master data is organized into different vocabularies.
Typical vocabularies include:
• Object, Product, Organization: instant-level and class-

level information about EPC-tagged objects.

• Container: different types of containers into which ob-
jects can be packed (case, pallet, truck, etc.).

• Readpoint: places where EPCIS events took place.

• Business Location: business locations where objects
are assumed to be following events.

• BizTransaction, BizTransactionType: information
about transactions and their types.

• BizStep: steps in business process, e.g. shipping.

• Disposition: business states of EPC objects, e.g. avail-
able for sale.

Each vocabulary contains a list of identified elements.
Each element is interpreted with a distinct attribute set and
can have the hierarchical relationship with other elements in
the same vocabulary. Conventionally, each vocabulary and
event types can be normalized in several tables.

3 EPCIS Data Model

3.1 Extended Entity Relationship (EER) Model

The requirements on EPCIS data analyzed in previous
sections are conceptually represented in Figure 1 using
object-oriented concepts from the EER model. Master and
event data are respectively distinguished in two types of en-
tities: events (shadowed rectangles), and vocabularies (flat
rectangles). There exist two kinds of relationships: inheri-
tance among events (connections with U-shaped symbols);
and normal relationships between events and vocabularies,
and between vocabularies themselves (connections with a
diamond-shape in the middle).

Events are classified in a specialization hierarchy. The
super-event EPCISEvent holds the temporal attributes. Sub-
events such as ObjectEvent, QuantityEvent, Aggregation-
Event, TransactionEvent, are specialized from EPCISEvent
as deeply as necessary. In fact, each sub-event describes
a particular observation on EPC objects or an object class
in a specific business context. It is interpreted by vocabu-
lary elements and non-vocabulary event fields. These fields
include: action, the impact of an event on the lifecycle of
observed entities, and quantity, the number of EPC objects
in a specific class.

Figure 1. EER diagram for EPCIS data model.

Each vocabulary element is identified by ID and named
with Name. A complex attribute attr list, which is a set of
pairs (attr name, attr value), is needed to keep the distinct
attribute set of each element. And, the self-relationship chil-
dren models the parent/child hierarchy inside each vocabu-
lary. Between some vocabularies exist normal static rela-

- 148 -

Figure 2. Two-layer framework for EPCIS
object-relational database.

tionships. For example, each element in Business Transac-
tion belongs to a Business Transaction Type and each EPC
object may be an instance of a particular Product manufac-
tured by an Organization.

The EER diagram in Figure 1 illustrates the fundamental
entities and relationships in a typical RFID system (Some
vocabularies are duplicated in the right part (gray rectan-
gles) to avoid line overlap. The relationships and schemas
of vocabularies are fully described in the left part). Events
and vocabularies can be added or deleted according to the
business logics of each particular application.

The benefit of this conceptual model is that it is as simple
as comprehensive with respects to the EPCIS specification.
Events are classified as specifically as they should be. Vo-
cabularies are organized in a common schema so as to be
easily managed and looked up. Besides, since objects in the
same business process are reported in the same event, data
are more compact and the associations between objects ap-
pearing in the same event are preserved.

3.2 Two-Flexible-Layer architecture for EPCIS
repository

Maintaining EPCIS data in object-relational databases
is obviously a better choice for EPCIS repository. With
object-oriented concepts, EPCIS repositories are seman-
tic expressive and comprehensive. Besides, such reposito-
ries will be in good harmony with the well-known object-
oriented programming.

However, we do not directly deploy the object-oriented
concepts in Figure 1 into physical structures in DBMSs for
the following reasons. First, in some RFID systems, mas-
ter data and event data may have been stored in relational
tables. Applying object-oriented features directly requires
the reconstruction of data structures in these systems, which
may be costly. Second, the future extensions of the data
model, for example, if event schemas are extended, also

require object types to be redefined, which also leads to
changes in physical structures. Finally, relational databases,
though weak at semantic modeling, are best at data nor-
malization and query processing with different optimization
mechanisms integrated. We should exploit these features.

