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Abstract

Compressed sensing (CS), a joint compression and sens-
ing process, is a emerging field of activity in which the sig-
nal is sampled and simultaneously compressed at a greatly
reduced rate. In CS, the projection matrix is chosen at ran-
dom which would lead to inefficient performance of CS. Re-
cently, an optimized projection (OP) was chosen such that it
leads to better coherence of the effective dictionary, leading
substantially better CS reconstruction performance. This is
the only recent work related to the optimization of projec-
tion matrix, but the major drawback of this approach is that
its algorithm is an iterative and high complexity one. It is
considered that an efficient and lightweight algorithm for
designing projection matrix would usefully supplement and
enhance the performance of CS. In this paper, we propose
an algorithm to obtain such an projection matrix called
efficient projection (EP) which is designed in such a way
that the new projected dictionary will have the structure as
much similar as the original dictionary. For this purpose,
we use Multidimensional Scaling (MDS) technique which
helps to find a low-dimensional new projected dictionary
such that the pairwise distances between new atoms in this
new projected dictionary match as well as possible the orig-
inal atoms in original dictionary. This leads to a solution
for EP which is very simple and can be obtained by doing
singular value decomposition of original dictionary. The
experiments show the novelty of our approach when it can
gain a comparative performance with a very low complexity
compared to that of OP.

1 Introduction

Compressed Sensing (CS) [2][3][1][8][18][16][9], a
joint compression and sensing process, provides a new way
to acquire and represent sparse signals that requires less
sampling resources than traditional approaches.

1.1 Problem Statement

The mathematical problem statement can be summarized
as follow. Given a T represent sparse signal x ∈ �n over
a dictionary Ψ = [Ψ1,Ψ2, ...,Ψk] ∈ �n×k , with n <
k and each column of Ψ is called atom. Signal x can be
described as x = Ψα with α ∈ �k and ‖α‖0 < T � n.
It is noted that ‖α‖0 is the l0-norm of α which counts the
number of non-zeros in α. In CS, signal x is compressed
by a projection matrix Φ ∈ �p×n with T < p � n, which
yields the sensing vector y = Φx ∈ �p (see Fig. 1). Now
the objective is to reconstruct the original signal x given
dictionary Ψ, projection matrix Φ and y = Φx = ΦΨα.
Let Ω = ΦΨ ∈ �p×k, then a representation of x ∈ �n can
be thought of as a vector α ∈ �k satisfying

y = Ωα (1)

Because p � k , the problem (1) is underdetermined (i.e.
there is no unique solution to the problem), so CS recon-
struct x from y by exploiting the sparsity (i.e., among all
possible α satisfying y = Ωα it seeks the sparsest). The
reconstruction problem can be written as

(P0) α̂ = arg minα ‖α‖0 s.t. y = Ωα (2)

After getting α̂, the reconstructed signal is calculated as x̂ =
Ψα̂.



Figure 1. The joint compression and sensing
process.

1.2 Current Solutions to CS

Several methods have been developed and introduced
to solve the problem of finding sparse representation α
to reconstruct original signal x which basically consists
of Matching Pursuit (MP), Orthogonal Matching Pursuit
(OMP) and Basis Pursuit (BP). Matching pursuit (MP), a
greedy algorithm, proposed in [14] is an iterative procedure
of finding a sub-optimal signal’s representation in a highly
redundant dictionary of functions. In MP, a signal represen-
tation is iteratively built up by selecting the atom that max-
imally improves the representation at each iteration. While
there is no guarantee that MP computes sparse represen-
tations, MP is easily implemented, converges quickly, and
has good approximation properties [11]. Moreover, there
is one variant of MP, Orthogonal Matching Pursuit (OMP),
can be shown to compute nearly sparse representations un-
der some conditions. In [15], they proposed an improved
algorithm called Orthogonal Matching Pursuit (OMP) that
maintains the backward orthogonality of the residual (error)
and leads to a better convergence. OMP also can be used to
solve (2) efficiently. Basically, we want to find the sparse
representation via l0-norm, but this is NP-hard problem, so
we can relax the problem to l1-norm since it typically leads
to linear programs, which are convex and poly-time solv-
able. The l0-norm optimization problem (2) can be relaxed
to l1-norm optimization problem as follow

(P1) α̂ = arg minα ‖α‖1 s.t. y = Ωα (3)

Basis Pursuit (BP) finds sparse representations by convex
optimization. It obtains the decomposition that minimizes
the l1-norm of the coefficients occurring in the represen-
tation. Because it is based on global optimization, it can
stably super-resolve in ways that Matching Pursuit can not
[4]. Recent theoretical work also shows that representations
computed by BP are guaranteed to be sparse under certain
conditions [11].

