Query Responsive Awareness Software: Inventory Control
Case Study

Brian J. d’Auriol
Department of Computer
Engineering
Kyung Hee University, Korea
dauriol@oslab.khu.ac.kr

Sungyoung Lee
Department of Computer
Engineering
Kyung Hee University, Korea
sylee@oslab.khu.ac.kr

ABSTRACT

Query Responsive Awareness Software (QRAS) is proposed
in this paper as a run-time software representable model that
incorporates semantic attributes into the software. Specifi-
cally QRAS: (a) provides for the representation of properties
of the software and its application environment, (b) is com-
patible for distributed systems and in particular, smart col-
laborative object systems, and (c) provides human and/or
automated query and query-responsiveness. QRAS is based
on the Geometric Representation of Programs (GRP) model.
A case study based on a simplified inventory control system
together with a simulation of various queries concludes a
feasibility study of the proposed approach.

1. INTRODUCTION

Software is ubiquitous in modern day high-technology hu-
man population centers. These environments typically in-
clude technology infrastructures with wired and wireless ac-
cess available in urban and rural areas where software em-
bedded technologies are economically available. Such soft-
ware can be augmented with sensor capabilities and more
local processing of the sensor-acquired data thereby lead-
ing to ‘smartness’ in the software. Smart collaborative ob-
jects exemplify this vision of ubiquitous computing: they
link everyday things with information technology by aug-
menting ordinary objects with small sensor-based computing
platforms. There are nowadays many examples of ‘smart’-
enabled technologies (see for example [2,7,9]). The notion

*Computation and Communication Integration Group, A
World and International Research Group, http://www.ccig-
research.net

Permission to make digital or hard copies of all or part of this work for

Pramod Chikkappaiah
CCIG

Weiwei Yuan
Department of Computer
Engineering
Kyung Hee University, Korea
weiwei@oslab.khu.ac.kr

Young-Koo Lee
Department of Computer
Engineering
Kyung Hee University, Korea
yklee@khu.ac.kr

that such objects incorporate sensors together with percep-
tion algorithms is now established. And approaches for the
latter have been developed, for example, mobile agent-based
software, context reasoning, abstractions of sensor data, etc.

In addition, the software used in these technologies differs
from traditional software. Often, these technologies are mo-
bile, light-weight and have memory, processing capability
and power limitations. Software developed for these tech-
nologies also needs to support such light-weightiness. Fur-
thermore, the software often partakes in real-time distributed
applications, exchanging both information and control like
decisions. Traditional software environments tend to be
more monolithic and static in structure.

This paper introduces awareness software as an alternative
light-weight software for ‘smart’-enabled technologies. Aware-
ness software represents ‘smartness’ by a geometrically struc-
tured group of semantic descriptions that describe aspects of
the software. Query Responsive Awareness Software (QRAS)
is software that has two special components: a) awareness
software, and b) the capability to respond to queries about
its awareness. QRAS software is proposed to assist in the
self-management of software distributions over large-scale
heterogeneous ‘smart’-enabled technologies. The formula-
tion is based on the Geometric Representation of Programs
(GRP) model, informally proposed by d’Auriol in [4,5]. A
case study of an inventory control system is presented in the
paper. The GRP model is used to develop a ‘smart’ inven-
tory control system. A simple simulation is presented that
provides additional clarity about how such software behaves.

The rest of this paper is organized as follows. The next
section, Section 2 develops the QRAS model. A discussion
of related works appears in Section 3. Section 4 describes
the inventory control case study. Conclusions are presented
in Section 5.

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies 2. M ODEL DEVELOPMENT

bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

The Geometric Representation of Program (GRP) model
consists of three domains: the computation domain that

represents the execution processes, the data domain that
represents the data inputs and output of the computations,
and the awareness domain that represents the semantics of
the computations. This paper concentrates on the latter do-
main. These domains are integrated as illustrated in Fig. 1
and so both the computation and data domains appear in
the subsequent case study analyses.

