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Abstract—Multidimensional Scaling (MDS) has been recently
applied to node localization in sensor networks and gained
some very impressive performance. MDS treats dissimilarities of
pair-wise nodes directly as Euclidean distances and then makes
use of the spectral decomposition of a doubly centered matrix
of dissimilarities. However dissimilarities mainly estimated by
Received Signal Strength (RSS) or by the Time of Arrival (TOA)
of communication signal from the sender to the receiver used to
suffer errors. From this observation, Nonmetric Multidimensional
Scaling (NMDS) based only the rank order of the dissimilarities
is proposed in this paper. Different from MDS, NMDS obtain
insights into the nature of “perceived” dissimilarities which
makes it more suitable to the problem of sensor localization.
The experiment on real sensor network measurements of RSS
and TOA shows the efficiency and novelty of NMDS for sensor
localization problem in term of sensor location-estimated error.

I. INTRODUCTION

Localization of the nodes in wireless sensor networks is
one of the main issues in a wireless sensor network. In
general, localization algorithms follow the following scheme:
anchor unknown distance determination, deriving a nodes
position given the anchor distances, and then refinement of
the position estimates. Localization algorithms can be divided
into two categories: range-based and range-free. In range-
based algorithms, nodes estimate their distance to seeds using
some specialized hardware. Range-free algorithms estimate the
location of sensor nodes by, either, exploiting the radio con-
nectivity information among neighboring nodes, or exploiting
the sensing capabilities that each sensor node possesses [1].
As a matter of fact, range-free techniques are more cost-
effective because they do not require sensors to be equipped
with any special hardware, but use less information than
range-based algorithms. Range-based localization depends on
the assumption that the absolute distance between a sender
and a receiver can be estimated by Received Signal Strength
(RSS) or by the Time of Arrival (TOA) of communication
signal from the sender to the receiver. Bahl et al. [2] present
RADAR, a radio-frequency (RF) based system for locating and
tracking users inside buildings. Bischoff et al. [3] proposed a
lightweight localization approach for supporting distance and
range queries in ad hoc wireless sensor networks by using
RSS to estimate distances. Ward et al. [4] used Time of Arrival
of signals, while Priyantha et al. [5] and Savvides et al. [6]
have used Time Difference of Arrival of signals to estimate
distances. And recently Dil et al. [7] proposed a novel range-
based algorithm based on the Monte Carlo approach. A review
of range-free localization schemes from the perspectives of

anchor-based and anchor-free solutions are well mentioned
in [1]. He et al. [8] proposed a range-free algorithm called
APIT in which all possible triangles of the seeds are formed.
In Gradient algorithm, proposed by Nagpal et al. in [9], the
anchor nodes initiate a gradient that self-propagates and allows
a sensor node to infer its distance from the anchor. Niculescu
and Nath [10] proposed DV-Hop which is similar to Gradient,
but uses a different method for estimating the average distance
per hop.

II. RELATED WORK

We consider sensor location estimation when sensors mea-
sure received signal strength (RSS) or time-of-arrival (TOA)
between themselves and neighboring sensors. We use an exten-
sive TOA and RSS measurement campaign in an indoor office
from the work in [11]. Some related works are previous ones
based on MDS [12][13][14]. MDS-MAP [12] uses a technique
from mathematical psychology called Multidimensional Scal-
ing (MDS). The intuition behind multidimensional scaling is
simple. Suppose there are N points, suspended in a volume.
We don’t know the positions of the points, but we do know
the distance between each pair of points. Multidimensional
scaling is an O(N3) algorithm that uses the Law of Cosines
and linear algebra to reconstruct the relative positions of the
points based on the pairwise distances. In this paper, we focus
on sensor location estimation using pair-wise RSS or TOA
measurements in a wireless network. Consider a network of
N = m + n sensors with m reference and n blindfolded
sensors (m � n). We also call those m known-location sensors
anchor nodes. The sensor localization problem corresponds to
the estimation of sensor coordinates X = [x1, x2, ..., xN ],
where xi ∈ �2 (extention of these results to �3 is also
possible). Suppose that [x1, x2, ..., xn] are unknown-location
sensor coordinates and that [xn+1, xn+2, ..., xn+m] are known-
location sensor coordinates, we aim to find [x1, x2, ..., xn]
based on the estimated distance (or dissimilarity) δij between
sensor i and j. The estimation of δij could be based on RSS
or TOA. The next section of the paper describes Classical
MDS and Nonmetric MDS in detail. Section IV presents
Procrustes Analysis which seeks the isotropic dilation and the
rigid translation, reflection and rotation needed to match the
estimated coordinate to the true coordinate of sensor locations.
The proposed sensor localization algorithm is also presented in
Section IV. Section V comes with the experiment on the real
measured sensor network. Conclusions are stated in Section
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VI.