1.3 Compressed Sensing Applications

Though CS is an emerging field of activity, with its beau-
tiful theoretical results, in recent few years, there has been
an certain amount of literature on the application of CS.
In [19], they propose algorithms and hardware to support
a new theory of compressive imaging which is based on a
new digital image/video camera that directly acquires ran-
dom projections of the signal without first collecting the
pixels/voxels. It is very interesting that their camera in-
cludes the ability to obtain an image with a single detection
element while measuring the image/video fewer times than
the number of pixels this can significantly reduce the com-
putation required for video acquisition/encoding. Coming
along is the application of CS on medical imaging which
is studied in [13]. They develop practical under sampling
schemes for MR imaging based on the theory of CS. Com-
pressed Sensing DNA Microarrays was also studied in [17].
A very comprehensive and almost complete reference of CS
could be found at http://www.dsp.ece.rice.edu/cs/.

1.4 Focus and Aim

While the choice of dictionary matrix Ψ depends mostly
on the model of target signal x, the projection matrix Φ is
chosen at random in CS framework. The reason for simple
choice of the projection matrix is to simplify its theoret-
ical analysis and also facilitates a simple implementation.
But randomly picking up Φ would lead to inefficient per-
formance of CS which is a good motivation to design the
projection matrix Φ in an efficient and optimal way. In [9],
they show that by optimizing the choice of Φ such that it
leads to better coherence of the effective dictionary, a sub-
stantially better CS reconstruction performance is obtained,
with both BP and OMP algorithms. This is the only recent
work related to the optimization of projection matrix, but
the major drawback of this approach is that its algorithm is
an iterative and high complexity one. It is considered that
an efficient and lightweight algorithm for designing projec-
tion matrix would usefully supplement and enhance the per-
formance of CS. In this paper, we propose an algorithm to
design projection matrix Φ which is called efficient projec-
tion (EP) to distinguish with optimized projection (OP) in
[9]. The EP is designed in such a way that the new pro-
jected dictionary Ω = ΦΨ will have the structure as much
similar as the dictionary Ψ. For this purpose, we use Mul-
tidimensional Scaling (MDS) technique which helps to find
a low-dimensional new projected dictionary Ω such that the
pairwise distances between new atoms in this new projected
dictionary Ω match as well as possible the original atoms
in dictionary Ψ. This leads to a solution for EP which is
very simple and can be obtained by doing singular value
decomposition of dictionary Ψ. In next section, OP tech-



nique will be presented. MDS and proposed EP algorithm
are presented in section 3. We demonstrate the experimen-
tal results to show the novelty of our proposed algorithm in
section 4. Some conclusions and future works are drawn in
section 5.

2 Optimized Projection

Objective: Minimize µt{ΦΨ} with respect to Φ.
Input: Use the following parameters:

1. t or t% - coherence (fixed or relative) threshold,

2. Ψ - the dictionary,

3. p - number of measurements,

4. γ - down-scaling factor, and

5. Iter - number of iterations.

Initialization: Set Φ ∈ �p×n to be an arbitrary random
matrix.
Loop: Set k= 0 and repeat Iter times:

1. Gram Matrix Construction: Normalize the columns
in the matrix ΦkΨ and obtain the effective dictionary
Ωk and compute Gram Matrix Gk = ΩT

k Ωk.

2. Set Threshold and Shrink: If mode of operation is
fixed, use t as threshold. Otherwise, choose t such
that t% of the off-diagonal entries in Gk are above it.
Update the Gram matrix and obtain Ĝk by

gij =




γgij |gij | ≥ t
γt.sign(gij) t > |gij | ≥ γt

gij γt > |gij |
(4)

3. Reduce Rank: Apply SVD and force the rank of Ĝk

to be equal to p.

4. Squared-Root: Build the squared-root of Ĝk =
ST

k Sk, where Sk is the size of p × n.

5. Update Φ: Find Φk+1 that minimizes the error
‖Sk − ΦΨ‖2

F and set k = k + 1.