Semantic variables that abstract semantic information about
the domain are identified during the software design stages.
Let a € A denote an awareness axis that models such a vari-
able. The dimension |A| denotes the number of such axes.
All axes are orthogonal but may be either dependent or in-
dependent. Specific values of these variables index integer
coordinates in the awareness space, A-space. Each compu-
tation instance (from the computation domain of the GRP
model) is mapped to such a coordinate; thereby, each com-
putation instance is fully indexed by the awareness variables.
However, sub-spaces of the A-space are formed by subsets
of the awareness axes; these correspond with subsets of the
semantic variables. Computation instances existing in the
sub-spaces are partially indexed by the awareness variables.
Constraints on the semantic variables are modeled as par-
titions on the A-space and its relevant sub-spaces, that is,
conditional expressions partition half-spaces and an inter-
secting set of such expressions determine a bounding poly-
tope enclosing a relevant set of integer points, and hence, a
set of computation instances.

The proposed query model is based on the enclosed space
given by all the partition constraints. Let QRAS=(Ra, F(RA))
where R4 is some data structure representation of A and F
is a set of methods that operate on R4 (i.e., an ADT, class
object, etc.) and provide for query formulation, initiation
and response. Information that queries may make consist of
either or both awareness information and awareness state.
The former describes the semantics of the awareness axes
and awareness regions of the awareness space and its vari-
ous sub-spaces. The latter describes particular state values
that can be further associated with a single computation
(i.e., a point in the awareness space) or with an awareness
region. Queries are initiated from QRAS-enabled software
and directed to other QRAS-enabled software. However, it
is also possible to have a user-driven interface that allows
user initiated query requests to be passed to the software.

Specifically, the following operations are defined.

e Association: Computation together with data instan-
ces are associated with specific values of the semantic
variables.

e Selection: One or more computation and/or data
instances are selected based on given specified values
of the semantic variables.

e Abstraction: One or more specific values from one
or more semantic variables, or, one or more semantic
variable concepts (i.e. the variable name itself) are
selected.

Figure 2 illustrates the overall operation of QRAS-enabled
software. Four modules denoted by A, B, C and D are shown
in a two-level software design. Standard USE relationships
are expressed by the think arcs between the modules (for

538

LY.

Figure 1: Overview of the Geometric Representa-
tion of Programs (GRP) model.

A
Response
Query
B C M~ D
Query
Response
Programmer/User

Figure 2: Overview of QRAS concepts: Modules
A and B are QRAS-enabled; module D can query
A, and, the user can query B; the three pairs of
modules A and B, A and C, and, C and D engage in
USE relationships.

example, A USEs B). Modules A and B are QRAS-enabled as
illustrated by the inscribed oval and therefore these mod-
ules can both initiate queries and respond to queries. The
other modules, C and D can initiate queries to any of the
QRAS-enabled modules, but themselves can not respond to
any queries. In the figure, B is shown as also having a user-
driven front-end that allows the user to initiate query and
view the results.

Scalability of the model is dependent on two factors, first,
the number of dimensions and individual states in the A-
space, and second, the implementation of the QRAS-enabled
software. In the former, although there may be many seman-
tic variables describing a complex software application, only
a relatively few are specifically associated with particular
specific code fragments. A relatively low dimension A-space
is associated with such a code fragment. Thus, the repre-
sentations are expected to consist of multiple connected low
dimensional A-spaces. In the latter, appropriate interval-
based or query-based approaches may reduce the software
complexity and run-time overhead.

3. RELATED WORKS

In fact, the formulation of computation instances and en-
closing polytopes correspond with the well-known iteration
space model found in compiler and parallelizing compiler
theory (see for example [11,15]). However, an important dif-

ference is that the definition of the axes and the formulation
of the representation convey the semantics of the problem
domain. In [5], this approach is classified as non-linguistic-
carried to distinguish it from the linguistic-carried classifica-
tion of the iteration space model. The inclusion of semantic
variables, that is, the inclusion of the awareness domain of
the GRP model, augments and extends from the iteration
space model.

There are also similarities between the GRP model and the
Conceptual Space Model (CSM) [6]. Specifically, the aware-
ness axes are similar to the quality dimensions in the CSM.
However a major difference is that the GRP model supports
awareness representation in software whereas the CSM sup-
ports conceptual representations: hence, operations in the
GRP model relate more with the classification, organization
and structuring of concepts associated with computations
whereas operations in the CSM relate more with conceptual
domain representation and manipulation. For example, sim-
ilarity of objects in the CSM can be defined in terms of a
distance function defined over the space given by the quality
dimensions, however, there is no direct equivalence of simi-
larity in the GRP model where the closest analogy would be
the enclosed region of computations all of which are selected
by a common set/range of indexing values in the awareness
space.

