
- 1 -

Summary

 This paper introduces the design and
implementation of a public
transporta-tion guidance prototype
system, which enables the WWW
(World-Wide Web) to provide users with
easier access and use. The proposed
system is composed of three subsystems:
client/server interface, knowledge based
path search system and traffic data
storage system. The user interface utilizes
Java language to furnish users with
multimedia data accessibility and
interactiveness. The path search system
produces optimal solutions based on
dynamic traffic data, while previous
search systems are limited to using static
traffic data such as bus/subway route
information. The storage system is
designed to give the search system more
efficient access to traffic information. The
constituent sub-systems are
inter-connected on the WWW using CGI
(Common Gateway Interface). A client
requests the server to search a path. The
server asks the search system through
CGI to get a result from the database, and
returns it to the client. The system can
be extended to an integrated navigation
system which includes a variety of
information from the Internet in addition
to traffic information.

* This work has been partially supported by

contract KICT#96-0147

INTRODUCTION

The increase in personal mobility in
metropolitan areas is notorious cause of
traffic congestion, which in turn causes
environmental pollution, wasted time and
road accidents. Fortunately, current
infor-mation technology and mobile
communi-cations can help to alleviate some
of these problems, though without directing
people to public transportation, those
problems can not be solved ultimately.
More countries are getting interested in
APTS (Advanced Public Transportation
Systems) as a part of an ITS(Intelligent
Transportation System) which provides
users with a variety of convenient and
accurate public traffic information services
and the public transport industry with
economical and efficient traffic
manage-ment techniques.
 An APTS consists of four subsystems:
Traffic Information Collection System,
Central Control System, Communication
system and Terminal System. The traffic
information collection system provides
weather information and road condition or
accident information collected from beacons
and car detectors. The central control
system controls the whole system, processes
users' requests and commands the AVL
(Automatic Vehicle Location) system which
in turn utilizes GIS (Geographical
Information System) and GPS(Global
Positioning System). The communication
system transmits data collected from the
information collection system through the

Design and Implementation of an Internet
Public Transportation Guidance System*

Sukang Bae†, Sungyoung Lee†, Dae-Soon Choi††, Hyonwoo Seung†††, Tae-Choong

Chung†

 † Department of Computer Engineering, Kyunghee University, Korea
 {sylee@oslab.kyunghee.ac.kr}

†† Korea Institute of Construction Technology, Korea
 ††† Department of Computer Science, Seoul Women's University, Korea

- 2 -

network(wire or wireless) to the central
control system, and returns the processed
results to the users. The terminal system is
the interface through which users or the
system manager communicate with the
system.
 This paper introduces our experience for
developing a public transportation guidance
system as a prototype of APTS which
enables the WWW to provide users with
easier access and use. The proposed system
aims to provide users with accurate and live
on-the-spot traffic information, and optimal
paths from the places where they are to the
destinations based on the current traffic
situation.

The system is composed of four
subsystems: clients and the server connected
together through the Internet, the path
search system, the traffic data storage
system and the traffic raw-data
management system. While existing traffic

Traffic Information
Collection System

o Traffic Accidents
 Collection System
o Weather Information
 Collection System
o Traffic Situation
 Collection System

Central Control System

o Automatic Vehicle
 Location(AVL)
o Geographical Information
 System(GIS)

Terminals System

o Home/Office Terminal
o Station/Car Displays
o Road Signs

Communication
System

[Figure 1] General Structure of APTS

guidance systems provide traffic
infor-mation fragmentarily in texts or
images, the client utilizes a Web browser
such as Netscape or MS-Explorer as its user
interface, and makes the best of the Java
programming language to provide
state-of-the-art user interfacing techniques
(3)(4)(5) (7)(13). On the Web, through a
graphical browser, users can activate a
hyperlink, read multimedia traffic
infor-mation, or down-load a file within a
single mouse click. In the path search
system, a modified A* algorithm with a
conditional pruning technique is used to
consider various search conditions such as
the number of routes to search or transfers,
instead of adopting the dynamic

pro-gramming technique which is generally
used to search a shortest path. The traffic
data storage system maintains the current
traffic situations, stores stations/ routes and
their geographical data, and provides
routing information for the path search. The
traffic raw-data management system is an
easy-to-use graphical user interface which
enables the system manager to register,
modify, update or delete stations/routes
through visual maps on the screen. Each
module of the system is connected using the
CGI and JDBC(Java Database
Connec-tivity) (2)(11).
 Since the system uses Java, which is
object-oriented and platform-independent, it
is easy to integrate with systems on the
Internet running on heterogeneous machines
as well as the other commercially available
traffic information systems. It is also easy to
alter the system within a relatively short
period of time in case the user requirements
change, and, consequently, easy to keep the
system maintenance cost relatively low.
While previous systems use exclusive
terminals furnished at bus/subway stations
or public institutions, the proposed system
can be used on PCs, NCs(Network
Computers) or Internet TVs at home or
offices since it is mounted on the Web.
Furthermore, the system can be directly
plugged into ITS in the future.