Output: The output of the above algorithm is ΦIter.

Table 1. Optimized Projection Algorithm.

Given a dictionary Ψ, its mutual-coherence is defined as
the largest absolute and normalized inner product between
different columns in Ψ [7][10][9] and can be written as fol-

low:

µ{Ψ} = max
i�=j

∣∣dT
i dj

∣∣
‖di‖ ‖dj‖ (5)

where di is the column ith in dictionary matrix Ψ. The
mutual-coherence provides a measure of the worst similar-
ity between the dictionary columns, a value that exposes
the dictionary’s vulnerability, as such two closely related
columns may confuse any pursuit technique. A different
way to understand the mutual-coherence is by considering
the Gram matrix G = Ψ̃T Ψ̃, computed using the dictio-
nary after normalizing each of its columns. The mutual-
coherence is the off-diagonal entry gij with the largest mag-
nitude. Suppose that the signal x0 has been constructed by
x0 = Ψα0 with a sparse representation. Suppose further
that the following inequality is satisfied:

‖α0‖0 <
1
2

(
1 +

1
µ{Ψ}

)
(6)

Some theoretical works [7][10] show that if inequality (6) is
satisfied, the vector α0 can be found exactly by BP or OMP
algorithms. Based on this fact, Elad in [9] proposed a more
strict requirement that

‖α0‖0 <
1
2

(
1 +

1
µ{ΦΨ}

)
≤ 1

2

(
1 +

1
µ{Ψ}

)
(7)

and designed Φ such that µ{ΦΨ} is as small as possible.
But he claimed that the mutual-coherence defined as above
does not do justice to the actual behavior of sparse represen-
tations and pursuit algorithms’ performance. So he consid-
ered a different mutual-coherence, which called t-averaged
mutual-coherence and defined as follows:

µt(Ψ) =

∑
i�=j

(|gij | ≥ t) . |gij |
∑
i�=j

(|gij | ≥ t)
(8)

Based on t-averaged mutual-coherence, an optimized pro-
jection can be obtained by the proposed algorithm in [9]
which can be summarized as in Table I.

3 Efficient Projection

EP is based on the idea of Multidimensional Scaling
(MDS) technique which helps to find a low-dimensional
new projected dictionary Ω such that the pairwise distances
between new atoms in this new projected dictionary Ω
match as well as possible the original atoms in dictionary
Ψ. In this section, we review MDS briefly and proposed
our approach to get EP.



3.1 Multidimensional Scaling - MDS

Suppose a set of N objects is under consideration and
between each pair of objects (i, j) there is a measurement
δij of the “dissimilarity” between the two objects. The typ-
ical goal of MDS is to find a low dimensional space, usu-
ally Euclidean, in which points in the space represent the
objects, one point representing one object, and such that the
distances between the points in the space {dij} match as
well as possible the original dissimilarities {δij} [6]. Mul-
tidimensional Scaling treats dissimilarities {δij} directly as
Euclidean distances and then makes use of the spectral de-
composition of a doubly centered matrix of dissimilarities.
Formally, a symmetric N × N matrix ∆ = [δij ] is called a
dissimilarity matrix if δij ≥ 0 (nonnegative elements) and
δii = 0 (zero diagonal elements). From a given dissimilar-
ity matrix ∆, MDS algorithm constructs a configuration of
points in a Euclidean space of specified dimension p [12].
Because the distances in the configuration space are to be
Euclidean, we can have

δ2
ij = d2

ij(X) = ‖xi − xj‖2 = (xi − xj)T (xi − xj) (9)

By writing the squared distances as d2
ij(X) = xT

i xi −
2xixj + xT

j xj and defining Ξ =
[
xT

1 x1, .., x
T
NxN

]T
[5],

the squared distance matrix D = [d2
ij(X)]Ni,j=1 now can be

written as
D = ΞeT − 2XT X + eΞT (10)

where e ∈ �n is a vector of all ones, and X =
[x1, x2, ..., xN ]. Let us define the inner product matrix
B = XT X . Matrix B can be rewritten as

B = −HDH (11)

where H = I−eeT /N is the centering operator. In order to
recover the coordinates from B, MDS needs to extract the
eigenvectors and eigenvalues as follow

B = UΛUT (12)

