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Abstract

Simple, fast, low energy consumption time synchroniza-
tion protocol is needed by sensor networks. Mutual inter-
action synchronization is highly attractive for wireless sen-
sor network for its simplicity, self-organization and good
scalability. The proposed Selective Coupling Synchronicity
Algorithm (SCSA) addresses the problem of low efficiency
caused by the phase swing actions in the original all Pulse
Coupling model. The benefits are fast synchronizing speed
and associated low energy consumption. The simulation re-
sults show that our algorithm performs better than the orig-
inal model in most situations.

1. Introduction

Time synchronization is a critical piece of infrastructure
in distributed systems and wireless sensor networks make
particularly extensive use of synchronized time. Applica-
tions such as target tracking, MAC layer access schedule,
or time varying data collection, need either local or global
synchronized time scale as a precondition.

For the critical requirement and constraints of sen-
sor networks, researchers proposed many time synchro-
nization protocols. Centralized synchronization protocols
(TPSN [2], FTSP [5], RBS [1]) are simple and can ob-
tain reasonable precision, but the scalability and robustness
usually is poor. Part distributed protocols ( [8], RITS [4])
scale much better than centralized protocols in space and
density, however usually the computing complexity is rel-
atively high. The mutual interacting model inspired from
biological self-synchronizing phenomena is completely dif-
ferent from these. It regards distributed agents as oscillators
whose phases couple with each other when they ‘hear’ the
pulse signal. It is simple, self-organizing, scalable, robust
and has a long lifetime. All these salient features are suit-
able for sensor networks which are constructed by a large
amount of small size, low computation ability, limited en-
ergy supplied sensor nodes.

∗Prof. Sungyoung Lee is the corresponding author.

The speed of synchronization is called the immediacy
of the time synchronization protocol. To control this, the
high level system parameters such as coupling strength [7]
and oscillator density [3] are concerned in previous works.
Different from these, based on our own Converging Direc-
tion Determinant Formula, the proposed Selective Coupling
Synchronicity Algorithm modifies the intrinsic behavior of
nodes. It predicts the upcoming reactions’ converging di-
rection and ignores some incoming pulses that may cause
reverse direction actions so as to eliminates the blindness
of oscillators’ interaction and the unnecessary attempting
works. Under the same condition, our algorithm can in-
crease the converging speed, and save the associated en-
ergy consumption compared to the original pulse coupling
model.

Our work has three main contributions: 1) the discussion
in [7] is extended and enhanced to more clearly describe
the dynamic nature of the converging process, in particular
we derive the Converging Direction Determinant Formula;
2) besides inheriting the advantages of the pulse coupling
model(simplicity, self-organization, robustness), our selec-
tive coupling synchronicity algorithm quicken the synchro-
nizing speed under different parameter settings, and this can
greatly reduce the network topology deployment require-
ment to guarantee the convergence in multi-hop situation;
3) while increasing the synchronizing speed, our algorithm
also can save on the energy consumption for reducing the
total message transmission amount.

The remainder of the paper is organized as follows. Sec-
tion II introduces the pulse coupling model related work
with a discussion on synchronization rate. Section III intro-
duces the pulse coupling mathematical model and presents
our own node Converging Direction Determinant Formula.
Section IV presents the Selective Coupling Synchronicity
Algorithm. Section V describes the algorithm performance
evaluation and associated analysis. Section VI gives out the
conclusion.

2 Related Work
The synchronicity is defined as the ability to organize

simultaneous collective action across the whole network.



In [7] the biological individuals are regarded as the Pulse-
Coupled biological Oscillators (PCO) and they proved that a
very simple reactive node behavior would always converge
to produce global synchronicity, regardless of the number
of nodes and starting times. Later in [6], they lift the all-to-
all communication requirement implicit in [7], so that the
model can converge to a synchronized state based on the
local communication topology only.