A two-layer model (Figure 3), therefore, is proposed:
to adapt with future evolvement, to integrate with current
databases and to benefit from the advantages of pure rela-
tional approaches. The first layer normalizes and maps enti-
ties and normal relationships in the conceptual model (Fig-
ure 1) into relational tables. This job is easily done by using
ER mapping rules. Compound attributes such as attr list
are maintained in separate tables that refer to main tables
via foreign key constraints.

The second layer, then, virtually applies the object-
oriented concepts above these relational tables. Events and
vocabularies, which are stored in several tables, are synthe-
sized in single rich semantic objects. Constructing this layer
consists of two steps. First, object types for all events and
vocabularies as well as inheritance relationships between
events are defined. These object types conforms to the data
structures specified in the specification [5]. There is a root
object type for events, called EPCISEvent Type. And each
object type created for an event type inherits from EPCI-
SEvent Type and encapsulates all event fields.

Similarly, each vocabulary is represented by an object
type which has two special attributes – attr list and chil-
dren – in addition to ID and Name. attr list is a collec-
tion of another object types of two attributes, attr name and
attr value. children is also a collection of IDs that identify
all children of the current object.

In the next step, we materialize data from relational ta-
bles and convert that data into objects of the above types.
Virtual object views are built. Each object view is based
on an object type and associates with a query that spec-
ifies which data in which relational tables contain the at-
tributes for objects of that type. In other words, it does not
store object instances but provides an abstract interface to
allow accessing applications to view data from multiple re-
lational tables as single objects. Inheritance relationships
are also defined between event views to form the event hi-
erarchy as mentioned before. Queries are placed on these
views with succinct syntax instead of writing complex joins
with multiple tables. Other data manipulation operations
on views, such as update and delete, can be easily handled
by using INSTEAD OF triggers. Further detail on building
these views can be found in our previous work [12].

Since object views are virtual, they can be easily changed
by redefining object types and data-extracting queries for
views. Therefore, if we want to redesign the object-
relational layer, we do not have to make the drastic changes
in relational layer. Besides, the object-oriented features in
this layer make our model profitable in the processing of the

- 149 -

Simple Event Query we mention in the next section.

4 Query Event Data in EPCIS

Data exchange between heterogeneous repositories in
RFID networks can be done through the Query Interface.
This interface covers all the database techniques and allows
users to request data by predefined queries

4.1 Introduction to SimpleEventQuery

Simple Event Query is the first query predefined by the
EPCIS specification for event exchange. It has a large num-
ber of optional parameters. Each one consists of two parts:
parameter name and parameter value(s). By choosing ap-
propriate parameters, we can place various constraints to
get the desired events. The parameters fall into several cat-
egories as follows
• (eventType,value list): names of requested event

types.

• (GE/GT/LT/LE/EQ) fieldName,value): events whose
field named fieldName is greater than or equal to (or
other comparisons) value.

• (EXISTS fieldName, void): events that have a non-
empty field named fieldName.

• (EQ fieldName, value list): events whose field named
fieldName matches one of the values in value list.

• (EQ bizTransaction type,value list): Events contain a
transaction list. At least, one transaction is of the type
specified by type and matches one of the values in
value list.

• (MATCH impliedEPCField, value list): events have
to have an EPC-related field whose name is implied
in impliedEPCField. The value(s) of this field have to
match one of the patterns specified in value list.

• (WD fieldName,value list): events whose field named
fieldName matches one of the values in value list or is
a direct or indirect descendant of them.

• (HASATTR fieldName,value list): events whose field
named fieldName is a vocabulary element. And master
data of this element has attributes whose names match
one of the values in value list.

• (EQATTR fieldName attributeName,value list):
events whose field named fieldName is a vocabulary
element. And master data of this element has an
attribute whose name is attributeName and whose
value matches one of the value in value list.

• (orderBy,value): order events by a field whose name is
specified in value.

• (orderDirection,value): order events in descending
(DESC) or ascending (ASC) sequence.

• (eventLimitCount,value): only fetch value top events
in the result.

• (maxLimitCount, value): if the number of returned
rows is larger than value, generate an exception instead
of the real result.