III. MULTIDIMENSIONAL SCALING - MDS

Suppose a set of N objects is under consideration and
between each pair of objects (i, j) there is a measurement δij of
the “dissimilarity” between the two objects. The typical goal
of MDS is to find a low dimensional space, usually Euclidean,
in which points in the space represent the objects, one point
representing one object, and such that the distances between
the points in the space {dij} match as well as possible the
original dissimilarities {δij} [15].

A. Classical Multidimensional Scaling - CMDS

Classical Multidimensional Scaling treats dissimilarities
{δij} directly as Euclidean distances and then makes use of
the spectral decomposition of a doubly centered matrix of
dissimilarities. Formally, a symmetric N×N matrix ∆ = [δij ]
is called a dissimilarity matrix if δij ≥ 0 (nonnegative
elements) and δii = 0 (zero diagonal elements). From a
given dissimilarity matrix ∆, CMDS algorithm constructs a
configuration of points in a Euclidean space of specified
dimension p [16]. Because the distances in the configuration
space are to be Euclidean, we can have

δ2
ij = d2

ij(X) = ‖xi − xj‖2 = (xi − xj)T (xi − xj) (1)

By writing the squared distances as d2
ij(X) = xT

i xi−2xixj +
xT

j xj and defining Ψ =
[
xT

1 x1, .., x
T
NxN

]T
[14], the squared

distance matrix D = [d2
ij(X)]Ni,j=1 now can be written as

D = ΨeT − 2XT X + eΨT (2)

where e ∈ �n is a vector of all ones, and X = [x1, x2, ..., xN ].
Let us define the inner product matrix B = XT X . Matrix B
can be rewritten as

B = −HDH (3)

where H = I − eeT /N is the centering operator. In order to
recover the coordinates from B, CMDS needs to extract the
eigenvectors and eigenvalues as follow

B = UΛUT (4)

Let Λp = diag(λ1, .., λp) be the diagonal matrix of p largest
non-zero eigenvalues of B, and Up = [u1, .., up] is the
corresponding eigenvectors. Then the coordinate matrix X is
given by X = UpΛ

1/2
p .

B. Nonmetric Multidimensional Scaling - NMDS

Nonmetric Multidimensional Scaling is a form of MDS
that has a slightly less ambitious goal than metric scaling.
Instead of attempting to create a configuration of points for
which the pairwise distances approximate the original dis-
similarities, Nonmetric MDS attempts only to approximate
the ranks of the dissimilarities. The standard nonmetric MDS
problem can be formalized as follow [17][18][19][20][21][15].
Given a symmetric zero diagonal matrix ∆ = [δij ], find
X = [x1, x2, ..., xN ] ∈ �p×N such that

∀i, j, k, l ‖xi − xj‖2
< ‖xk − xl‖2 ⇔ δij < δkl (5)

Input Dissimilarity Matrix

Determine Initial Coordinates

Evaluate
Fit

Estimate
Disparities

Determine New Coordinates

Another Iteration

to Improve Stress

END

(1)

(2)

(3)(4)

Stress Minimum

Fig. 1. Shepard-Kruskal algorithm for Nonmetric MDS.