Many papers also give out discussion on the pulse cou-
pling model synchronizing rate. The work in [7] models
the oscillating function as (f(φ) = 1

b ln(1 + [eb − 1]φ)).
They mathematically prove that the time taken to synchro-
nize is inversely proportional to the product εb, in which b
measures the extent to which f is concave down and ε is
the coupling strength. Usually the sensor node’s oscillat-
ing function is set fixed, b does not change frequently, we
only adjust the coupling strength ε. However, ε can not be
chosen arbitrarily large, the node may “overshoot” and pre-
vent converging [11]. In [3] observations are made that,
when the node density meets some threshold that makes
εN(1 − pMD) ≥ 1, (where N is the node number in
one broadcast range, pMD is the probability of missed de-
tections), the avalanche effect occurs with high probabil-
ity. Avalanche effect means that the firing of one oscillator
brings another to the firing threshold, the latter oscillator
fires immediately and ignites a “chain reaction” of addi-
tional firing and locks the network into synchrony imme-
diately. This effect requires that the oscillators can succes-
sively jump and fire or the pulse strength of a synchronous
group is assumed to be the sum of the individual pulse
strengths. However, for the existence of the oscillating re-
fractory period, usually the latter oscillator is not allowed to
fire until the next time it reaches the threshold. Also oscil-
lators do not detect the pulse strength exactly for simplic-
ity. This leads to choosy the coupling parameter ε under the
constraints of hardware and network environment.

3 Converging direction determinant formula

3.1 Pulse-Coupling Model

Today’s computing devices are equipped with a hard-
ware oscillator assisted clock. The pulse coupling model re-
gards every distributed clock as an oscillator with the same
fixed frequency but different initial phase. The coupling
aim to eliminate the phase difference(to make them shrink
to 0 or enlarge to 1) and let these oscillators act with the
same phase and the same frequency, so-called getting syn-
chronized. Oscillator phase φ and state ϕ = f(φ) both
are defined on [0, 1]. f(φ) is the oscillating function and
should be monotonically increasing and concave down (that
is: f ′ > 0 and f ′′ < 0; f(0) = 0, f(1) = 1). When there is
only one oscillator, the state will follow the function curve
from 0 to 1 at a regular rate: dφ/dt = 1/T (T is the func-

tion cycle period). When the phase arrives at 1, it fires and
emits a pulse, then resets the phase to 0 and starts a new
cycle again. However, if during the walking path, at time
t, it receives a pulse from the other oscillator, the state will
jump an amount ε and the phase be updated as (Figure 1):

φt′ =
{

f−1(f(φt) + ε), if f−1(f(φt) + ε) < 1
0, otherwise

Thus, all oscillators follow the same update equation when
detect the firing pulse, they interact with each other and ad-
just their phases to an agreed one.

Figure 1. Oscillator jump action.

3.2 Converging Direction Determinant
Formula

To make sure the oscillators’ phase difference converg-
ing direction, we draw a pair of nodes converging procedure
in a single cycle (Figure 2). Since PCO is a discrete model
and is controlled by few parameters, all the computations
are pertinent to phases. Let vector |−−→AB|, the bold lines in
Figure 2, represent the phase distance from A to B. When-
ever |−−→AB| shrinks to 0 or enlarges to 1, we say that they
become synchronized. In the following, φk is the phase of
oscillator k when it reacts, Δφk is the phase jump amount
of oscillator k after its reaction. First, when oscillator B is
fired, A jumps (Figure 2(b,c)), AB distance changes to

|−−−→A′B′| = |−−→AB| − ΔφA (1)

Then, both oscillators move forward until A fires. After B
jumps (Figure 2(d, e)), the distance becomes:

|−−−→A′′B′′| = |−−−→A′B′| + ΔφB′ = |−−→AB| − ΔφA + ΔφB′ (2)

|−−→AB| − |−−−→A′′B′′| = ΔφA − ΔφB′ (3)

To compare the value of |−−−→A′′B′′| and |−−→AB|, the relationship
of ΔφA and ΔφB′ is needed. To get that, the monotonicity
of Δφk and the two oscillators’ jump position φA and φB′

are checked:
Step 1. To judge the monotonicity of Δφk we calculate

its derivative:

Δφk = f−1(f(φk) + ε) − f−1(f(φk)) (4)



Figure 2. A pair nodes phase converging pro-
cedure in one cycle.