The remainder of this paper is organized
as follows. In Section 2, the system
archi-tecture is described. Section 3
discusses the client part and server part of
the system. The path search system and the
traffic data storage system are presented in
Section 4 and 5, respectively. In Section 6,
the traffic raw-data management system is
discussed. Finally, our conclusion and plans
for future work appear in Section 7.

SYSTEM ARCHITECTURE

The physical structure of the proposed
system is shown in [Figure 2]. It consists of
clients and the server, the path search
system, the traffic data storage system and
the traffic data management system.

- 3 -

The client has a Web browser such as
Netscape or MS-Explorer as its user
interface. The Browser provides the GUI

Traffic
Information

DBMS

Client 1

Client 2

Client 3

WWW Server

CGI
Main

ProgramInternet
Path Search

System

DB

Co
nn
ec

ti
o
n

WWW
Browser

WWW
Browser

WWW
Browser

Traffic
Raw-Data

Management
System

Server

Communication
Networks

Traffic
Information
Collection
Systems

Invoke Call

DB
Connection

JDBC

ResultsText/HTML

[Figure 2] System Architecture

environment which enables users to see
Web pages and to access other pages with a
click of a mouse button. A Web page can
have any multimedia traffic information
such as formatted or unformatted text,
images, sounds and videos included in it.
The browser loads such pages and displays
them. The traffic information contained on
the pages is formatted in HTML(Hypertext
Markup Language) and Java Applet/Script.
The CGI is used in order to interconnect the
client to the server where the path search
system and the traffic data storage system
reside. The client and the server
commu-nicate with each other using a
common protocol, HTTP(Hypertext
Transfer Protocol) over the TCP/IP. The
client requests the server to search a path.
Then, the server asks the path search system
through CGI to get a result from the traffic
database, and returns it to the client. [Figure
3] shows how the mechanism works.

 CGI
(Common
Gateway
Interface)

WWW Server

WWW browser

JAVA Applet

User

Line
Information

Station
Information

Other
Information

Image and
Sound

Station informationand path search request
Station information request Path search results and

Mouse clink or
touch screen Image and Sound files

Path search routine

[Figure 3] Data Flow Diagram of the

System
The real-time traffic data gathered from

the traffic data collection system should be
used for the path search system to find
optimal paths. However, the virtual data
produced by the traffic data generator have
been used in the proposed system for
practical reasons.

CLIENT/SERVER

CLIENT

 The client uses AWT(Abstract Window
Toolkit) classes, the Windows-version of
Java, to provide menus, buttons, dialog
boxes, to represent traffic maps, to select the
source/destination and to produce the output
of search results.

For the services of the system to be more
realistic, the actual running time from
station to station must be reflected by
considering road conditions, exact locations
of stations and bus operation records, etc.
The exact locations of bus stations can not
be adequately shown on the map. Even if,
for example, two stations have same name
on the map, they may not have same
locations. The actual distance between the
two stations could be very long. There could
be up to eight stations with same name on
an intersection. Since the time or cost to
transfer may be quite different according to
the actual locations, such information must
be reflected. The shortest time path is more
important than the shortest distance path
when the user chooses a bus/subway route,

- 4 -

since traffic congestion is the most critical
problem in the metropolitan area. Therefore,
actual running time based on bus operation
records was taken into account in the
system.
 The client displays the result in text and
graphics on the browser screen as shown in
[Figure 4] after the user selects the
source/destination by clicking on the "Find
Path" button. The red bold line shows an
optimal path from source to destination, and
at the same time, the path is shown in the
text box at the bottom of the screen. The
transfer points are iconized and can be
shown in images upon clicking.

[Figure 4] Search Result displayed on

Client Screen

SERVER
 The CGI is used in the proposed public
traffic information system in order to
connect the client to the server. Following is
the normal process how CGI works in the
system.