The given dissimilarities δij are used to generate a set of
derived distances dij , which are approximately related to the
given dissimilarities δij by a unknown monotonic increasing
function f . We can write dij ≈ f(δij) where function f has
the property that

δij < δrs ⇔ f(δij) < f(δrs) (6)

The most common approach used to determine the elements
dij and to obtain the coordinates X = [x1, x2, ..., xN ] of the
objects given only rank order information is an iterative process
commonly referred to as the Shepard-Kruskal algorithm (see
Fig. 1). The algorithm consists of four steps as follow:

Step 1 - Initial Phase
In this step, we calculate Euclidean distances d

(0)
ij from an

arbitrarily chosen initial configuration X(0) in dimension p,
provided that all objects have different coordinates. One might
use metric MDS to obtain these initial coordinates.

Step 2 - Nonmetric Phase
The second step or nonmetric phase determines disparities d̃

(0)
ij

from the distances d
(0)
ij by constructing a monotone regression

relationship between the d
(0)
ij ’s and δij’s, under the requirement

that if δij < δkl, then d̃
(0)
ij ≤ d̃

(0)
kl . This is called the

weak monotonic requirement. To obtain the disparities d̃
(0)
ij ,

a useful approximation method, pool-adjacent violators (PAV)
algorithm, is used. The PAV algorithm is described as follows:
beginning with the lowest ranked value of δij , the adjacent
d
(0)
ij values are compared for each δij to determine if they

are monotonically related to the δij’s. As long as the required
monotonic property is true, we assign d̃

(0)
ij = d

(0)
ij . Whenever a

block of consecutive values of d
(0)
ij are encountered that violate

the required monotonic property the d
(0)
ij values are averaged

together with the most recent non-violator d
(0)
ij value to obtain

an estimator d̃
(0)
ij . Eventually this value d̃

(0)
ij is assigned to all



Fig. 2. Illustration of PAV algorithm.

points in the particular block. This procedure is illustrated by
the following example [21] in Fig. 2.

Step 3 - Metric Phase
In this step, the spatial configuration of X(0) is altered to obtain
X(1). X(1) is selected in such a way that goodness-of-fit is
minimized. Common measure used to determine goodness-of-
fit is STRESS or SSTRESS, and are given by

S = STRESS =
∑
i<j

(
d̃
(0)
ij − d

(0)
ij

)2

/
∑
i<j

d
(0)2

ij (7)

or

S = SSTRESS =




∑
i<j

(
d̃
(0)2

ij − d
(0)2

ij

)2

/
∑
i<j

d̃
(0)4

ij




1/2

(8)
This procedure requires a numerical approximation procedure
such as the method of steepest descent. The first step is
to place all the coordinates of the points in X in a vector
x = [xT

1 , xT
2 , ..., xT

N ]T vector with Np elements. The stress
S is then regarded as a function of x, and is minimized
with respect to x in an iterative manner. When the method
of steepest descent is used, the update rule is defined as

x(k+1) = x(k) − α
∂S

∂x
/

∣∣∣∣∂S

∂x

∣∣∣∣ (9)

where xk is the vector of coordinates after the kth iteration
and α is the step length (refer to [15] for details). From X(1)

the new distances d
(1)
ij can be obtained which are more closely

related to the disparities d̃
(0)
ij from Step 2.

Step 4 - Evaluation Phase
In the evaluation phase, the goodness-of-fit measure (STRESS
or SSTRESS) is used to evaluate whether or not its change
as a result of the last iteration is sufficiently small that the
procedure is terminated.

IV. PROCRUSTES ANALYSIS AND PROPOSED ALGORITHM

In this section, we will briefly review procrustes analysis
and propose our sensor localization algorithm.