Let us examine a simple scenario in which the
sale agency of the Seoul branch of an enterprise
wants to look into those events that relate to product
shipping from Seoul on November 25 at those loca-
tions whose functionality is sale. We can request the
Simple Event Query with the following parameters:
(EQ BizStep, ′shipping′), (WD bizLocation,′Seoul′),
(GE eventTime, ′2006-11-25 00:00:00.000 GMT′),
(LE eventTime, ′2006-11-25 23:59:59.999 GMT′),
(EQATTR bizLocation Functionality, ′sale′).

Based on our proposed data model, we propose an algo-
rithm that can process complicated parameters of the Sim-
ple Event Query in just one request to the DBMS. First, we
convert the query request into a DML statement in SQL and
then execute it once against the database. The result is re-
turned to users in an XML document.

How to process various parameters to generate all predi-
cates in just one SQL statement is the hardest part and also
our main contribution in this section. Before presenting our
algorithm, let us consider some main challenges .
Retrieving events in generalization hierarchy. The query
includes not just event types specified in eventType but also
all their extension types. If eventType does not exist, all
event types should be considered. In a relational database,
we can maintain the event hierarchy in a dictionary, from
which the requested event types can be retrieved. Then, we
individually retrieve events of each type and union the re-
sults together. These retrievals need several requests to the
database, which may slow down the performance.

With our data model, we place the query on the root
event view EPCISEvent in the object-relational layer. And
all events in the hierarchy are retrieved at once in one
database request. When more event types are introduced,
the algorithm still works well.
Semantic integrity of returned events The EPCIS spec-
ification requires the returned events to be identical to
the originally captured events. With our data model, this
semantic integrity has already been ready in the object-
relational layer.
Checking the existence of metadata The meta
data checking is needed to eliminate unneces-
sary event types before generate SQL statement

- 150 -

and to process parameters HASATTR fieldName,
EQUATTR fieldName attributeName. Existing data
dictionaries in DBMSs can be used but they are large
whereas event metadata is small, which makes the checking
inefficient. Besides, checking foreign constraints needs
several joins between dictionaries. Our solution is to
maintain our own metadata dictionary for event types,
called EventDic. EventDic contains information about all
event fields, their data types and referred vocabularies (if
exist) of event types. In disk, EventDic is stored in a table
of <event type, event fields, extensions>, where attribute
event fields is a collection of <event field, data type,
referred vocabulary> and extensions is all children types
of event type. This table is updated as frequent as there are
changes relating to event schemas. When EPCIS is started,
EventDic is loaded into a hashed list in the main memory.
Each entry in this list maintains a set of all event fields and
extensions of a particular event type. Because the number
of event types is small, we can hold EventDic in the main
memory and use it when generating an SQL statement to
reduce overhead work on checking metadata.
Ordering events of different types Since the result may
include events of different schema structures, currently we
can only order events by eventtime and recordtime in the
generated SQL statement. We can also load the whole result
into main memory, order it and return eventLimitCount top
events to users. But, this consumes a lot of resources, espe-
cially when the result size is much larger than eventLimit-
Count.

4.2 Algorithm

In this section, we propose the algorithm ProcessSim-
pleEventQuery (Algorithm 1) to process the Simple Event
Query. The inputs of this algorithm are the parameter
list params, the system limitation lim and the in-memory
structure EventDic mentioned before. lim is the number of
events that EPCIS can handle based on the current resource.
How to specify lim is beyond this paper. The output is the
result events formatted in an XML document whose schema
is provided in the EPCIS Specification.

First, invalid parameters and parameter collisions are de-
tected to generate necessary exceptions (line 4). Parameter
collisions occur in such situations when eventLimitCount
and maxEventCount both occur or when eventLimitCount
exists but orderBy does not. We then get the list of all
the event types will be queried, including their extensions
(lines 6-9). Based on EventDic, all event fields of each
event type are retrieved. Thus, we can check and eliminate
those types that do not have all the event fields desired in
params (line 10-13). Predicates for each remaining event
type are then generated (line 13) and joined together with
’OR’ operations to union events of different types in the

