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Abstract - This paper presents a distributed model for 
detecting Activities of Daily Living (ADLs) in a home setting. 
We consider an environment where household devices and 
utensils are augmented with simple sensors. The variation of 
object usage and shortage of training data makes it infeasible 
to construct high level models for ADLs in this environment. 
However, ADLs produce a series of sensor activations and the 
sensor activation sequences can help identifying the activity 
being performed.  Hence, we try to correlate the sensor 
activation sequences with the activities. We provide a simple 
distributed linear time inference algorithm for this. The 
algorithm scales well with the size of the sensor network and 
number of activities to be detected. 

Keywords: Distributed Activity Recognition, Activity of 
Daily Living, Hidden Markov Model 

 

1 Introduction 
 

In ubiquitous healthcare environment, it is essential to 
recognize user’s Activities of Daily Living (ADLs) like, 
preparing meal, bathing, etc. [1]. Recognizing and monitoring 
the daily activities can provide proactive healthcare at home 
[2]. Monitoring can reduce the number of low risk cases that 
come to hospitals-thereby reducing the financial burden on 
health systems and allowing more focus on patients at higher 
risk. 

ADLs involve the household devices and utensils. A user 
manipulates and uses the devices and utensils in a certain 
fashion. Still there is so much variation in doing an activity 
that it is very difficult to learn all the models due to the 
shortage of enough training data [3]. In addition to this, there 
can be noise in the data as well, as user’s movements are not 
always purposeful, and even if purposeful, the movement can 
be for performing a different activity. Figure 1 shows a 
deviation of the user from the default course of movement. 

So, we move away from using a high level model defining 
the networks for ADLs involving all possible combination of 
daily object usage. We rather focus on using the temporal 
relationships among the sensors. As for example, a ‘preparing 
meal’ activity is indicated by ‘going to the kitchen’, ‘turning 

on the gas burner’, and so on. Naturally, those sensors 
attached to the cooking utensils will be activated while the 
user is preparing a meal. Some other sensors can also be 
activated during that period as the user deviates from meal 
preparation.  Finding the most relevant sensors and ignoring 
other sensor events, can contribute to the detection of the user 
activity. 
 

 
Figure 1. Example of sensor activations as user deviates from his 
default course of movement. Circles represent sensor and red 
circles represent activated sensors. Red circles connected 
through arrow are the default route. 

 
Current activity recognition systems are centralized in 

approach [1], [2], [4]. Sensor events are gathered to a central 
server and a monolithic reasoning engine infers the activities. 
This incurs communication and computation overhead on the 
central server. Space complexity of any network grows 
exponentially with the number of discrete values of the 
random variables.  The time complexity is quadratic to 
exponential in nature with the additional step of making 
features which may grow polynomial [5]. It is possible that 
the space and time complexity become intractable for a 
complex network structure [1], [6]. As for example, if not 
distributed, a Hidden Markov Model (HMM) having N states 
will need NN state transition probabilities, 2N output 
probabilities (assuming all the outputs are binary) and N2L 
time complexity to derive the probability of an output 
sequence of length L [7].  So, to restrict the time and space 
requirements and distribute the computation, it is needed to 
devise distributed algorithm.  



We take a distributed probabilistic approach for activity 
recognition from activation sequence of simple sensors 
deployed in the environment. We show that activity 
recognition by using temporal relationships among sensor can 
be implemented in a distributed fashion, providing each 
sensor a role. The only thing each sensor needs to store is a 
set of probabilities.   Each sensor stores its own prior 
probability and conditional probabilities with respect to other 
sensors, for each activity. A sensor stores conditional 
probability only for those sensors that can be activated before 
it. The prior and conditional probabilities stored are local to 
each sensor and using them, a sensor can calculate the 
likelihood for an activity. 

A sensor broadcasts its state as it is activated. Other 
sensors receive the broadcasts and make a list of activated 
sensors. Sensors make a new sequence after a sampling time 
period. A new entry is given for a sensor which broadcasted 
its activation in the last sampling and has not broadcasted its 
deactivation yet. So, each sensor maintains a sequence of 
sensors activated in last few sampling times. With the sensor 
sequence we construct a virtual Hidden Markov Model for 
each activity to be recognized. We map each sensor to a state 
of the HMM; doing so, distributes the calculation for each 
state of HMM to a sensor itself. We consider HMM construct 
because it can be visualized graphically and it naturally 
captures the time sequence of the states i.e., the sensor 
activations and discards the necessity for making temporal 
features. To the best of our knowledge, we are the first to 
provide a distributed inference mechanism for activity 
recognition. 

