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Abstract— Bone segmentation from Computed Tomography
(CT) images is a critical component in computer-assisted or-
thopedic surgery but is a challenging task. Among many active
contour (AC) models employed to solve the problem, the Chan-
Vese AC [1] yields superior performances as evaluated in [2].
However, the CV AC fails to correctly extract the objects that
are of high inhomogeneity because its nature is the minimization
of the differences within the objects. In this paper, we propose to
incorporate a Bhattacharrya term to the CV functional which
helps to maximize the distance between the density functions
of the objects and the background. The proposed model is
tested with various synthetic and real CT images. Preliminary
experimental results show that it can overcome the limitation
of the CV AC.

I. INTRODUCTION

Bone segmentation from Computed Tomography (CT) im-
ages is a critical component in computer-assisted orthopedic
surgery but is a challenging task due to inhomogeneous
bone structures, low contrast edges, and overlapping intensity
values of bones [3]. As surveyed in [4], although there are
many attempts on this problem, none of them claims fully
satisfactory performance. On the other hand, since it was
first introduced in [5], active contour (AC) has attracted a
large amount of researches and become one of the most
widely used techniques in image segmentation. Many of
AC models have also been developed for CT bone seg-
mentation [6], [3], [7]. Particularly, the authors in [2] have
evaluated different AC models and shown that the Chan-Vese
(CV) AC [1], [8] provides superior performances among
them for the considered data set in terms of accuracy and
user-interaction.

However, the convergence of the CV AC depends on
the homogeneity of the segmented objects. When the inho-
mogeneity becomes so large like in some carpal bones or
knee bones, the CV AC provides unsatisfactory results. One
possible reason is that the global minima do not always guar-
antee the “desirable” segmentation result. Consider a simple
example of a phantom image with four different objects as
shown in Fig. 1. The image intensity is scaled on the range
[0, 1], with 1 the brightest. The CV AC is used to segment the
objects. At each iteration during its evolution, we calculate
the CV “fitting term”, F (C), using (1) in Section II and plot
it in Fig. 2. As expected, the curve moves in the direction of
decreasing F (C) and stops when F (C) reaches a minimum
value, which is F (C∗) = 202 (at iteration number 35) in
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(a) F (C) = 1647 (b) F (C) = 1214 (c) F (C) = 202

Fig. 1. An example of a phantom image (size 130 × 130) where the
CV AC (in red color) fails. Only two out of four objects are segmented.
(a) Initial, (b) Intermediate, and (c) Final curve. The plot of F (C) at every
iteration is given in Fig. 2.
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Fig. 2. CV fitting term F (C) at every iteration of the CV AC evolution
process. The obtained minimum (≈ 202) is not the “desirable” one (≈ 555).

this case. Nevertheless, this is not the satisfactory result
since only two out of four objects are segmented. When
manually placing the curve on the desired position (capturing
all four objects), we obtain the “desirable” minimum as
F (Cdes) = 555. Clearly, the desirable minimum here is
larger (more local) than the practically resulting minimum
F (C∗).

The unsatisfactory result of the CV AC in this case is due
to the fact that it is trying to minimize the dissimilarity within
each segment but does not care about the distance between
different segments. In this paper, we propose to incorporate
an evolving term based on the Bhattacharyya distance [9] to
the CV fitting term. This new term helps to maximize the
distance between density functions of the objects and the
background. As a result, by changing a weighting parameter,
the new flow can flexibly drive the AC towards the desirable
minimum.

The rest of the paper are organized as follows. Section II
describes the proposed approach in details. Then, experimen-
tal results are shown in Section III. Finally, the paper is
concluded in Section IV.



II. METHODOLOGY

A. The Proposed Model

Let x ∈ R2 be the coordinates of a pixel in the image
plane Ω ⊂ R2. Let I : Ω → Z be a mapping from the
image plane to the space of a certain image feature such
as intensity, a color vector, a texture vector, or a vector of
geometric measures (e.g., structure tensors), etc.

The Chan-Vese model [1] is infC F (C), where

F (C) =
∫

inside(C)

|I(x) − cin|2 dx

+
∫

outside(C)

|I(x) − cout|2 dx,

(1)

with cin and cout respectively the mean values of image
features inside and outside the curve C, which partitions
the image into two regions corresponding to object(s) and
background. This model searches for a curve position that
minimizes the differences of image features within each re-
gion. Compared to other AC models, it has many advantages
such as ability to detect objects with very smooth edges,
robustness to noise, and less sensitivity to initialization.
However, it fails to capture objects with high inhomogeneity
like bones in CT images.