Other related approaches in the literature include concept
formalization and software reflection. Concept formaliza-
tion provides semantic and syntactic descriptions of stan-
dardized routines to support generic programming, see for
example [17]. Software reflection is defined as: a system that
is able to reason about itself [13]; “the ability of a program
to manipulate as data something representing the state of
the program during its own execution.” [12]; and the intro-
spection and intercession performed by an agent about it-
self [1]. Reflection is included in a number of programming
languages, e.g., Java [10,14]. (A Wikipedia page lists a num-
ber of languages categorized as ‘Reflective languages’ [16].)
More recently, reflection has been considered in run-time en-
vironments [1] and middleware [8].

Our work in this paper is motivated by representing parallel
and distributed programming semantics in light-weight soft-
ware that is suitable for smart-enabled technologies. Com-
mon parallel languages are not reflective and Java’s reflective
capabilities may be too heavy for this purpose. We there-
fore explore a mechanism in this paper in order to represent
the semantics useful for programs in this context. We are
not concerned about supporting generic programming or in-
tercession via reflective methods. Our work on awareness
software complements the existing literature related with
introspection via reflective methods.

4. INVENTORY CONTROL CASE STUDY

The definition of inventory control in [3] is adopted here:
“Inventory is the stock of any item or resource used in an
organization. An inventory system is the set of policies
and controls that monitor levels (threshold value) of inven-
tory and determine what levels should be maintained, when
stock should be replenished, and how large orders should
be.” These items or resources can include: raw materials,
finished products, component parts, and supplies.

539

8}
-\<\o\\
&
Sy

operations

ltems

(a) 3D Awareness space: A =
{ao = operations ,a; = items
, aq = threshold}.

ltems

(b) Ilustration of the bounded regions given
by the partitions: add: Q(i) < t, and re-
move: Q(i) > t, for all items in the inven-
tory.

Figure 3: Inventory control awareness space (axes
displayed rotated such that (i,j,k) corresponds with
vertical, horizontal, depth)

Let add, and remove be operations that can be performed
on each of the inventory items: the addition of ¢ quantity to
item 4 provided that the existing inventory quantity Q(7) is
less than a threshold t,, and similarly, the removal of ¢ quan-
tity from item i provided that the existing quantity Q(z) is
greater than a threshold ¢,.

add: Q(7)
Q)

Q>) +q
Q>) —q

— if Q(’L) < ta (1)
remove: — if Q(2) > tr (2)

Here, let a, denote the concept of add and remove opera-
tions, a; denote the concept of inventory items and aq denote
inventory threshold quantities. Hence: A = {ao,as,aq} and
the resulting awareness space of dimension |A| = 3 mod-
els the necessary concepts in the inventory control problem.
The condition <, respectively, > specifies a partition on A;
more precisely, a partition on the sub-space A® = {aq}. Fig-
ure 3(a) illustrates the A-space. Figure 3(b) illustrates the
partitions Q(i) < t, and Q(¢) > t, and the resulting two
horizontal planes for the add and remove operations respec-
tively. The hexahedron formed by these two planes and the
four vertical planes connecting the corresponding sides of
the horizontal planes represents the enclosed A-space.

Each point in the enclosed A-space region has the associ-
ated computation instances mapped to it:

((adq, i, 5) Q1) — Q@) +q forj<tq...
(remove,i,j) : QU)— QU)—q forj > 1)

for all ¢ items in the inventory.

The meaning of a computation instance is given by selections
of the awareness axes, e.g., (add,i,j) selects the instance
Q(i) < Q(i) + q. Partial indexing selects multiple instances
that are generalized by the associated semantic axis informa-
tion, e.g. (remove,,) selects all the computation instances
in the remove plane (see Fig. 3(b)) and thereby fully repre-
sents (2).