Let Λp = diag(λ1, .., λp) be the diagonal matrix of p
largest non-zero eigenvalues of B, and Up = [u1, .., up]
is the corresponding eigenvectors. Then the new coordinate
matrix X̂ is given by X̂ = Λ1/2

p UT
p . Let us now derive the

relationship between X and X̂ to see what the projection
matrix looks like. Based on the relation between singular
value decomposition and eigenvalue decomposition, we can
write

XT X = UpΛpU
T
p =

(
UpΛ1/2

p V T
) (

V Λ1/2
p UT

p

)
(13)

where X = V Λ1/2
p UT

p shows the singular value decompo-

sition of X . Now we can have X̂ = V T X . It is noted that
when MDS is applied on Euclidean distance, it is as same
as Principal Component Analysis.

3.2 Efficient Projection

Now it is time to derive how to obtain efficient projec-
tion. As we stated that the EP is designed in such a way that
the new projected dictionary Ω = ΦΨ will have the struc-
ture as much similar as the dictionary Ψ. For this purpose,
we use Multidimensional Scaling (MDS) technique which
helps to find a low-dimensional new projected dictionary Ω
such that the pairwise distances between new atoms in this
new projected dictionary Ω match as well as possible the
original atoms in dictionary Ψ. Suppose that the dictionary
matrix Ψ has the singular value decomposition as follow:

Ψ = AΛBT (14)

By applying MDS on Ψ ∈ �n×k, we get the new projected
matrix Ω ∈ �p×k which have the relationship with Ψ as

Ω = AT
p Ψ (15)

where Ap contains the first p columns of A which are eigen-
vectors corresponding to p largest eigenvalues of Ψ. From
(15), we can design efficient projection matrix Φ = AT

p .

4 Experimental Results

In this section, we conduct some experiments with gen-
erated data in order to compare the performance of random
projection, optimized projection and efficient projection in
CS framework. Basically, experimental protocol is carried
on through following steps:

1. Generating Data

• Generate a random dictionary matrix Ψ ∈ �n×k

with normalized columns.

• Design projection matrix :

(a) Generate random projection matrix Φ ∈
�p×n with normalized rows

(b) or design OP matrix Φ by algorithm in Table
2

(c) or design EP matrix Φ as described in previ-
ous section.

• Create m = 10000 samples X =
[x1, x2, .., xm] ∈ �n×m where xi = Ψαi ∈ �n

and αi is the sparse vector with T non-zero
elements chosen randomly.

• Calculate measurements yi = Φxi ∈ �p, where
i = 1..m.

2. Decoding and Error Calculation

• Given Ψ, Φ, yi with i = 1..m, we use OMP or
BP to find sparse vectors α̂i subject to ΦΨαi =
yi and calculate estimated x̂i = Ψα̂i of xi.
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(a) Decoding by OMP method with n = 40, k = 60 and T = 4
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Figure 2. Case I - Comparison of CS performance based on random projection matrix, optimized
projection matrix and efficient projection matrix. OMP is applied in (a) and BP is applied in (b).
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(a) Decoding by OMP method with n = 100, k = 200 and T = 4
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Figure 3. Case II - Comparison of CS performance based on random projection matrix, optimized
projection matrix and efficient projection matrix. OMP is applied in (a) and BP is applied in (b).



• Calculate distance error between original (xi)
and estimated (x̂i) samples and get the averaged
error over all samples.

We setup two study cases for our experiments. Case I is
carried on with n = 40, k = 60 and T = 4, while n = 100,
k = 200 and T = 4 are selected in Case II. We follow
the above experimental protocol in all experiments. This
protocol is as similar as that of [9]. It is noted that the
non-zero locations of value α were chosen at random and
populated with iid zero-mean and unit variance Gaussian
values. These sparse vectors were used to create the sample
matrix X with which to evaluate the CS performance. The
purpose of these experiments is to study the performance of
CS before and after the design of the optimized and efficient
projections, with BP and OMP, and for varying amounts of
measurements (i.e. varying the value of p). In test Case I,
the size of dictionary matrix is 40 × 60 with the number of
non-zeros T = 4, so we vary the amounts of measurements
p from 4 to 20 with step size of 2. Both OMP and BP are
used to evaluate the performance of CS (see Fig. 2). Exper-
imental performance of Case II can be see in Fig. 3 where
dictionary size is 100 × 200, T = 4 and p is varied from
4 to 40 with step size of 2. Through all experiments, some
conclusions are highlighted as follow:

• In CS framework, efficient projection gives a compar-
ative performance as good as optimized projection.