1) The user calls a CGI program to
 issue a search request on the Web
 browser.

2) The Web browser contacts the Web
 server asking for permission to run
 the CGI program.

3) The Web server checks if the
 requester is allowed access to the
 CGI program.

4) The CGI program executed.
5) The resulting paths produced by the

 CGI program are returned in HTML
 format to the Web browser.

6) The Web browser displays the CGI
 output.

CGI Program Module Diagram

Main Module

Path Search

This module obtains an
optimal path search result

based on the current traffic.

Traffic Generator

This module generates
hypothetical traffic

information based on the
historical data.

Lines Information

This module reads line
information from database
and returns the results.

Stations Information

This module reads station
information from database
and returns the results.

Database

[Figure 5] Structure of the Server-side
CGI module

 Java Applets were used in the system in
order to make the traffic information appear
dynamic and live on the browser screen
since data are no longer restricted to a
page-by-page display with Java. For the
system performance, we let the client-side
Java Applet take care of the user interface
only, and the server-side CGI program take
over the other routines such as the path
search system. The structure of the
server-side CGI module is diagrammed in
[Figure 5].

PATH SEARCH SYSTEM

 The path problem has been a hot research
topic for decades not only in academic
fields but in real life applications. Many
algorithms have been developed to find
optimal solutions. Among them, A*
algorithm has received more attention than
any other algorithms. Although A*
algorithm has proved to be successful, it
quickly runs out of space even for problem
instances of moderate size when searching
for optimal solutions, since it requires
exponential space. Furthermore, it produces
the best solution only. It does not produce
the alternate solutions sometimes needed in
many applications.

To overcome such problems, we propose
a modified A* algorithm which produces
more than one optimal solution and utilizes
a conditional pruning technique for time

- 5 -

efficiency. The objective in the system is
to produce more than one optimal path from
source to destination in the cost value order.

Path problems can be classified into four
categories: (8)

1) single source/single destination
 shortest paths

2) all pairs shortest paths
3) K-th shortest paths(first, second, ..)
4) shortest paths going through

 specified nodes
[Figure 6] shows the classification tree.

The kind of algorithm applied in the
proposed system falls under the single
source/single destination K-th shortest path
search algorithm.

Since (vehicle) transfers must be
considered in the proposed system, a
heuristic search technique, A* algorithm,
has been modified and applied in a way
which has been proven time-efficient in
certain problem domains (1)(6)(12).

Shortest Path Problems

Unconstrained path Constrained path

The
Shortest

Path

 with
 cycles

 Path has
specified

 number of
 arcs

 Path must
 go through
 specified
 nodes

 Sub
 Optima

 Path

 K-th
 Shortest

 Path

All nodes
 are

sources

Multiple
Source

Single
Source

One-to-allOne-to-one

[Figure 6] Classification of the optimal

path search algorithms

MODIFIED A* ALGORITHM
While A* algorithm finds the least g(n) +

h*(n) value first and uses a dynamic
programming technique to search the
shortest path, the modified A* algorithm
proposed in this paper uses a conditional

pruning technique to consider various
search conditions such as the number of
routes to search or transfers. The differences
are illustrated in [Figure 7].

[Figure 7] Comparison between the A*
and the modified A* algorithm

HEURISTIC FUNCTIONS
Two heuristic functions are considered

when time or distance are used as search
criteria. When the search criteria is distance,
the Euclidean Distance(UD) is used(10). In
the case of time, UD × TD × R is used
as the heuristic function, where TD stands
for the average time/distance calculated
from the database storing traffic cost values
and R is a weight value between 0 and 1. In
addition, transfer cost must be considered as
well. Those search criteria and transfer costs
can be given by users. [Figure 8]
summarizes both heuristic functions.

[Figure 8] Differences between the time cost
and the distance cost

As shown in [Figure 8], when time is used

as cost value, g(n) is calculated using the
formula :
∑T + (cost(T) × num(T)), where ∑T is
summation of time cost of each edge from
the start node to the n-th node (min), cost(T)
is time cost of each transfer (min.), and
num(T) is number of transfers. When the
cost value is distance, ∑D is used instead
of ∑T. In that case, ∑D is a summation of
distance cost of each edge from the start
node to the n-th node (km).