 
2 Related Works 
 

Distributed activity recognition is quite a new concept. 
The first approach of this kind is found in [5]. They use the 
concept of hierarchical feature extraction from tracking data, 
such as, ‘the cluster head detects in which direction the user is 
moving’. Their core inference mechanism is Naïve Bayes 
with temporal features as input. Compared to their approach, 
our method focuses on a distributed inference mechanism. We 
focus on in-network processing of feature values and the final 
outcome, namely activity. We are the first to provide a 
distributed reasoning mechanism for activity recognition. 

Activity Recognition for a setup where sensors are 
deployed in the environment was addressed in [1], [8]. They 
used 77 on/off state sensors in a house to capture the daily 
activities. They got very low recognition accuracy (27% 
maximum) on the data collected. Even though they tried to 
incorporate temporal relationships, the accuracy decreased 
while increasing the number of features. In our experiment, 
we use the same data and show that temporal relationships 
among features actually increase the accuracy up to a certain 
limit.  We also show that in the same setup it is possible to 
use a distributed reasoning for detecting the ADLs. 

Mobility based activity detection is a simplified version of 
activity recognition problem, where only user’s motion is 
considered.   Several approaches have been found in mobility 

based activity detection, such as Hierarchical HMM [4], 
Bayes Filter [2], Dynamic Bayesian Network [9], Naïve 
Bayes [5] etc. Except [5] all are centralized in approach and 
concentrate on special techniques to use the specific domain 
knowledge.  Our work provides a general distributed model 
and shows an example how to use the approach for activity 
detection in one of the setups. All those works use temporal 
features created explicitly or achieved through placing several 
time slices of the same network sequentially. Those 
approaches need huge computation and may become 
intractable, if not carefully designed [1], [6]. On the other 
hand, our approach relates features in time sequence naturally 
through the model proposed. 

We are motivated by the work [10] that motivates the 
feasibility of using graphical reasoning techniques to sensor 
network with an example application in sensor localization. In 
our work, we propose a graphical model namely HMM 
construct and map that on sensor network for recognizing 
ADLs. Each sensor maintains only a small set of probabilities 
and through communication with the other sensors; it can 
reach a decision about user activities.  

  
3 Distributed Activity Recognition 
 

In wireless sensor network environment, sensors broadcast 
their states or the sensed values. The broadcasts are received 
by the cluster heads and all other sensor nodes in the 
broadcast range [11]. So, each sensor can capture local data, 
provided by its neighboring sensor, to do the local 
computation. We provide a mechanism to process the local 
data in each sensor with the help of a Hidden Markov Model 
(HMM) like construct for each activity. We use HMM to 
capture the temporal relationship among the sensor values 
which are essential for detecting ADLs that the user performs 
for certain time duration.  We name this as Reconfigurable 
HMM as we will discuss in the next subsection. 

 
3.1    Reconfigurable HMM 
 

An HMM is defined by a set of states with 
interconnections between them. A set of prior probabilities; 
output or emission probabilities for the states and a set of state 
transition probabilities are defined. 

In our approach, each sensor is considered as a state in the 
HMM. For each activity, a separate HMM is defined. So, 
prior probability for each state in the HMM is actually the 
prior probability of the respective sensor being activated 
during the activity. A state transition probability is the 
conditional probability of one sensor being activated given 
another sensor activated before within. 

Sensors are activated and deactivated while the user is 
performing some ADL. If we take the samples of the sensor 
activations periodically, a sequence of activations can be 
obtained. The sequence of sensor activations may indicate 
what the user is actually doing.  To capture the sequence 
information, we construct a virtual HMM with the sensors 
activated in turns (Figure 2).  We omit the state transition 



links among the sensors in the same sample period because 
those sensors infer concurrency, not sequence.   

After constructing the HMM, the likelihood is calculated 
for each activity by evaluating their respective HMMs and the 
highest likely activity is taken. To overcome fluctuation, a 
decision is given only if the current activity is matched with 
the previously inferred activity. 