A. Procrustes Analysis

Procrustes analysis seeks the isotropic dilation and the
rigid translation, reflection and rotation needed to match one
configuration to the other [15]. Suppose a configuration of N
points in a q-dimensional Euclidean space, with coordinates
given by the N × q matrix O1 = [x1, .., xN ]T ∈ �N×q, needs
to be optimally matched to another configuration of N points
in a p-dimensional Euclidean space (p ≥ q), with coordinates
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Fig. 3. Experimental sensor locations of 44 nodes with 4 circled anchor
nodes (3, 10, 35, 44).

RSS−based Estimation (RMSE = 1.7561m) TOA−based Estimation (RMSE = 1.0003m)

Fig. 4. Sensor Localization based on NMDS is performed using RSS and
TOA range measurements from sensor network. True and estimated sensor
locations are marked, respectively, by ’*’ and ’x’, while anchor nodes are
circled.

given by the O2 = [y1, .., yN ]T ∈ �N×p. In order to make
both configurations be at the same p-dimensional space, we
firstly add p− q columns of zeros at the right of matrix O1. It
is assumed that the ith point in the first configuration is in a
one-to-one correspondence with the ith point in the second
configuration. Let the point xi in the X space be dilated,
translated, rotated to new coordinate x̃i = cAT xi + b, the
objective function Φ(c,A, b) needed to be minimized is the
new sum of squared distances between points and presented
as

Φ(c, T, b) =
N∑

i=1

(yi − cAT xi − b)T (yi − cAT xi − b) (10)

where the matrix A is orthogonal giving a rigid rotation, vector
b is a rigid translation vector, and c is the dilation. The solution
to procrustes analysis is well described in [15] and can be
summarized as following steps:

• Subtract the mean vectors for the configurations from
each of the respective points in order to have the centroids
at the origin.

• Find the rotation matrix A =
(OT

1 O2O
T
2 O1)1/2(OT

2 O1)−1 and rotate the O1
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Fig. 5. The performance of MDS and NMDS versus the number of anchor
nodes

configuration to O1A
• Scale the O1 configuration by multiplying each coordinate

by c, where c = tr(OT
1 O2O

T
2 O1)1/2/tr(OT

1 O1)
The value of minimized objective function is

Φopt = tr(OT
2 O2) −

{
tr(OT

1 O2O
T
2 O1)1/2

}2

/tr(OT
1 O1)

(11)
and the translation vector can be calculated as b = µy−cAT µx,
where µx and µy are the centroids of the two configurations.

B. Proposed Sensor Localization Algorithm

Our proposed sensor localization algorithm based on NMDS
and procrustes analysis consists of three steps as follow:

Step 1. Construct the dissimilarity (or distance) matrix
which contains the dissimilarities between all pairs of sensor
nodes based on RSS or TOA.

Step 2. Apply NMDS to the dissimilarity matrix to get
the two (or three) dimensional coordinates which is a 2D (or
3D) relative map (in our work, we only experiment on two
dimensional map).

Step 3. Given sufficient anchor nodes , we use procrustes
analysis to find the rigid rotation matrix A, rigid translation
vector b, and the dilation c that match the configuration of
absolute anchor nodes to the configuration of relative anchor
nodes. And then we use A, b and c to transform the other
relative nodes (location-unknown nodes) to form the final
estimated map.

V. EXPERIMENT ON A MEASURED NETWORK

In our experiment, we use sensor network measurements
of received signal strength (RSS) and time-of-arrival (TOA)
were made publicly and originally reported in [11]. This data
set includes the RSS and TOA range measurements from a
network of 44 devices (4 of which are anchor nodes). The mea-
surements were made in an open plan office building, within a
14×14m square area. Four devices near the corners are chosen
as reference devices (node 3, 10, 35, 44). The remaining 40
devices are blindfolded devices (see Fig. 3). Before apply MDS
or NMDS, we need to construct the dissimilarity (or distance)
matrix which contains the dissimilarities between all pairs of
sensor nodes based on RSS or TOA.