SIMULATION OF THE HEURISTIC
FUNCTION

A*
algorithm

Best First search +
under estimation +

modified
A*

algorithm

Best First search +
proper estimation +
conditional pruning +
management of changing
vehicles

 Time Distance

g(n)
 ∑Time(min)
+ transfer cost

× number of transfers

 ∑Distance(km)
+ transfer cost

×number of transfers

H* UD×TD×R UD
 (UD : Euclidean Distance
 TD : average time cost/distance in DB
 R : real number between (0 ~ 1))

- 6 -

We examine the number of nodes
expanded, execution time, and relative cost
error for values of R(weight for TD), in case
time is selected as the search criterion. For
the simulation, we created a 300-node graph
based on the data collected from real
bus/subway routes. The cost between two
adjacent nodes n and m is calculated using
the following formula:

cost(n,m) = h*(n,m) × TD × R, where
h*(n,m) is the Euclidean Distance between
node n and m. The values of R are real
numbers from 0 to 1. For a given value of R,
we chose a pair of source/destination at
random and executed 200 times. Then we
averaged the number of nodes expanded, the
execution time, and the relative cost error.
The results are shown in [Figure 9, 10 and
11]. The relative cost error, E, was
calculated as follows:

[Figure 9] illustrates a remarkable reduction
in the average number of nodes expanded as
R comes close to 1. Accordingly, the
execution time, proportional to the number
of nodes expanded, also reduces as shown
in [Figure 10]. [Figure 11] shows the
average relative cost error is under 3%.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
40

50

60

70

80

90

100

110

n
u
m

b
e
r
o
f

n
o
d
e
s
 e

xp
a
n
d
e

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R(weight for TD)
[Figure 9] Average number of nodes

expanded

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

e
xe

c
u
ti
o
n
 t
im

e
(/

1
8
.0

 s
e
c
)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R(weight for TD)
[Figure 10] Average execution time

0

0.5

1

1.5

2

2.5

3

re
la

ti
ve

 c
o
s
t
e
rr
o
r
(%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R(weight for TD)

[Figure 11] Average relative cost error

TRAFFIC DATA STORAGE SYSTEM

 The traffic data storage system maintains
current traffic situations, stations/routes and
their geographical data, and provides
routing information for the path search.
Since the user selects a bus/subway station
by using a pointing device such as a mouse
or touch screen on a Web browser, the
coordinates of bus/subway stations are
required. The raw data were obtained from
bus companies or agencies concerned such
as the Korea Subway Cooperation. Based on
the raw data, the station/route information
was stored using the Oracle database
management system in image files to make
a digital map by acquiring the absolute
coordinates of each bus/subway station and
route. The map represents Seoul in 7800×
6800 resolution, as a whole. Since it is hard
to manage such a wide area in a file, the
map was subdivided into two hundred
twenty one 600×400 resolution unit maps.
Each unit map was stored in GIF format to
be displayed on a Web browser.

TRAFFIC RAW-DATA
MANAGEMENT SYSTEM

 In order to supply more realistic public
traffic information services, it is important
to build accurate and up-to-data traffic raw
data. By representing bus/subway stations
and lines/roads in a network model and
vehicles, people, time and distance as
parameters to the path search algorithm
based on the accurate raw data, correct

100
path optimal ofcost

path optimal ofcost -path searched ofcost
×=E

- 7 -

traffic information can be provided. Bus
lines tend to change because they are
usually operated by private companies.
Such changes must be directly reflected in
the path search algorithm by updating raw
data on a Web browser. Therefore, the
traffic raw-data management system was
developed as a Java application which can
be plugged into the Oracle server(9), and
was designed to perform inserting,
modifying and deleting operations platform-
independently on a visual map. The visual
management tool makes the operators work
without necessarily knowing the actual
coordinates of the objects, and reduces the
cost of maintaining traffic raw data.

[Figure 12] shows the first screen the user
sees when he/she starts the traffic raw-data
management system. Once the system is
executed, it asks the user for authorization.
If permitted, it contacts the server and
checks if there are any updated data on local
sites. If any, the system reflects the updates
to the central database. Then, the control is
taken over to the user.