The HMM is reconfigurable as the network changes based 
on the sensors present in the last few time sequences. The 
worst case is that all the sensors deployed stays within the 
range and become activated. Keeping the worst case in mind, 
all the non-zero conditional probabilities are stored. Still the 
conditional probability table size is not big, unlike one may 
presume. This is because, ADLs are usually performed in a 
constrained physical area and only the sensors of that physical 
area are activated. At this stage we are ready to introduce 
some terminologies: 

)( ia SP =Prior probability of sensor i for activity ‘a’ 

)|( ija SSP = conditional probability of jS given iS for 

activity ‘a’ 
)( oia OP =Probability of output oO  from sensor i for activity 

‘a’ 
t
iS = HMM state constructed with sensor i at time t 

)( t
ia SP =Calculated probability (usually maximum 

likelihood) of t
iS  for activity ‘a’ 

)|( 1−t
i

t
ja SSP =State transition probability of t

jS  given 
1−t

iS        = )|( ija SSP  

 
Figure 2. HMM constructed with the sensors in the last three 
time sequences for any particular activity. By box and arrows we 
indicate that all states in time (l-1) are connected with all the 
sensors in time l. 

 
Next we describe our belief propagation algorithms using 

the terminologies given above:  
 

 

3.2    Calculating the maximum likelihood 
 

After constructing the HMMs for each activity, we 
calculate the likelihood for them. We use a maximum 
likelihood algorithm on the HMM construct, a similar 
algorithm found in standard message passing literature [10], 
[13]. Our algorithm also takes the notion of Forward 
algorithm of HMM [12], where sum operation is replaced by 
max operation. Each state calculates the maximum likelihood 
using the formula below:   

 
)()()( oiaia

l
ia OPSPSP = ,                l=last sequence 

)]()|([max)()( 11 −−= l
ca

l
c

l
iacoia

l
ia SPSSPOPSP , 

                       otherwise                               ………. (1) 
As the term ‘maximum’ is distributive in nature, it is 

possible to calculate the global maximum likelihood from 
local maximum at each state as discussed in the next section.  

 
3.3    Complexity of the Belief Propagation 
Algorithms 
 

Suppose that we want to calculate the likelihood of an 
activity with sensor sequences of length T. So, all the sensors 
activated within the last T time sequences (taking current time 
as first) will be involved. First, sensors activated in last T-th 
time sequence, should calculate their likelihoods using first 
portion of equation 1 and broadcast the results. Sensors 
activated in the last (T-1)-th time sequence, should use the 
likelihoods broadcasted, to calculate their own likelihoods 
using second portion of the equations 1. This process should 
continue until the currently activated sensors calculate their 
likelihood values.    So, after a round of (T-1) message 
passing by the previously activated sensors within last T time 
sequences, the currently activated sensors can achieve the 
likelihood of T-sequence. So, the time complexity of each 
sensor for each activity is Linear with the number of sensors 
activated within its communication range; communication 
overhead is the order of sequence length T; space complexity 
is distributed through the sensors, each sensor containing only 
the conditional probabilities given all other sensors in the 
range, in the worst case scenario. 

However, the numbers of messages to be sent i.e. the 
communication overhead can be optimized further and can be 
reduced to half.  This is because, while calculating likelihood 
of a sensor sequence of length T, a sensor can also calculate 
the likelihood of its subsequences and broadcast those in a 
single message. The prerequisite for this is that, sensors 
activated in previous i-th time sequence (taking current time 
as first) send the likelihoods of (i+1)-sequence, in addition to 
sending likelihoods of a sequence of length T-i+1. This 
advanced calculation can save communication overhead by 
half. The computational complexity remains the same, as each 
sensor calculates the likelihoods in advance. 

So, the achievement of our approach is using low 
computation capable sensors for detecting the activities. We 
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propose an in-network processing technique where each 
sensor contributes to the computation, space and 
communication required for the task of recognizing ADLs. 
 
4 Experimental Results 
 

We are using the open data provided by MIT Place Lab 
[1], [14]. They used 77 on/off state sensors in a one person 
apartment  The data were collected in a central place and were 
labeled using Experience Sampling Method (ESM) [1].  The 
training set is small with noises as seen from their recognition 
results [1]. However, the result could further be improved 
through the use of temporal features constructed from sensor 
activation sequence, as indicated in [1]. 