Algorithm 1: ProcessSimpleEventQuery
Input: params ← list of parameter pairs (name, value),

lim ← limited size of query,
EventDic ← a medata dictionary for event types

Output: An XML document of returned events

begin1
P ← ∅; // predicates generated from params2
T ← ∅; // all requested event types3
if (exist invalid parameters or parameter collisions in4
params) then return QueryParameterException;
F ← retrieve requested event fields in params;5
if ∃p ∈ params and p.name =’eventType’ then6

T ← event types in p.value;7
T ← T∪ all extensions of T in EventDic;8

else T ← get all event types in EventDic;9
for t ∈ T do10

if F∩ (all event fields of t in EventDic) 6= F then11
remove t from T ;12

else P ← P∪ generatePredicate(t,params);13

if T = ∅ then return empty document;14
predicates ← join all predicates in P with ’OR’;15
sql ← ’select value(e) from EPCISEvent e where ’ +16
predicates;
if orderBy∈ params then add ORDER clause to sql;17
if ∃p ∈ params and p.name =’maxEventCount’ and18
p.value < lim then

lim ← p.value;19

if ∃p ∈ params and p.name =’eventCountLimit’ and20
p.value < lim then

restrict sql to select the first p.value rows;21
else Restrict sql to select top (lim + 1) events;22
Allocate buffer B of size lim for holding result;23
Execute sql and fetch the result into B;24
if B overflows then return QueryTooLargeException;25
Format data in B in XML Document rDoc;26
return rDoc;27

end28

same result set (line 15). The query is then placed on the
root view EPCISEvent and VALUE function is used to con-
vert each returned tuple into an object instance (line 16).
To avoid running out of resources, we allocate a buffer of
limited size and fetch the result into it and generate an ex-
ception if necessary (lines 18-25). If users want to get only
some top events (eventCountLimit), lines 20-21 will put one
more predicate on the query to limit the number of returned
rows. This predicate is the ’SELECT TOP N’ clause in DML
statement.

Algorithm GeneratePredicate is provided to generate
predicates for each event type based on params. We can
not place predicates on other event fields except for event-
Time and recordTime because from the root view, events
are treated as the root object type. To solve this, each tu-
ple returned from the root view has to be treated as its
own object type (line 2) by using TREAT function. For
example, if we want to treat a tuple as an instance of Ob-
jectEvent Type, we use this clause (TREAT VALUE(p) AS

ObjectEvent Type).bizStep=’shipping’

- 151 -

Algorithm 2: GeneratePredicate
Input: params ← the parameter list, eventType ← an event

type, EventDic ← lookup dictionary for metadata
Output: Predicates placed on eventType
begin1

treat each tuple as an instance of eventType;2
P ← ∅ ; /* predicates */3
for each param ∈ params do4

op ← extract constraint type in param.name;5
fn ← extract the event field in param.name;6
if op ∈ {’LT’, ’LE’, ’GT’, ’GE’} then7

map op into >,≥, < or ≤;8
p ← fn + op + p.value;9

else if op =’EQ’ then10
if param is ’EQ bizTransaction type’ then11

map event field bizTransactionList to a table12
of T (type, bizTransaction);
p ← exists(select * from T where13
T.type =type and T.bizTransaction in
param.value;

if param.value is of primitive type then14
similar to 7;15

else if param.value is a list of string then16
p ← check if fn in param.value;17

18
else if op =’MATCH’ then19

if fn is single-valued then20
p ← match(fn, param.value))21

else22
map fn in to table T (epc);23
p ← check if exists(select * from T where24
match(epc,param.value);

25
else if op =’WD’ then26

T ← parent/child table of the vocabulary referred by27
fn;
href ← select child from T start with parent in28
param.value connect by prior child = parent;
p ← check if fn in href ;29

else if op =’EXIST’ then30
p ← check if fn is not null;31

else if op =’HASATTR’ or op =’EQATTR’ then32
look up fn in EventDic and fetch its properties33
into d;
if d is null then return ∅;34
if d.isVocabulary()=false then return ∅;35
v ← the view of the vocabulary referred by fn;36
look up v to get the master data for fn map attribute37
attr list of master data into table
T (attr name, attr value);
if op =’HASATTR’ then38

p ← check if exists(select * from T where39
attr name in param.value);

if op =’EQATTR’ then40
attrname ← attribute name from41
param.name;
p ← check if exists(select * from T where42
attr name = attr name and attr value in
param.value);

43
add p to P ;44

result ← join all predicates in P by ’AND’;45
return result46

end47

Each parameter name contains at least two parts sepa-
rated from each other by an underscore. The first part, cap-
italized, states the constraint type. The second part implies
the event field on which the constraint is placed. Based on
the constraint type and event field in each parameter (lines
5-6), we generate the predicates as follows.

