
Exploiting XML Schema for Interpreting XML Documents as RDF

Pham Thi Thu Thuy, Young-Koo Lee, Sungyoung Lee, and Byeong-Soo Jeong
Department of Computer Engineering, Kyung Hee University, Korea

{tttpham, sylee}@oslab.khu.ac.kr, {yklee, jeong}@khu.ac.kr

Abstract

Interpreting legacy XML documents is a great

challenge for realizing the vision of the Semantic Web

(SW). This paper presents an algorithm to transform XML

data into RDF- foundation language of the SW -

automatically. Our approach maps element definitions

stored in XML Schema to RDF Schema ontology, where

the ontology is used to describe the meaning and

relationships between XML elements. The RDF results

containing XML data at the semantic level while retaining

their nesting structure make huge XML data source on the

current web be available for the SW.

1. Introduction

XML has received a wide acceptance as a standard for
communication on the web. The main success of XML is
its flexibility. Users can define their own tags to describe
elements in the XML document. Moreover, they can also
predefine the structure of XML documents by writing a
DTD (Document Type Definition) or an XML Schema.
Although DTD and XML Schema provide the structure
for XML document, XML Schema is an XML-based
language, and it supports data types and namespaces [1].
Therefore, XML Schema is widely used as a standard
mechanism to interchange information on the web. For
instance, in the electronic commerce, when the associates
are unanimous in a common XML Schema, they will
produce valid XML documents and carry out their
exchange. This provides us a large number of valid XML
documents.

However, XML has disadvantages when coming to the
semantic interoperability. XML mainly focuses on the
grammar but there is no way to describe the semantics of
the document [3]. Moreover, because XML enables users
to define their own tags, an object can be described in
different ways. For example, we label something as
<price>$12.00</price> and another organization labels
the same field as <cost>$12.00</cost>. In this case, a
machine cannot differentiate between two meanings unless
the SW technologies such as RDF are added [2].
Furthermore, in the SW, the operability requires not only
the structured data but also the semantic content [3].
Therefore, we cannot directly use XML data on the SW,
another language that is supported by the SW is needed to
interpret these data.

Though, the general purpose language for representing
information in the Semantic Web is RDF, it cannot
describe classes and properties in structured documents.
Instead, they are depicted by the RDF schema [2]. It
defines a vocabulary for creating class hierarchies,
properties of class, and adding instance data. Furthermore,
the data model for XML is a tree-like [4], while RDF is a
graph-based data model which is a collection of the
subject-predicate-object triples [5]. Hence, we try to
exploit the tree structure of XML by accessing to the
XML Schema to generate corresponding class hierarchy
in RDF. Our main contribution is a set of rules that derive
classes and properties from XML Schema and
automatically interpret all XML elements as RDF triples
by using RDF schema vocabularies. The generated result
follows in XML structure and provides much semantics
about XML data which can be use by SW.

The remainder of the paper is organized as follows. In
section 2, we briefly introduce the related work. Section 3
describes the mapping notation from XML Schema to
ontology and the algorithm and the corresponding
example. Finally, section 4 concludes this paper.

2. Related work

Recently, several strategies for interpreting XML data
as semantic sources have been proposed. Some of them
transform XML into RDF and the others map XML to
OWL. However, there is no completed approach targeted
on interpreting XML as RDF by using XML Schema.

Melnik [6] assumed that every XML document had an
RDF model and described a mapping from XML to RDF.
However, he just focused on how to transform all XML
elements into RDF and did not concern about exploiting
domain's information. Therefore, the issues followed the
structures of XML but bore little meaning and did not fit
well into RDF model. Our method aims at drawing the
semantic information based on XML Schema, therefore
the mapping result still remains structure of XML and
provides more semantics for XML documents.

C-Web project [7] replied on DTD to define the
meaning for every XML element and used XPath to map
information in XML documents to domain specific
ontology. This proposal exploited more specific meaning
and structure of the XML documents. However, beside
reference to XML document and its DTD, it required
referring to the specification of rules which is not needed
in our approach.

Klein [8] introduced a procedure to transform XML
data into RDF data by annotating the XML documents via
external RDF Schema specifications. This approach is
close to our method. However, it only translated some
pieces of information in the document. Moreover,
elements in XML document were decided to be classes or
properties depending on user's opinion. Our approach
transforms all the XML document and draw classes and
properties based on element definitions in the XML
Schema, therefore human intervention is not necessary.

In the previous work [9], we proposed a procedure for

transforming valid XML documents into RDF via RDF

Schema. This procedure derived classes and properties

from DTD, then matched them with elements in XML

documents and interpreted all XML data as RDF

statements. However, as we mentioned, XML Schema is

more and more popular than DTD. Furthermore,

sometimes definitions in DTD or XML Schema have mal-

function, we cannot completely rely on them. In this

paper, in the mapping stage from XML Schema to

ontology, we specifically consider the content in every

element before deciding it is a class or property.