The purpose of using MIT data in our work is to show the 
effectiveness of our model in a classification problem, where 
temporal relationship among the features is necessary.  

We assume that all the sensors are within their 
communication ranges and receive the broadcasts from all 
other sensors. We also assume that all the sensors are time 
synchronized and broadcast and receive their states 
periodically all at the same time. We assume this ideal 
environment to show the improvement of recognition 
accuracy of ADLs. We have shown the time and 
computational complexity of our model earlier in section 3.3 
analytically.  

We use the text data from [14], take samples of sensor 
values at every 5 seconds and feed through our simulator, a 
multithreaded program written in java. Each thread represents 
a sensor. The java program reads the sensor value samples of 
a particular time instance, passes the values to the threads, i.e. 
the sensors. The threads communicate with each other and 
after one synchronized message passing; each thread can 
calculate the total or maximum likelihood of an activity. The 
likelihoods are then passed to the program, which acts as a 
cluster head, to calculate the sum total or global maximum 
likelihood. 

Our simulation program actually emulates the user 
activities recorded in the data file and provides a continuous 
sensor activation sequence needed for our algorithm. Our 
program runs in two phrases. First, we learn the prior and 
conditional probabilities for the sensors based on this data by 
frequency counting.  In the second phrase, we emulate the 
ADLs, reproduce the sensor sequences and recognize the 
activities using algorithm given by equation 1. As the sensors 
are just on/off sensors, a sensor is considered activated only 
when it is in on state. So, the only output in active state is on 
state and the probability of on state is equal to the prior 
probability of the sensor node, i.e. 

)()()( iaiaoia SPONPOP == . So, )( oia OP is replaced 

by )( ia SP in equation 1. 
We also filter the data set to reduce the noise. For any 

activity recognition problem, it is desirable that the classifier 
recognizes the activity while it is being performed. In our 
algorithm, the classifier reaches such a state after passing T 
samples, each taken in 5 seconds interval. However, doing 

this, reduces the number of samples for large T. So, we relax 
this constraint and pass a decision for a sample whose 
previous two samples also have the same labeling. 

We have found that, increasing the sequence length 
increases the recognition accuracy up to a certain limit. Using 
maximum likelihood belief propagation algorithm as given in 
equation 1, we have found average recognition accuracy as 
given in table 1, where 5 is the optimal sequence length.  We 
have tested our algorithm on the sensor data sampled in 1 
second and 30 second intervals where we got the highest 
average accuracy for sequence length 5 (accuracy 47%) and 4 
(53%) respectively. We use five fold cross validation on our 
results.  

  So, if we run our algorithm on a setup for recognizing the 
ADLs in [14], we should use a sequence length of 5. The 
number of messages to be passed will be only 3 and the 
calculation will be in order of 5, per sensor; which are quite 
possible in real-time.  

 
Table 1: Average recognition accuracy for ADL data from MIT 
[14], using maximum likelihood algorithm in equation 1. The 
accuracy is shown against sensor sequence length. 

Seq    
 Len   Acc- 
          uracy 

2 3 4 5 6 7 8 

 40 48 52 54 51 48 45 
  
Table 2 presents the average accuracy results for all the 

activities given in [14] with a sequence length 5 and sensor 
values sampled at an interval of 5 seconds.  
 
Table 2: Activity wise recognition accuracy of our algorithm 
(sequence length 5 and sampling interval 5 seconds) 

Activity Number  
of 
Samples 

Accuracy 
in 
Percentage 
(%) 

Bathing 213 69.95 
Toileting 232 56.03 
Going_out_to_work 1 100.0 
Preparing_lunch 362 35.63 
Preparing_dinner 98 31.63 
Preparing_breakfast 58 44.96 
Dressing 129 69.76 
Grooming 260 58.07 
Preparing_a_snack 63 58.73 
Preparing_a_beverage 60 70.0 
Washing_dishes 60 76.66 
Doing_laundry 150 61.33 
Cleaning 140 18.57 
Putting_away_dishes 48 81.25 
Washing_hands 4 100.0 
Putting_away_groceries 31 74.19 
Other 16 93.75 
Watching TV 35 48.57 