Constraint types GE, GT, LT, LE, EQ are the simplest
cases (lines 7-9). Predicates have the form of ’fieldname ≥
value’ or similar, e.g bizStep =′ shipping′.

If EQ associates with a list of values (line 16), we use IN
expression to check if the value of an event field matches
one of the specified values, e.g bizStep IN (’shipping’,
’receiving’). For EQ bizTransaction Type (lines 11-13),
the TABLE expression is used to treat bizTransactionList
like a table in the FROM clause. In effect, we join the biz-
TransactionList with the row that contains it. Predicates are
then created on this join. For example, the corresponding
predicate of (EQ bizTransaction purchase, {′123′,′456′})
is EXISTS(SELECT * FROM TABLE(TREAT (VALUE(p)

AS ObjectEvent Type).bizTransactionList) l

WHERE l.type=’purchase’ and l.bizTransaction

IN (’123’,’456’).
MATCH (line 19-24) relates to EPC fields such as

epcList, childEPCs, parentID and EPCClass. Each ele-
ment of this parameter list may be a pure identify pat-
tern or an URI [5]. The pure identify patterns are spec-
ified in Section 6 of [6]. As a simple example, an
event of ObjectEvent (or TransactionEvent or Aggregation-
Event) that has ′urn:epc:idpat:sgtin:1233.1.1′ as one value
of its epcList (or childEPCs) is selected for (MATCH EPC,
′urn:epc:idpat:sgtin:[1230-1234].∗.∗′). In this algorithm, a
user-defined function match is used to check if a particular
field matches one of the patterns or URIs specified in the
parameter list. This function returns true if there is a match,
false otherwise. Due to the limited space and the simplicity
of this function, we do not specify the algorithm here.

With WD, we have to refer to the data in other vocab-
ulary to check not only the specified values but also their
descendants. (WD bizLocation, {′Seoul′}) requires us to
recursively retrieve all descendants of location ’Seoul’ and
check if one of them matches the value of bizLocation
(line 26-28). bizLocation IN (SELECT child FROM

BizLocation Href START WITH parent in (’Seoul’)

CONNECT BY PRIOR child = parent).
With the support of EventDic in main mem-

ory, handling HASATTR and EQATTR (lines 32-42),
e.g (EQATTR bizLocation Functionality,{′sale′}), is easier
and more efficient. We look up EventDic to check if the
field bizLocation exists and refers to another vocabulary.
Then we easily find out the view of that vocabulary, bizLo-
cation view. In bizLocation view, there is a special column
called attr list that holds all the attributes of each element.
This attr list provides information about the existence of

- 152 -

the attribute ′Functionality′ and its value ′sale′.
EXISTS(SELECT * FROM bizLocation view

loc, TABLE(loc.attr list) l WHERE

ObjectEvent.bizLocation = loc.bizLocationID AND

l.attr name =’Functionality’ AND l.attr value =

’Sale’); without EventDic, we have to do all the
metadata checking by querying system dictionaries, which
takes more time and makes the SQL statement more
complicated.

When parameters in params are all processed, we join
them together by ’AND’ operations (line 44). That means
a tuple is selected only if it satisfies all the constraints indi-
cated in params.