Δφ′
k =

1
f ′(f−1(f(φk) + ε))

− 1
f ′(f−1(f(φk)))

=
f ′(f−1(f(φk))) − f ′(f−1(f(φk) + ε))
f ′(f−1(f(φk) + ε))f ′(f−1(f(φk)))

(5)

For f ′ > 0, f and f−1 both are monotonically increasing.
And f ′′ < 0, so f ′(f−1(f(φk))) > f ′(f−1(f(φk) + ε)),
Δφ′

k > 0. Δφk is monotonically increasing follow the in-
creasing of phase φk. The coupling happened in later posi-
tion always causes bigger phase jump amount than its for-
mer ones.

Step 2. Consider the two oscillators’ jumping position
φA and φB′ (Figure 2(b, c, d)). When φB is at critical firing
point (φB = 1 ):

φB′ = 1 − φA′ = 1 − f−1(f(φA) + ε) (6)

φA − φB′ = φA + f−1(f(φA) + ε) − 1 (7)

Step 3. Combine equation (7) with equation (3):
When φA + f−1(f(φA) + ε) > 1, φA > φB′ ; for

monotonically increasing of Δφk , ΔφA > ΔφB′ , so

|−−−→A′′B′′| < |−−→AB|. In next cycle, when φB′′ = 1, for

|−−−→A′′B′′| < |−−→AB|, A’s new phase φA′′ must be bigger than
φA, so in the afterwards, it will always meet the require-
ment φA + f−1(f(φA) + ε) > 1; |−−→AB| value will continue
shrinking until equal to 0.

When φA + f−1(f(φA) + ε) < 1, φA < φB′ , ΔφA <

ΔφB′ , then |−−−→A′′B′′| > |−−→AB|. For the same reason, the new

phase of A will always drop in this case, |−−→AB| will continue
enlarging until equal to 1.

When φA + f−1(f(φA) + ε) = 1, φA = φB′ , ΔφA =
ΔφB′ , then |−−−→A′′B′′| = |−−→AB|. This is the unique fixed point.
Actually, for the uniqueness of this point and clock drift or
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Figure 3. Swing action of the phase differ-
ence.

clock measurement errors, once the phase drifts away a lit-
tle, the system will push the phase to the 1 or 0 synchronic-
ity state. So the existence of an unique fixed point will not
cause a system pause but it is a ‘repeller’ as described in [7].

Following from the above steps, the pair oscillators’
Converging Direction Determinant Formula is determined:

Lemma 1 Given pair oscillators, with one at the edge of
firing, one at phase φk. Define Dk is the phase difference
between them. Follow the pulse coupling dynamics, φkJ =
f−1(f(φk) + ε) is the phase after reacting the incoming
pulse.

If Vk = φk + φkJ > 1, then after one cycle, the two
oscillators converge and finally Dk will converge to 0;

if Vk = φk + φkJ < 1, then after one cycle, the two
oscillator diverge and finally Dk will converge to 1.

From the format of the determinant formula, observe that
the pair initial phase states, the coupling strength ε and the
extent to which f(φ) is concave down all influence the con-
verging procedure.

4 Selective pulse coupling algorithm

4.1 Single Direction Converge

As we observed, for each oscillator pair, when one fires,
if they are not converged then their converging direction will

change. The phase difference swings:|−−→AB| > |−−−→A′B′| and

|−−−→A′B′| < |−−−→A′′B′′|. The distance is decreased then increased
in a single cycle. Except the last jump before final synchro-
nizing, every jump does not cause the phase distance change
by Δφ but by Δ(Δφ). Figure 3 illustrates the phase differ-
ence swing actions of a pair of oscillators (the upper line).
The swing between two directions prolong the converging
time and consume more energy.

The swing actions are actually the phase difference at-
tempting to search the final converging direction: does the



difference enlarge to 1 or shrink to 0? So if the converging
direction is known in advance, then the reverse direction
jump become unnecessary. Specifically, when an oscilla-
tor detects one pulse, it calculates its Vk value and checks
that the coming jump is to its final converging direction, or
not. If it is, then react to the firing pulse, jump the oscil-
lator phase; otherwise, ignore the pulse, do nothing. Thus,
the reverse direction jumping is replaced by just keeping its
original place, and the up-jump segments in the upper line
become the level segments in the lower line as shown in
Figure 3.