Going_out_for_entertainmen
t 

5 80 

Lawnwork 39 97.43 
Putting_away_laundry 2 0 
Average Accuracy  54.02% 
 
We believe that the medium accuracy (54%) of our result 

is because of the small training set and noise, which is also 
indicated in [1]. We looked at the confusion matrix of the 
ADLs and based on that merged a number of activities to 
prove our claim.  We found that meal preparation activities 
contributed more to the confusion and merging them further 
improved the accuracy as shown in Table 3: 
 
Table 3: Activity wise recognition accuracy , meal preparation 
activities treated as a single one 

Activity Accuracy 
in 
Percentag
e (%) 

Bathing 71.04 
Toileting 56.47 
Going_out_to_work 25.0 
Meal preparation  
(Preparing_lunch, Preparing_breakfast, 
Preparing_dinner, Cleaning, 
Washing_dishes, Preparing_a_snack, 
Putting_away_dishes, 
Putting_away_groceries ) 

65.21 

Dressing 72.44 
Grooming 59.02 
Preparing_a_beverage 75.0 
Doing_laundry 62.0 
Washing_hands 100 
Other 88.23 
Watching TV 60.86 
Going_out_for_entertainment 80.0 
Lawnwork 97.43 
Putting_away_laundry 0 
Average Accuracy 65.16% 

 
We also compared our result with the result of MIT [1].  

Our algorithm gives 73.47% of accuracy compared their 
highest accuracy, 27%. Table 4 shows the activity wise 
performance analysis. The further improvement of our results 
on a restricted set of activities, having many samples, and 
clearer boundary, proves the effectiveness our algorithm. 
 
 
Table 4: Comparison of our result with MIT on the same set of 
activities  

Activity  MIT Result [1] 
(in %) 

Accuracy of our 
Algorithm 
[equation 1]  

Preparing lunch 25 74.52 

Toileting 27 62.77 
Preparing 
breakfast 

8 67.87 

Bathing 25 63.20 
Dressing 7 85.18 
Grooming 26 77.63 
Preparing a 
beverage 

7 87.14 

Doing Laundry 9 84.04 
 
  
5 Application of our Algorithm 

The algorithm we devised is suitable for Smart 
Collaborative Object (SCO) Environment.  By SCOs we 
understand everyday items such as chairs, books, or medicine 
cabinets that are augmented with active sensor based 
computing platforms. Hence, Smart Objects can perceive their 
environment through sensors, collect information about the 
context of a nearby user, and collaborate with other objects in 
their vicinity by means of wireless communication 
technologies. 

Smart objects can report user’s state or its own state. As 
examples, chair can distinguish user sitting, leaning, sitting 
leg crossed; computer can detect whether the user is working, 
not; medicine cabinet can infer its own states.  Smart Objects 
are heterogeneous types and each has its own inference 
algorithm. They can be trained individually and the algorithm 
can be ported to another object of the same kind. 

In a daily living environment objects usually are organized 
in proximity to each other in the living environment. So, 
Smart Objects stay in their mutual communication range, as 
we may expect. We also mentioned earlier that daily activities 
are usually performed in a physically constrained location, 
such as in a single room and a sequence of object usage 
history in that location can indicate the activity being 
performed. So, our algorithm fits in this type of environment.  

Smart Objects can form ad-hoc groups by collaboration 
based on proximity or type or according to some 
predetermined guidelines. Inference algorithm, especially the 
parameters (prior and conditional probabilities) can be 
downloaded from a server.  The algorithms and parameters 
can be obtained beforehand by forming a scenario and 
gathering the labeled data. The parameters once trained, can 
be reused in the same scenario. Super group can be formed by 
using several subgroups. The training can be done 
hierarchically in the same way using the output of subgroups. 
Hence the training becomes tractable and parameters become 
reusable.  
 
6 Conclusion and Future works 

 
We provide a distributed probabilistic model for 

recognizing Activities of Daily Living. We prove the 
distributed nature of our algorithm analytically and show the 
accuracy by using a small data set collected from a home 
setting. Given enough data, i.e. the correct probabilities, the 



model should recognize the activities perfectly. However, 
getting enough labeled data is very costly and researches are 
still finding ways.  Our next task will be to investigate how to 
incorporate online learning into our model and learn the 
probabilities incrementally over time. Consequently, we will 
implement our prototype in a Smart Collaborative Object 
(SCO) environment. 
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