Equations (1) and (2) also form the basis for a computer
program code fragment as illustrated in Fig. 4 for the ad-
dition operation. Here, Line 1 selects on the a, dimension
and Line 2 selects on the ay dimension; and both specify
partitions, add and Q(%) < ¢4, respectively. For a particular
given 4, this corresponds with a particular arrow shown in
the lower light-gray plane in Fig. 3(b). However, for all items
in the inventory (i.e., let the code fragment be wrapped
within a repetition), this corresponds with the entire light
gray lower region in Fig. 3(b).

1 if (add-operation) then
2 if (Q(i) < ta) then
3. add q to Q(i)

4 endif

5 endif

Figure 4: Code fragment associated with (1)

The association of selection by indexing on the awareness
space forms the basis to consider various queries. Table 1
illustrates several queries that can be formulated in this ex-
ample together with the nature of the response. Figure 5
shows the corresponding dialog from a simplified simulation
of the inventory control. The simulation is implemented in
Haskell and the code that represents the A-space is shown
in Fig. 6. The simulation illustrates that the awareness ca-
pabilities as developed in this paper are feasible.

5. CONCLUSION

Query Responsive Awareness Software (QRAS) is proposed
in this paper as software that (a) incorporates awareness
and (b) can respond to externally generated queries. A sim-
ple query model is developed based on some of the ideas
of the Geometric Representation of Programs (GRP) model
that was informally proposed some years ago. The GRP
consists of the three domains, awareness, computation and
data. The earlier work on GRP focused on the computa-
tion domain, in particular, iteration spaces. This paper ex-
tends the earlier work to include the awareness domain. A
case study based on a simplified inventory control system
together with a simulation of various queries concludes a a
feasibility study that shows the reasonableness of this ap-
proach. The QRAS model is intended for distributed appli-
cations and in particular, for ‘smart-enabled’ technologies as
these have knowledge-processing requirements. The exten-
sion of the simulation to apply to general software applica-

540

Ma|n> whatlsPurpose createlnventorySpace
"operations items thresholds "

Main> whatAre "items" createlnventorySpace
"chocolate candy jelly beans "

Main> whatAre "thresholds" createlnventorySpace
"tatr"

Main> whatlsComputation (0,0,0) computationinit
"Q() <= Q() + "

Main> whatlsltemData (0,0,0) inventorylInit
1

Main> whatlsltemData (0,0,0) (add 0 10 (extractAxis "items"
createlnventorySpace) quantitylnit inventorylnit)
11

Main>
Main> howMany "dimensions" createlnventorySpace
3

Main> howMany "operations" createlnventorySpace
2

Main> howMany "items" createlnventorySpace
3

Figure 5: Haskell simulation results corresponding
with the queries in Table 1

—- Semantic Domain

type Semantics = String

type AxisElement = (Int, Semantics)

type Axis = ((Int, Semantics), [AxisElement])
type ASpace = [Axis]

createlnventorySpace :: ASpace

createlnventorySpace = [

((o, "operations") [(0 "add"), (1, "remove")]),

((1,"items"), [(0 "chocolate"), (1, "candy"),
(2, "jelly beans)])

((2, thresholds) [(0,"t_a"), (1,"t_r") 1)

Figure 6: Haskell representation of the inventory
A-space: the three inventory items are chocolate,
candy and jelly beans.

tion domains and the further formalization of the GRP and
QRAS models motivates future work.

Acknowledgements

This research was supported by the MIC (Ministry of Infor-
mation and Communication), Korea, under the ITFSIP (IT
Foreign Specialist Inviting Program) supervised by the IITA
(Institute of Information Technology Advancement) and the
MIC under the ITRC (Information Technology Research
Center) support program supervised by the IITA (IITA-
2006-C1090-0602-0002)

6. REFERENCES

[1] M. Ancona and W. Cazzola. Implementing the essence
of reflection: a reflective run-time environment. In
Proceedings of the 2004 ACM symposium on Applied
computing, (SAC’04:), pages 1503-1507, New York,
NY, USA, 2004. ACM.

M. Beigl and H. Gellersen. Smart-its: An embedded
platform for smart objects. In Proceedings of the
Smart Objects Conference (SOC 2003), Grenoble,
France, May 2003.

R. B. Chase, N. J. Aquilano, and F. R. Jacobs.
Operations Management for Competitive Advantage.
McGraw-Hill, Inc., Irwin, ninth edition, 2001.