We propose to incorporate a global term B(C) which
is based on the Bhattacharrya distance between the density
functions inside and outside C: pin(z) and pout(z), z ∈ Z
as follows:

E0(C) = βF (C) + (1 − β)B(C) (2)

where B ≡ B(C) =
∫
Z

√
pin(z)pout(z)dz is the Bhat-

tacharyya coefficient [9] and β ∈ [0, 1] a constant that
balances the contributions of the two terms. Note that the
Bhattacharyya distance is defined by [− log B(C)] and the
maximization of this distance is equivalent to the minimiza-
tion of B(C). As normal, we can regularize the solution by
constraining the length of the curve and the area of the region
inside it. Therefore, the energy functional is defined by

E(C) = γLength(C) + ηArea(inside(C))
+ βF (C) + (1 − β)B(C).

(3)

The intuition behind the proposed energy function is that
we seek for a curve that:

1) is regular, of minimal length and area (the first two
terms) and

2) partitions the image into two regions such that the
differences within each region are minimized (the
F (C) term) and the Bhattacharyya distance between
the two regions is maximized (the B(C) term).

For the level set formulation, we use the Heaviside func-
tion H(·) and the Dirac function δ0(·) defined by

H(u) =
{

1, if u ≥ 0
0, if u < 0,

δ0(u) = d
duH(u)

and represent the curve C by the zero level set of a Lipschitz
function φ : Ω → R such that⎧⎨

⎩
C = {x ∈ Ω : φ(x) = 0},
inside(C) = {x ∈ Ω : φ(x) < 0},
outside(C) = {x ∈ Ω : φ(x) > 0}.

Then, the energy functional can be rewritten as

E(C) = γ

∫
Ω

|∇H(φ(x))|dx + η

∫
Ω

H(−φ(x))dx

+ β

[∫
Ω

|I(x) − cin|2 H(−φ(x))dx +∫
Ω

|I(x) − cout|2 H(φ(x))dx
]

+ (1 − β)
∫
Z

√
pin(z)pout(z)dz

(4)

where γ ≥ 0, η ≥ 0 are fixed parameters, and

pin(z) =

∫
Ω

δ0(z − I(x))H(−φ(x))dx∫
Ω

H(−φ(x))dx
,

pout(z) =

∫
Ω

δ0(z − I(x))H(φ(x))dx∫
Ω

H(φ(x))dx
. (5)

Considering slightly regularized versions of the functions
H and δ0, denoted here by Hε and δε as ε → 0 and using
the calculus of variation and the gradient descent method,
we can derive the evolution flow associated with minimizing
the energy functional in (4) as

∂φ

∂t
= δε(φ)

{
γκ + η + β

[
(I − cin)2 − (I − cout)2

]

− (1 − β)
[
B

2

(
1

Ain
− 1

Aout

)
+

1
2

∫
Z

δ(z − I)
(

1
Aout

√
pin

pout
− 1

Ain

√
pout

pin

)
dz

]}

(6)

where Ain and Aout are respectively the areas inside and
outside the curve C and are given by

Ain =
∫
Ω

H(−φ(x))dx, Aout =
∫
Ω

H(φ(x))dx. (7)

B. Implementation

There are a couple of possible regularizations of function
H (and δ0) [1], [10] which determine the number of level
curves that the evolution flow for φ acts on. Some regularza-
tions make the flow acts on a few level curves around the
zero level set {φ(x) = 0} whilst some others acts on all level
curves. In this paper, we choose to replace δ0(·) by |∇φ| to
extend the evolution to all level sets of φ as suggested in [10]
so that we can obtain a global minimizer.

The pseudo-code for the proposed algorithm can be out-
lined as follows:



- k = 0, initialize φk by φ0.
- Compute the mean values cin and cout.
- Compute pin(z) and pout(z) according to (5).
- Compute Ain and Aout by (7).
- Evolve the curve using (6) to obtain φk+1.
- Reinitialize φ as the signed distance function of the
current curve (see [11] for details).
- Check whether convergence is met. If not, k = k+1
and go back to the second step.