4.2 Multi-nodes Multi-hop situation

For a multi-hop situation, every firing pulse can only ef-
fect the oscillators in its neighboring area for local coupling.
The converging starts from one or several points then grad-
ually spreads to the whole network. For the asynchronous
coupling, the phase order may change after each firing. In
the present firing cycle, the oscillator which has its phase
nearing to the firing threshold becomes the next firing oscil-
lator. The system is totally dynamic and self-organizing.

On the other hand, in multi-nodes networks, one oscilla-
tor will receive more than one firing pulse per cycle. The
total jump amount in one direction relates to the number
of coupling and the coupling happened position before it-
self firing. However, these two things change at each cycle
for the dynamic nodes firing order. It is not easy to tell the
node’s final converging direction in the beginning of con-
verging procedure. So only the current oscillator phase dis-
tribution information can be used. Using the local optimiza-
tion principle, we propose: Each node, once ‘hearing’ the
pulse, judges if the phase distance between itself and the
firing one will converge or diverge, then decides to react
to the firing node or not. Each oscillator chooses the fir-
ing one that has the same converging direction with itself at
this time to react. Although this can not eliminate all the
swings, it can avoid the obvious reverse direction jumps so
as quicken the total converging progress. We call is as our
Selective Coupling Synchronicity Algorithm (SCSA).

In the Selective Coupling Synchronization Algorithm,
nodes transmit simple pulses instead of packet messages
as the time signal. And although receivers selectively re-
act to the incoming pulse, they still do not need to identify
the source of emission and require no memory to store time
information of other nodes. So this algorithm can be oper-
ated at physical layer or implemented on hardware totally.
Therefore, the imprecision due to MAC layer delays, pro-
tocol processing or software implementation does not exist.
Also from a physical layer perspective, a synchronization
process where all nodes transmit the same word is not af-
fected by collisions in a similar way to flooding [9]. To
maintain the system stability [10], We also assign a refrac-

tory period right after nodes’ own firing, during which no
signal can be received from other nodes.

Algorithm 1 Selective Pulse Coupling synchronicity
1. while (not synchronized) do
2. Advance all phases until the highest one fires
3. for (every firing pulse) do
4. for (every non-firing receiver) do
5. if (not jumped yet) and (within transmission

range) then
6. Calculate φkJ = f−1(f(φk) + ε)
7. if Vk = φk + φkJ > 1 then
8. React to the pulse and mark as jumped
9. else

10. Ignore this pulse
11. end if
12. end if
13. end for
14. end for
15. end while

The pseudo-code describes the operations happened dur-
ing the whole synchronizing procedure. Every node period-
ically follows its oscillating trajectory. Only when detecting
a firing pulse, the node calculates the post jumping phase
value φkJ = f−1(f(φk) + ε), judges its next converging
direction and decides to react to the pulse or not. Here,
judging and calculating do not bring much additional over-
head to the system, because even without the converging
direction checking, it also needs to calculate the post jump-
ing phase value φkJ for reacting to the pulse. Our Selective
Coupling Algorithm only brings one more addition and one
additional comparison operation with every firing.

5 Performance evaluation

5.1 Evaluation Metrics

Our algorithm aims to increase the converging efficiency,
so we mainly evaluate the converging speed and the associ-
ated energy consumption of selective coupling synchronic-
ity algorithm compared with the all pulse coupling model.

Time to Sync: The amount of time untitle the system
achieves synchronicity. We use the number of the
oscillator’s natural period To to measure the converging
time.
Energy to Sync: For sensor nodes, energy consumed by
communication is much greater than that by calculation or
sensing. We count the total number of pulse emitted by the
entire network of nodes before synchronicity is achieved.
Multiplying this number by r2, the square of the
transmission radius. we obtain the total energy



consumption normalized by the energy of a single pulse
necessary to reach a transmission range equal to 1 [3].

5.2 Simulation Results

In the simulation, oscillator hardware constraints are
considered: oscillator is not allowed to jump or fire con-
tinuously for the refractory period; and oscillators do not
detect the strength of pulses for simplicity. Clock skew that
occur from variations in clock crystals in individual wire-
less sensors are not considered.