• While the algorithm of designing optimized projection
is an iterative procedure with high time complexity, ef-
ficient projection can be obtained just by well-known
singular value decomposition which is a non-iterative
and low complexity procedure.

• In general, the performance of BP is better than that of
OMP in CS framework.

5 Conclusions

The purpose of the current study was to design an effi-
cient and novel projection for compressed sensing frame-
work. The algorithm is based on singular value decomposi-
tion which yields a very efficient projection matrix for CS
framework. The experiments show comparative results of
the proposed approach compared to those of optimized pro-
jection approach. The simplicity and effectiveness of the
approach make it suitable to be applied in any application
of CS framework. While current work focuses on the theory
of designing projection matrix, future work will be applying
the efficient projection-based CS on some real applications
for further evaluation.

References

[1] E. J. Candès and J. Romberg. Quantitative robust uncertainty
principles and optimally sparse decompositions. Found.
Comput. Math., 6(2):227–254, 2006.

[2] E. J. Candès, J. K. Romberg, and T. Tao. Robust uncertainty
principles: exact signal reconstruction from highly incom-
plete frequency information. IEEE Transactions on Infor-
mation Theory, 52(2):489–509, 2006.

[3] E. J. Candès and T. Tao. Near-optimal signal recovery
from random projections: Universal encoding strategies?
IEEE Transactions on Information Theory, 52(12):5406–
5425, 2006.

[4] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic
decomposition by basis pursuit. SIAM J. Sci. Comput.,
20(1):33–61, 1998.

[5] J. A. Costa, N. Patwari, and I. Alfred O. Hero. Distributed
weighted-multidimensional scaling for node localization in
sensor networks. ACM Trans. Sen. Netw., 2(1):39–64, 2006.

[6] T. F. Cox and M. A. A. Cox. Multidimensional Scaling.
Chapman Hall, 1994.

[7] D. Donoho and M. Elad. Optimally sparse representation
in general (nonorthogonal) dictionaries via l1 minimization.
Proc. Natl. Acad. Sci., 100:2197–2202, 2002.

[8] D. L. Donoho. Compressed sensing. IEEE Transactions on
Information Theory, 52(4):1289–1306, 2006.

[9] M. Elad. Optimized projections for compressed sensing.
IEEE Trans. on Signal Processing, 2007.

[10] R. Gribonval and M. Nielsen. Sparse representations in
unions of bases. IEEE Transactions on Information Theory,
49(12):3320–3325, 2003.

[11] P. S. Huggins and S. W. Zucker. Greedy basis pursuit. IEEE
Transactions on Signal Processing, 55(7):3760–3772, 2007.

[12] A. Kearsley, R. Tapia, and M. Trosset. The Solution of
the Metric STRESS and SSTRESS problems in Muldimen-
sional Scaling Using Newton’s Method. Computational
Statistics, 13(3):369–396, 1998.

[13] Lustig. Sparse mri: The application of compressed sensing
for rapid mr imaging. 2007.

[14] S. Mallat and Z. Zhang. Matching pursuit with time-
frequency dictionaries. IEEE Transactions on Signal Pro-
cessing, 41(12):3397–3415, 1993.

[15] Y. Pati, R. Rezaiifar, and P. Krishnaprasad. Orthogonal
matching pursuit: Recursive function approximation with
applications to wavelet decomposition. Proceedings of the
27 th Annual Asilomar Conference on Signals, Systems,,
November 1993.

[16] B. Richard. A lecture on compressive sensing. IEEE Signal
Processing Magazine, July 2007.

[17] M. A. Sheikh, O. Milenkovic, S. Sarvotham, and R. G. Bara-
niuk. Technical report, Rice University, 2007.

[18] Y. Tsaig and D. L. Donoho. Extensions of compressed sens-
ing. Signal Processing, 86(3):549–571, 2006.

[19] M. B. Wakin, J. N. Laska, M. F. Duarte, D. Baron, S. Sar-
votham, D. Takhar, K. F. Kelly, and R. G. Baraniuk. An
architecture for compressive imaging. In ICIP, pages 1273–
1276, 2006.