RSS−based Estimation with m = 3 (RMSE = 2.0877m) TOA−based Estimation with m = 3 (RMSE = 1.0752m)

RSS−based Estimation with m = 5 (RMSE = 1.7437m) TOA−based Estimation with m = 5 (RMSE = 0.96742m)

RSS−based Estimation with m = 6 (RMSE = 1.7663m) TOA−based Estimation with m = 6 (RMSE = 0.98263m)

Fig. 6. Sensor Localization based on NMDS is performed using RSS and
TOA range measurements from sensor network when the number of anchor
nodes m = 3, 5, 6 was randomly selected. True and estimated sensor locations
are marked, respectively, by ’*’ and ’x’, while anchor nodes are circled.

• For Distance matrix based on RSS: We use equation (7)
in [11] to estimate range from given received power Pij

as:

δij = d0

(
P0

Pij

)1/np

(12)

where P0(dBm) is the received power in decibel mil-
liwatts at a reference distance d0 and The path loss
exponent np is a function of the environment. More
details can be referenced in [11].

• For Distance matrix based on TOA: We use data matrix
of time delay between sensors, in seconds (a 44 by 44
matrix). The (i, j) element is the Tij reported in Section
IV of [11], i.e., the average of 10 measured time delays, 5
with the transmitter at i and receiver at j, and 5 with the
transmitter at j and receiver at i. The distance between
sensor i and j is calculated as

δij = |Tij | × ρ (13)



where ρ is speed of propagation (speed of light) in m/s.

In our implementation of NMDS, classical multidimensional
scaling is used to choose the initial coordinate of points. For
the goodness-of-fit criterion to minimize, we use STRESS
criterion (7) which is actually the Stress normalized by the sum
of squares of the inter-point distances. The estimated device
locations are compared with the actual locations in Fig. 4 with
Root Mean Squared Error (RMSE) used to measure location-
estimated error. The true and estimated sensor positions are

MDS MLE [11] dwMDS [14] NMDS
RSS 4.26m 2.18m 2.48m 1.76m
TOA 1.85m 1.23m 1.12m 1.00m

TABLE I
RMSE OF LOCATION ESTIMATES BASED ON MDS, MLE, DWMDS, AND

NMDS IN EXPERIMENTAL NETWORK.

marked by ’*’ and ’x’, respectively, where the lines represent
the estimation errors and the anchor nodes are circled with
red color. We also compare the performance of the NMDS
algorithm to classical MDS, the MLE based solutions from
[11], and dwMDS from [14]. Table I summarizes the RMSE
of the location estimates based on those methods. It is noted
that, we refer the results of MLE and dwMDS in [14]. Next, in
order to evaluate the performance of MDS and NMDS versus
the number of anchor nodes, we choose randomly m = 3, .., 10
sensors as anchor nodes, then apply MDS and NMDS. 50
times of random selection were performed for each value of
m and the average RMSE result was recorded. It can be seen
from Fig. 5 that NMDS outperforms MDS, and the RMSE of
both MDS and NMDS reduces when the number of anchor
nodes increases. In Fig. 6, we can see the performance of
sensor localization based on NMDS using RSS and TOA range
measurements when the number of anchor nodes m = 3, 5, 6
was randomly selected. It shows that not only the number
of selected anchor nodes affects the performance of NMDS,
but also the locations of anchor nodes. For example, the
performance of NMDS with m = 5 anchor nodes selected
as in Fig. 6 (RSS-based RMSE = 1.7437m and TOA-based
RMSE = 0.9674m) is better than that of NMDS with m = 6
anchor nodes (RSS-based RMSE = 1.7663m and TOA-based
RMSE = 0.9826m).

VI. CONCLUSION

We presented a Nonmetric Multidimensional Scaling ap-
proach for sensor localization that outperforms MDS with real
measurements of received signal strength (RSS) and time-of-
arrival (TOA). Because NMDS is based only on the rank order
of the dissimilarities, it is more suitable to the problem of sen-
sor localization compared to MDS. The impressive experiment
results of NMDS on real measured sensor network exhibits the
promising prospects of this approach for the problem of sensor
localization. Our future work will be applying this approach
for the sensor network with mere connectivity.
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