Moreover, we expand RDF Schema by defining new RDF

Schema property to describe the nesting relationship of

XML Schema in the RDF Schema.

Ferdinand et al. [10] proposed mapping rules from

XML to RDF and from XML Schema to OWL ontology.

However, the latter results from XML Schema may not

suit to OWL model. Furthermore, the mapping from XML

to RDF just concentrated on how to translate all XML

elements into RDF and did not focus on meaning of

elements. Therefore, this drawback is the same to [6].

Besides, there are several approaches creating new

OWL ontology for XML Schema [11, 12]. Rodrigues et

al. [13] invented a mapping notation for every XML

Schema and transform XML documents into existing

OWL. This approach provided more specific mapping but

users have to define relations for every XML element. Our

target is not at OWL but in RDF, which is the foundation

language for the SW.

To our knowledge, most of the related researches
which are found during our study have not supported the
transforming from XML Schema into existing RDF.
Hence, our research is a unique work which makes a
contribution to the SW applications. This paper proposes
a strategy to map XML Schema to the ontology (with
considering the proper functions of classes and properties)
and automatically interprets valid XML data (of that XML
Schema) as existing RDF statements which can be directly
used by the SW. Nevertheless, if XML Schema is absent,
we can also create ontology based on XML document.
Hence, we can tackle the problem when XML Schema is
not available.

3. XML transforming

3.1. XML Schema mapping

In this stage, we create the collection of classes and
properties from the given XML Schema as an input. This
collection will be used to model data in the next step. The
mapping notation from XML Schema to RDF Schema is
shown in Table 1.

TABLE 1: XML SCHEMA MAPPING

XML Schema concepts RDF Schema concepts

Complex-type element Class

Simple-type element Property

Attribute Property

Type Datatype

For specifying properties and data type, we use

rdf:Property and rdf:datatype which are available
vocabularies of RDF. However, in order to describe the
relationship between classes, we decide to extend RDF
Schema’s vocabulary to ensure the semantics and the
structure of XML documents. Particularly, we define new
RDF Schema property, rdfx:contain (rdfx stands for
namespace where contain is defined), to describe a class
contains a sub-class. We avoid using rdfs:subClassOf
because sometimes in the XML documents one class is
belong to another class but it is not exactly a sub-class.
For instance, in section 3.3 class article includes class
author but author cannot be a sub-class of article
according to database definition. Furthermore, in order to
make our procedure perform independently from human
intervention, rdfx:contain is the correct choice.

3.2. XML transforming algorithm

After deriving classes and properties from an XML
Schema, we continue to examine the valid XML
document. The URI of the XML document will be the
subject of the first statement. The algorithm starts
traversing from the beginning of the XML document and
finishes when it meets the close tag of root element.

Because instances of RDF classes are characterized by
having unique identifier, when generating RDF instances
statements, we have to be sure that only one identifier is
created for each individual. In our procedure, if there is
more than one element with the same name, and in the
same levels in the XML tree, another property of each
node is added as its ID. In that case, rdf: ID is inserted to
connect this property to the XML node. The ID is the
name of XML node concatenating number 1, number 2 for
the second node and so on.

For every element in the XML document, we verify
whether it is a name of a class or a property in the
generated ontology. If it does not match with any class or
property, we skip it and continue to the next element.
Based on this matching, our procedure decides what RDF
statements should be created.

1. If the tag matches with a class, consider three cases:
a) If this is the root-class, create the first statements:

URI of document rdfs: Resource root-class

Root-class rdf: Namespace Namespace

These statements are used once in our procedure.
Since in an XML document, there is only one root-class
and all other classes are its children, when we meet the
root-class, we use rdfs: Resource to connect the resource
of XML document (URI) to the root-class of the
document. The property rdf: Namspace is used to connect
XML namespace to the root class.

 b) Else, this class can be a child of root-class or
another class. If the previous statement is unfinished
(statement with only two properties such as subject and
predicate are filled, the object is empty), complete this
statement by supplementing the parent class in the object
and add one or two more statement to describe this class.

 parent-class-name

parent-class-name rdfx: contain Class-name

 c) Else, create the new statement (simple case of b):

parent-class-name rdfx: contain Class-name

It means when finding out a class, we have to specify
its parent. Moreover, if there is more than one Class-name
with the same name in the same level, and there is no
element ID definition for it, one more statement is added:

Class-name rdf: ID Class-name_number

2. If the element associates with a property, we verify
the class which this property describes for and predict the
property value. However, because our RDF statements are
sometimes unfinished, we consider two cases:

a) If the previous statement is unfinished, complete it
with the name of class which this property belongs to, and
create new unfinished statement:

 Class-name

Class-name rdf: Property property-name

Property-name rdf:datatype data type

property-name rdf: literal

rdf: literal is declared for the value of this property.
 b) Else, we also describe which class this property

depicts for and create an unfinished statement:

Class-name rdf: Property property-name

Property-name rdf:datatype data type

property-name rdf: literal

3. If it does not match a class or property, we check
whether it is a value of a class/property or not.

a) If pervious statement is unfinished, it is surely a
value of a property. Because in previous statements, only
statements describe for a property is always unfinished
statements, we add this value to this empty column:

b) Else, so this value is belong to a class. We describe
which class has this value by following statement:

Class-name rdf: literal value

3.3. Example

In order to illustrate for our procedure, we use sample
files “OracleCatalog.xsd” and “OracleCatalog.xml” at
http://www.oracle.com/technology/pub/articles/vohra-
xmlschema.html. OracleCatalog contains the information
about a catalog of an Oracle magazine. Each catalog
combines several magazines which also hold a series of
articles. Every article is presented by its title and
respective author’s names. The sample file is as below:
<?xml version="1.0" encoding="utf-8" ?>

<xs:schema xmlns:xs=

 "http://www.w3.org/2001/XMLSchema">

<xs:element name="catalog">

<xs:complexType> <xs:sequence>

<xs:element ref="magazine" minOccurs="0"

 maxOccurs="unbounded" /> </xs:sequence>

 <xs:attribute name="title" type="xs:string" />

 <xs:attribute name="publisher" type="xs:string" />

 </xs:complexType> </xs:element>

<xs:element name="magazine">

<xs:complexType> <xs:sequence>

<xs:element ref="article" minOccurs="0"

 maxOccurs="unbounded" /> </xs:sequence>

 <xs:attribute name="date" type="xs:string" />

 </xs:complexType> </xs:element>

 <xs:element name="article"> <xs:complexType>

<xs:sequence> <xs:element name="title" type="xs:string" />

<xs:element ref="author" minOccurs="0"

 maxOccurs="unbounded" /> </xs:sequence>

 </xs:complexType> </xs:element>

<xs:element name="author">

 <xs:complexType> <xs:sequence>

 <xs:element name="firstname" type="xs:string" />

 <xs:element name="lastname" type="xs:string" />

 </xs:sequence> </xs:complexType> </xs:element>

Using rules in XML Schema mapping, results are
presented in the fig.1 below:

FIG.1. RDF ONTOLOGIES TRANSFORMED FROM XML SCHEMA

After having the set of classes and properties from the
previous step, we scan the XML file,
“OracleCatalog.xml”, to produce RDF statements by
using algorithm in XML transforming section. Because
the file is quite long with two magazines, each of them
have so many articles, we just pick the first magazine to
analyze. Following is XML file with the first magazine:

<?xml version="1.0" encoding="UTF-8" ?>

<catalog xmlns:xsi=

 "http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="OracleCatalog.xsd"

 title="Oracle Magazine" publisher="Oracle Publishing">

<magazine date="November-December 2003">

<article> <title>Updating XQuery</title>

<author> <firstname>Jason</firstname>

 <lastname>Hunter</lastname>

 </author> </article> <article>

 <title>Servlets and JSP Step Up</title>

<author> <firstname>Budi</firstname>

 <lastname>Kurniawan</lastname>

 </author> </article> </magazine> … </catalog>

catalog magazine article author
rdfx:contain rdfx:contain rdfx:contain

title publisher date title firstname lastname

string string string string string string

The XML document above is based on real messages
with a web-service for online searching. Users can find the
detail information for each magazine in a catalog.

This XML document is interpreted as RDF triples
based on the generated ontology presenting in the table 2.

TABLE 2: RDF STATEMENTS FROM THE XML DATA
Subject Predicate Object

…xmlschema.html rdfs: Resource Catalog

Catalog rdf:Namespace …/XMLSchema-instance

Catalog rdf: Property Title

title rdf:datatype “string”

title rdf: literal “Oracle Magazine”

Catalog rdf: Property publisher

publisher rdf:datatype “string”

publisher rdf: literal “Oracle Publishing”

Catalog rdfx: contain magazine

magazine rdf: Property Date

date rdf:datatype “string”

date rdf: literal “November-December 2003”

magazine rdfx: contain article

article rdf:ID article_1

article rdf: Property Article

title rdf:datatype “string”

title rdf: literal “Updating XQuery”

article rdfx: contain Author

author rdf: Property firstname

firstname rdf:datatype “string”

firstname rdf: literal “Jason”

author rdf: Property Lastname

lastname rdf:datatype “string”

lastname rdf: literal “Hunter”

magazine rdfx: contain Article

article rdf:ID article_2

article rdf: Property Title

title rdf:datatype “string”

title rdf: literal “Servlets and JSP Step Up”

article rdfx: contain Author

author rdf: Property firstname

firstname rdf:datatype “string”

firstname rdf: literal “Budi”

author rdf:Property Lastname

lastname rdf:datatype “string”

lastname rdf: literal “Kurniawan”

Moreover, the data types of property are only string, so

the value of rdf:datatype is always string.