Id. Query

Discussion

1 What is the program’s purpose?

2 What are the inventory items?
3 What are the thresholds?

4 What is the operation associated with the point

(0,0,0)?

5 What is the inventory associated with the point
(0,0,0)?

6 How many dimensions in the A-space?

7 How many operations in the A-space?

8 How many items in the inventory (in the A-space)?

The purpose is described by the semantic axes of the A-
space, in this example, Operations, inventory threshold of
operations of inventory items.

The items are the semantic values associated with the items
axis.

The thresholds are the semantic values associated with the
thresholds axis.

The operation is found by selecting the point in the add-
items plane, i.e., (add,,).

This refers to the data domain; in this example, the data is
associated with the items, i.e., (,0,).

Return the number of axis.

Return the number of indeces defined for operations, here,
two corresponding with add and remove.

Return the number of indeces defined for items.

Table 1: Example queries for the Inventory Control Case Study

[4] B. J. d’Auriol. Expressing parallel programs using
geometric representation: Case studies. In Proc. of the
TASTED International Conference Parallel and
Distributed Computing and Systems (PDCS’99), pages
985-990, Cambridge, MA, USA, Nov. 1999.

[5] B. J. d’Auriol. A geometric semantics for program
representation in the polytope model. In Proc. of the
Twelfth International Workshop on Languages and
Compilers for Parallel Computing LCPC’99, Aug. 4-6,
The Unwersity of California, San Diego, La Jolla CA
USA, Lecture Notes in Computer Science, Vol. 1863,
pages 451-454. Springer-Verlag, 1999.

[6] P. Gérdenfors. Conceptual Spaces, The Geometry of
Thought. MIT Press, Cambridge, MA, 2000.

[7] H.-W. Gellersen, M. Beigl, and H. Krull. The
mediacup: Awareness technology embedded in an
everyday object. In Proceedings of the 1st
International Symposium on Handheld and Ubiquitous
Computing (HUC99), pages 308-310, Karlsruhe, 1999.
Springer. Lecture notes in computer science; Vol 1707.

[8] E. Gjgrven, F. Eliassen, K. Lund, V. S. W. Eide, and
R. Staehli. Self-adaptive systems: A middleware
managed approach. In A. Keller and J.-P.
Martin-Flatin, editors, 2nd IEEFE International
Workshop on Self-Managed Networks, Systems &
Services (SelfMan 2006), pages 15-27. Springer, 2006.
LNCS 3996.

[9] M. Hecker, A. Karol, C. Stanton, and M.-A. Williams.

Smart sensor networks: Communication, collaboration

and business decision making in distributed complex

environments. In Proceedings of the International

Conference on Mobile Business (ICMBS05), pages

242-248, Sydney, Australia, July 2005. IEEE

Computer Society.

G. Kirby, R. Morrison, and D. Stemple. Linguistic

reflection in java. Software - Practice € Experience,

28(10):1045-1077, 1998.

C. Lengauer. Loop parallelization in the polytope

model. In E. Best, editor, CONCUR’93, Lecture Notes

in Computer Science 715, pages 398-416.

Springer-Verlag, 1993.

[12] J. L. W. Richard P. Gabriel and D. G. Bobrow. Clos:

(10]

(11]

integrating object-oriented and functional
programming. Communiations of the ACM,
34(9):28-35, 1991.

B. C. Smith. Reflection and semantics in lisp. In
Proceedings of the 11th ACM SIGACT-SIGPLAN
symposium on Principles of Programming Languages
(POPL ’84), pages 23-35, New York, NY, USA, 1984.
ACM.

Sun Microsystems, Inc. Trail: The reflection api, 2007.
[15] U. Banerjee. Loop Transformations for Restructuring
Compilers — The Foundations. Kluwer Academic

Publishers, 101 Philip Drive, Assinippi Park, Norwell,
MA, USA, 02061, 1993.
[16] Wikipedia. List of programming languages by
category. Last modified: 06:52, 9 January 2008.
J. Willcock, J. Jarvi, A. Lumsdaine, and D. Musser. A
formalization of concepts for generic programming. In
Concepts: a Linguistic Foundation of Generic
Programming at Adobe Tech Summit. Adobe Systems,
April 2004.

(13]

(17]

541