We choose f(φ) = 1
b ln[(eb − 1)φ + 1] as the oscillator

function in our simulation (similar to the function selected
in [7]). For the coupling strength ε and the extent of func-
tion b have similar effect on the rate of synchrony, set b = 1
therefore f(φ) = ln[(e− 1)φ + 1]. Refer to [9], refractory
period is set Trefr = 0.01To. We also set the maximum
acceptable converging time as 2000To, if within this period
the network does not synchronized, we regard the converg-
ing procedure failed.

N nodes are distributed randomly within a 10 × 10 m2

network area with connectivity. In random topology, nodes
locally communicate with other nodes within the transmis-
sion range r. When r near or greater than 10

√
2 it becomes

all-to-all coupling. All initial phase states are randomly dis-
tributed with uniform distribution. And all the results are
averaged over 500 network topologies and initial phases re-
alization.

3 4 5 6 7 8 9 10 11 12 13 14
10

0

10
1

10
2

10
3

Radius of Transmission

P
er

io
ds

 to
 S

yn
c 

(lo
g)

ε = 0.02 S_PC
ε = 0.1        
ε = 0.2        
ε = 0.02 A_PC  
ε = 0.1        
ε = 0.2     

Figure 4. A PC/S PC Average locking time
versus the transmission range with ε =
0.02, 0.1, 0.2, and 1nodes/m2.

Figure 4 shows the comparison of converging time be-
tween our selective pulse coupling algorithm(S PC) and all
pulse coupling model(A PC) under the different parame-
ter settings. First, as proved in [7], proper stronger cou-
pling strength ε causes higher synchronizing rate. This also
works for selective coupling situation. Second, when trans-
mission radius r is not big enough(r < 3 for S PC and

r < 6 for A PC), the converging speed is too slow to ac-
cept for sparsity of coupling nodes. As r increases, con-
verging speed increases also; when nodes near to all-to-all
coupling(r ≥ 11), the converging speeds reach maximum
and remain similar later. Here we can see all pulse cou-
pling model brings a high demand on the node deployment
and initial phases. While our algorithm can guarantee con-
vergence under poor coupling situation, because the selec-
tive coupling enable fast converge in the correct direction
and restrain the reverse direction attempts. Fasting the fir-
ing step in local area will bring ripple effect to the whole
network so as the network’s converging time also hasten
greatly. Above all, under the same parameter settings, our
selective coupling algorithm always have high synchroniz-
ing speed than all pulse coupling model.
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the transmission range with 0.4nodes/m2,
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From figure 5 we got some observations. All pulse cou-
pling model has a local minimum point for energy con-
sumption with some transmission radius. Because although
smaller transmission radius needs less transmission power
which is directly proportional to square of the transmission
radius, it also may need more pulses transmitted to get con-
verge. There is a tradeoff between transmission power for
each pulse and the number of pulse. While for selective cou-
pling algorithm, the increased transmission radius has more
weight than the decreased converging time. For our algo-
rithm, the smallest radius brings lowest energy consump-
tion. We also observe that the more nodes in network, the
more energy needed to reach synchronization, but for each
node, the energy consumed does not have much difference.
Under the same condition, to reach synchronization, our se-
lective coupling algorithm consume less energy.

Combine the discussions of figure 4 and 5, figure 6 gives
out the relationship between synchronizing time and the as-
sociated energy consumption of selective coupling synchro-
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nization algorithm. In the figure, the lower left corner rep-
resents the ideal situation for all algorithms, which has the
highest converging speed while consumes the least energy,
on the contrary, the upper right corner represents the worst
case. So for every line, the point who is nearest to the bot-
tom left point has the optimal efficiency. With the help of
these lines, we can choose the proper transmission radius
according the different application requirements or limita-
tions.

6 Conclusion

Mutual synchronization inspired from biological system
represents the new trend in time synchronization in sensor
networks. It is simple, robust, self-organizing and easy to
implemented on hardware. Based on the pulse coupling bi-
ological oscillator model our proposed Selective Coupling
Synchronicity Algorithm (SCSA) addresses the problem of
low efficiency caused by the phase swing actions in the
original pulse coupling model. It gains the fast synchro-
nizing speed and lower associated energy consumption. As
the theoretical basement, the Converging Direction Deter-
minant Formula also has been derived.

For the future work, the effect caused by the variations
of the intrinsic oscillator frequency and the relationship
between synchronicity precision and the refractory period
length will be investigated.
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