Besides, our procedure can also work well if there is no

XML Schema. In that case, we draw classes and

properties from element function in the XML document. If

element contains only value and has no other attribute, we

can consider it as a property, otherwise, it is a class. In

general, when XML Schema is absent, our procedure

needs some human observations. Otherwise, it can

generate RDF statements automatically.

4. Conclusion

Our procedure outperforms the existing methods due to

the following three reasons. Firstly, while transforming all

the elements of an XML document into RDF, our

algorithm retains the original structure and captures the

implicit semantics in the structure of the XML document.

Secondly, elements in XML are clarified in classes or

properties based on their definition and detail descriptions

in XML Schema, this makes the result independent from

users' opinions. Finally, languages used in our procedure

do their jobs as their original functions. XML Schema is

used for defining XML structure, XML for describing

data, RDF for providing triple statements about data, and

RDF schema for supporting vocabularies to describe the

relationship among data. We hope that the research has

created a bridge to narrow the gap between the XML and

RDF. If this procedure is executed, a large amount of the

XML data on the current Web will be interpreted into

RDF statements which are useful for the SW.

ACKNOWLEDGMENT

This work was supported by the Korea Science and

Engineering Foundation (KOSEF) and the Korean

Government (MOST) through the NRL Program (No.

R0A-2007-000-20101-0).

References

[1] [1] Priscilla Walmsley, “XML Schema part 0: Primer second

edition”, 2004, W3C Recommendation, available at:
http://www.w3.org/TR/xmlschema-0/

[2] Frank Manola, Eric Miller, “RDF Primer”, 2004, W3C

Recommendation, http://www.w3c.org/TR/REC-rdf-syntax/
[3] S. Decker, S. Melnik, F. V. Harmelen, D. Fensel, M. Klein, J.

Broekstra, M. Erdmann, and I. Horrocks, “The Semantic Web: The
Roles of XML and RDF”, 2000, IEEE Internet Computing.

[4] Bert Bos, “The XML data model”, August 2005,
http://www.w3.org/XML/Datamodel.html

[5] Graham Klyne, Jeremy J. Caroll, and Brian McBride, “Resource
Description Framework (RDF): Concepts and Abstract Syntax”,
W3C Recommendation, 2004

[6] Sergey Melnik, “Bridging the gap between RDF and XML”, 1999,
http://www-db.stanford.edu/melnik/rdf/syntax.html

[7] B.Amann, I.Fundulaki, M.Scholl, C.Beeri, and A-M.Vercoustre,
“Mapping XML fragments to community Web ontologies”, 4th

International Workshop on the Web and Databases, 2001.
[8] Michel Klein, “Interpreting XML via an RDF Schema”, 2002,

Database and Expert Systems Applications.
[9] Thuy Pham, Young-Koo Lee, Sungyoung Lee, and Byeong-Soo

Jeong, “Transforming Valid XML Documents into RDF via RDF
Schema”, October 2007, 3rd International Conference on Next

Generation Web Services Practices, IEEE Computer Science.
[10] Matthias Ferdinand, Christian Zirpins, and David Trastour,

“Lifting XML Schema to OWL”, 2004, Web Engineering – 4th

International Conference, ICWE, pp. 354–358.
[11] Roberto García, Ferran Perdrix, and Rosa Gil, “Ontological

Infrastructure for a Semantic Newspaper”, 2006, Semantic Web

Annotations for Multimedia Workshop, SWAMM’06, UK.
[12] Hannes Bohring, and S¨oren Auer, “Mapping XML to OWL

Ontologies”, 2005, Marktplatz Internet: Von e-Leanrning bis e-

Payment,LIT2005, Germany, pp. 147-156.
[13] Toni Rodrigues, Pedro Rosa, and Jorge Cardoso, “Mapping XML

to Existing OWL Ontologies”, 2006, International Conference

WWW/Internet.
[14] Priscilla Walmsley, “XML Schema part 0: Primer second edition”,

2004, W3C Recommendation, available at:
http://www.w3.org/TR/xmlschema-0/

[15] Tim Bray, Dave Hollander, Andrew Layman, and Richard Tobin,
“Namespaces in XML 1.0”, 2006, W3C Recommendation,
http://www.w3.org/TR/REC-xml-names/

[16] Michel Klein, Dieter Fensel, F.V. Harmelen, and Ian Horrocks,
“The relation between ontologies and XML schemas”, 2001.