5 Conclusion

In this paper, we contribute an event-based data model
with two flexible layers for the EPCIS. Relational layer as-
sures data normalization, integrity and takes advantage of
existing query processing mechanisms. Object-relational
layer brings the flexibility in the future evolvement and in
the synthesis of existing relational data. It also makes the
data model semantic comprehensive by supporting object-
oriented features in modeling semantics and hierarchical re-
lationships. As the result, it facilitates the query statement
since reducing many join clauses. Besides, objects that ex-
perience the same business processes are recorded in the
same event so that we can reduce the data volume and pre-
serve the internal relationships between objects. We also
provide methods to process the Simple Event Query. Vari-
ous complicated parameters, including joining, hierarchical
retrieving, metadata checking, etc., are successfully con-
verted into SQL predicates in a single SQL statement. That
SQL statement needs just one database request.

6 Experiments an Future Work

The proposed data model and algorithm are parts of our
project to build an EPCIS for industrial enterprises based on
the EPCIS specification. Now, we finished the first proto-
type of EPCIS. It consists of the repository, which we de-
signed in Oracle 10g Release 1, and the implementation of
the two standard interfaces using Java: capture interface and
query interface. To populate data for our model, we built an
event generator in Java, which randomly creates events in
different types and pushes them to the EPCIS. The EPCIS
catches these events and stores them in the repository. The
Simple Event Query is one predefined query we have ever
implemented. It ran well with our algorithm. And when
we introduce more event types, it keeps giving the correct
answers.

In the future, we consider partitioning the event data by
time and handle queries on temporal data based on these

partitions. It will increase the query performance and easy
to keep track of new data and maintain old data. Besides,
exploiting the path history of EPC objects is also an inter-
esting problem since queries on traversal paths are specific
to RFID data and not supported by current DBMSs.

7 Acknowledge

This research was supported by the Ministry of Com-
merce, Industry, and Energy (MOCIE), Korea (10016466).

The authors wish to thank Prof. Brian J. d’Auriol of
KyungHee University for his advices and manuscript proof-
reading.

References

[1] S. S. Chawathe, V. krishnamurthy, S. Ramachandran, and
S. Sarma. Mananaging RFID data. In VLDB’04, pages
1189–1195, Toronto, Canada, 2004.

[2] R. Derakhshan, M. E. Orlowska, and X. Li. RFID data man-
agement: Challenges and opportunities. In Proceedings of
the IEEE International Conference on RFID, pages 175–
182, Grapevine, TX, USA, 2007.

[3] EPCGlobal. http://www.epcglobalinc.org/.
[4] EPCglobal. The EPCglobal Architecture Framework. EPC-

global, July 2005.
[5] EPCglobal. EPC Information Services (EPCIS) Version 1.0

Specification, Last Call Working Draft Version of 24 March
2006. 2006.

[6] EPCglobal. EPCglobal Tag Data Standards Version 1.3.
EPCglobal, March 2006.

[7] H. Gonzalez, J. Han, and X. Li. Flowcube: Constructuing
RFID flowcubes for multi-dimensional analysis of commod-
ity flows. In VLDB’06, pages 834–845, Seoul, Korea, 2006.

[8] H. Gonzalez, J. Han, and X. Li. Mining compressed
commodity workflows from massive RFID data sets. In
CIKM’06, pages 162–171, 2006.

[9] H. Gonzalez, J. Han, X. Li, and D. Klabjan. Warehousing
and analyzing massive RFID data sets. In ICDE’06, 2006.

[10] M. Harrison. EPC information service - data model and
queries. Technical report, February 2003.

[11] Y. Hu, S. Sundara, T. Chorma, and J. Srinivasan. Support-
ing RFID-based item tracking applications in oracle DBMS
using a bitmap datatype. In VLDB’05, Trondheim, Norway,
2005.

[12] T. Nguyen, Y.-K. Lee, R. Huq, B.-S. Jeong, and S. Lee. A
data model for EPC information services. In DEWS’2007,
March 2007.

[13] J. Rao, S. Doraiswamy, H. Thakkar, and L. S. Colby. A
deferred cleansing method for RFID data analytics. In
VLDB’06, Seoul, Korea, 2006.

[14] S. Sarma. Integrating RFID. ACM Queue, 2(7):50–57, Oc-
tober 2004.

[15] F. Wang and P. Liu. Temporal management of RFID data.
In VLDB’05, Trondheim, Norway, 2005.

- 153 -