III. EXPERIMENTAL RESULTS

In this section, we test the proposed model on various
synthetic and real images. The image feature employed is
intensity. We choose a fixed setting as follows: γ = 0.3
and η = 0. The weighting parameter β is not same for all
experiments and will be specified in each case. If the objects
we want to segment are of high homogeneity, then β should
be small and vice versa. The cpu time, in seconds, of our
calculations performed on a Pentium IV Duo Core 1.87 GHz
with 1GB of RAM will also be provided.

Let us get back to the phantom image in the example in
Section I. The curve is initialized exactly same as in Fig. 1(a)
and the evolving process is demonstrated in Fig. 3. It is
possible to see that all four objects are detected, i.e., the
“desirable” minimum of F (C) is successfully found. The
finding process is shown in Fig. 4 for a comparison against
that in Fig. 2.

(a) Intermediate 1 (b) Intermediate 2 (c) Final

Fig. 3. Result of the proposed model applied on the example image in
Fig. 1 using the same initialization. All four objects are segmented correctly.
β = 0.5 and cpu time = 66s. The plot of F (C) is given in Fig. 4.
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Fig. 4. CV fitting term F (C) at every iteration of the proposed AC
evolution process. The “desirable” minimum is found.

Fig. 5 shows how the proposed model works on a noisy
synthetic image. The objects are of knee bone shape and are

Fig. 5. Detection of bone-shape objects in noisy image, size = 100×100.
Upper row: CV AC, cpu time = 62s. Lower row: the proposed AC, β = 0.3
and cpu time = 46s.

correctly extracted despite background noise. The CV AC,
on the other hand, can detect the objects but captures some
speckle noise also.

To show the effectiveness of our model in segmenting
objects having low contrast, we create testing data as follows.
First, a medical expert is asked to manually extract bone
region in a real CT image. Then, we place the extracted bone
on homogeneous backgrounds with various intensities such
that the contrast of the image differs from 1% to 20%. Here
we adopt the definition of contrast introduced by Morrow
et al. [12]

contrast =
M0 − M

M0 + M
100% (8)

where M and M0 are respectively the mean intensity of the
object (foreground) and the surrounding region (background)
in an image. In our real CT image, the contrast is about 8%.
To our knowledge, CT images with the contrast of 20% are
quite clear and those with the contrast of 1% are beyond the
worst case. By this way we can have testing images with
typical CT bone segmentation challenges. The images are
of size 100× 100 and contain three separate bone segments
(note that the small segment is also bone).

The obtained segmentation results are compared with the
known “ground truth”, and the accuracy measure, defined
as the ratio between the number of pixels that are correctly
classified (as bone and background) and the total number of
pixels in the image, is used for quantitative evaluation. Fig. 6
show a sample result for a testing image having contrast of
1% while the accuracy values for the whole data set are
plotted in Fig. 7. We can see that the proposed model yields
higher accuracy than the CV AC does, especially at low
contrast level.

Fig. 8 shows the segmentation results for a real CT image
using CV AC and the proposed model. The image is of size
300×300 and belongs to the knee region of a patient. Again,
it can be seen that the CV AC fails to capture the bone region
while the proposed model can. The reason is that the soft
tissue region (background) in this image is not homogeneous
enough.



Fig. 6. Sample result for a testing image having contrast of 1%.
Size = 100 × 100. Upper row: CV AC, cpu time = 58s. Lower row: the
proposed model, β = 0.3, cpu time = 64s.
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Fig. 7. Plots of accuracy vs. contrast level. The proposed AC performs
better than the CV AC, especially when the contrast is less than 9%.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel AC model to
extract bone regions from CT images. The proposed model
incorporates to the CV energy functional the Bhattacharyya
distance between the density functions inside and outside the
curve to drive it towards a “desirable” minimum which is
often not the global one. The evolution flow of the proposed
model is derived using the level set framework, making
it inherit advantages of a geometric AC such as topology
adaptability. Experimental results show that the proposed AC
overcomes the limitation of the CV AC when dealing with
images having inhomogeneous objects with more robustness
to contrast level. It is also possible to see that the cpu time
of our model is comparable to or even less than that of the
CV AC despite the higher computational cost. This is due to
the fact that the additional evolving term helps to move the
curve faster towards convergence. Qualitatively satisfactory
results of the proposed model applied on a real CT image
demonstrate its potential in medical image segmentation.
Quantitative evaluation on large data sets of CT images will
be done in our future work to quantify its effectiveness. Also,
image features other than intensity may be considered.
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