[Figure 12] Traffic Raw-Data

Management System

[Figure 13] lists the menu items of the

system and briefly explains their functions.
When a new station is registered, three
items are to be entered: name, location and
type of station.
 There are three kinds of station types:
regular bus, seat bus and subway. Once
three items are entered, the new station is
appended to the station database after it is
verified whether there is any ambiguity or
conflict with other stations. If the location(x

and y coordinate values) of the station is not
known, it can be visually entered by
clicking on the "Locating on Map" button
and simply pointing to the position on the
map.
 When a station is to be deleted, the user
selects the area on the map where the station
is located, and all the adjacent stations in the
area are shown from the database. Then, the
user selects the station to be deleted. Care
must be taken when deleting a station
because it may be included in many routes.
The system checks if there are line paths on
which the station is situated. If any, the
system informs the user and lets him/her
cancel the operation.
 When a new line is added, there are three
items to be filled out: a line name, a means
of transportation and a list of stations on the
line. When a line is to be deleted, the list of
existing lines is presented to the user to
choose the line to be deleted. The "Line
Retrieval" menu item shows the list of
stations on a given line in text and
optionally on the map.

- 8 -

[Figure 13] Menu Items and their
Functions in the Traffic Raw-Data

CONCLUSIONS AND

FUTURE WORK

 Our experience of developing a public
transportation guidance system on the
Internet was introduced as a means of
solving the metropolitan area traffic
congestion problem, not with a hardware
approach like constructing new roads or
subways but with a software approach.
State-of-the-art techniques such as WWW,
Java and CGI are utilized in the proposed
system. It consists of clients and a server, a
path search system finding optimal paths
from source to destination, a traffic data
storage system and a traffic raw-data
management system. Since the system is
developed using Java, which is
object-oriented and platform-independent, it
is easy to integrate with Internet systems

running on heterogeneous machines as well
as the other commercially available traffic
information systems. It is also easy to alter
the system within a relatively short period
of time in case the user requirements change,
and, consequently, easy to keep the system
maintenance cost relatively low.
 The current system has a performance
limitation when multiple users request the
service concurrently. Therefore, as a part of
our future work, the Servlet provided by the
Java Web server and threading will be
utilized in order to reduce heavy load on the
server. We are also planning to provide
better quality geographic traffic information
in vector images by constructing a GIS.

References

 (1) A. L. Karl, H. Kaindl, "Bidirectional
 Best-First Search with Bounded
 Error: Summary of Results", IJCAI
 (International Joint Conference on
 Artificial Intelligence), 1993, pp.
 217-223.
 (2) Art Taylor, JDBC Developer's
 Resource, Informix Press, 1997
 (3) A. V. Hof, S.Shaio, O. Starbuck,
 Hooked on Java, SUN Microsystems,
 1996
 (4) David Flanagan, Java in a Nutshell,
 O'REILLY, 1996
 (5) Gray Cornell & Cay S. Horstmann,
 Core Java, Java Series, SunSoft, 1996
 (6) J.B.H Kwa, BS : "An Admissible
 Bidirectional Staged Heuristic Search
 Algorithm", Artificial Intelligence
 38(2), 1989, pp. 95-109.
 (7) Lemay, Perkins, Teach yourself
 JAVA in 21 days, SAMS NET, 1996
 (8) Judea Pearl, "Heuristics: Intelligent
 Search Strategy for Computer
 Solving", Addison-Wesley
 Publishing Company, 1984, pp.64-99.

(9) ORACLE, Oracle and Internet,
 ORACLE White Paper, 1996
(10) Hart, Nilson and Raphael, "A Formal
 Basis For The Heuristic
 Determination of Minimum Cost
 Paths", IEEE Transaction on SSC-

Menu
Item

Submenu
Item Function

Open opens temporarily
stored working file

Store when not connected to server,
 temporarily stores to local file

Send to
Server

sends data to server

File

Exit finishes work
New

Station
registers name, location of

a new station

Modify modifies name, location of an
existing station

Station
Manage-

ment
Delete deletes a station
New
Line

registers name,
path of a new line

Modify modifies name, location of
an existing line

Line
Manage-

ment
Delete deletes a line
Line

Retrieval
shows the list of stations on a

given line

Station
Retrieval

shows the location
of a given line

Retrieval

Path
Retrieval

shows all the lines on a
given path

Print
Line prints the current line

Print
Print

Station prints the current station

Help Assists in using the system

- 9 -

 4(2), pp. 100-107.
(11) Shishir Gundavaram, CGI
 Programming on the World Wide
 Web, O'REILLY & ASSOCIATES,
 1996
(12) I.Pohl, "First Result on the Effect of
 Error in Heuristic Search", In B.
 Meltzer and D. Michile, editors,
 Machine Intelligence 5, 1970,

 pp. 219-236.
 (13) T. Ritchey, Java, New Rider, 1995

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

