T THE 2008:Ini;‘e‘rhational Conference on
Convergence and Hybrid Information Technology

1CCIT 2008

| 11 =13 November 2008 -
Novotel Ambasador Busan, Busan, Korea

Corresponding Editors: |
Dr. Paul' P Wang, Dr:'Sungwon Sohn, Dr. Gurpreet Dhillon™
Dr. Jungwoo Lee, Dr. Franz 1.S. Ko, Dr. Ngoc Thanh Nguyen
Dr. Jun Bi, Dr.'Kouichi Sakurai, Dr. Majid Ahmadi

Dr. Yun Ji Na, Dr. Wan-Young Chung

Volume |

@ I E E E @Colr%ijégew E T RI

ID-Based Interoperation between Digital and Physical Resources in Ubiquitous

B O I T s ot i sttt e s e T s R S DS e e S 781

Sungbum Park, Namgyu Kim, Sangwon Lee, and Gyoo Gun Lim

Inter-PANiMobility: Support £or GLOWPANccevsiessrssssnsssassnsossissnsasasessssotosssosssiossorsasatsssanssosssessnsassonssbissossrssaton 787

Gargi Bag, Hamid Mukhtar, S. M. Saif Shams, Ki Hyung Kim, and Seung-wha Yoo

PMIPy6:with Bicasting for TP HANAONEE .. i..oneriesereronsasssasaoisassossissnsssssasiuisssessrsibasisssssissrisssisorssessasiossisniossibosssesosthss 793

Ji-In Kim, Seok-Joo Koh, Nam-Seok Ko, and Sung-Back Hong

Power Allocation in OFDM-Based Cognitive Networks with INterferenceccoeveeverererereenireniereseninenensenesennns 797

Chengshi Zhao, Mingrui Zou, Bin Shen, and Kyungsup Kwak

QoS Issues with Focus on Wireless Body Area NEtWOIKScoererirenieeiueeenininieninestoreenseneessssenssmsseseseseesssssessassens 801

M. A. Ameen, Ahsanun Nessa, and Kyung Sup Kwak
Reasonable TCP's Congestion Window Change Rate to Improve the TCP Performance

1807 1] QWHTRleRE INCTWOIKS <1 oo vt i nnarmssensussssnasimossins i ssnm it T s iate s s st s wses T e e ST 808

Zhang Fu Quan, Meng Ling Kai, and Yong-Jin Park

Research on.Computer/Aided System Design MEthod.coiuiismsiinississsisnssivssssssssassssssns insposssasassssssnsiarsississiass 813

Zhang Ye, Gao Junwei, Jia Limin, and Cai Guogiang

Retrieval of Identical Clothing Images Based on Local Color HiStOramsccceeeereeenienrininrenierenieresneesionssnenes 818

Yoo-Joo Choi, Ku-Jin Kim, Yunyoung Nam, and We-Duke Cho

Searching Optimal Cycle Cover for Graphs of Small TreeWidthcccoceviveniiinivnininniininininiienens
Yueping Li and Zhe Nie

-SensorGrid-Based Radiation Detection System in High Energy PhySicscccoooviivnininnnnennninnsnenssiossnsnesssnns
Qing Mao, Tiehui Li, Ping Dong, Ke Ding, and Tinghuai Ma

Tag Match Advertising Business Model in Mobile RFID Environmentcccoveieriiiinieinniiniinisnsnnnssssssenens
Kyoung Jun Lee and Jungho Jun

Two-Way Ranging Algorithms Using Estimated Frequency Offsets in WPAN

Yoonseok Nam, Hyungsoo Lee, Jaeyoung Kim, and Kwangroh Park
.Wideband Primary User Signal Identification Approaches for Cognitive MB-OFDM
HIRIS VRIBINC T, . e ot b b e s e v Tttt v b iy Simi e es e s i Bt st e b e s S e
Bin Shen, Chengshi Zhao, Longyang Huang, Kyungsup Kwak, and Zheng Zhou
A Scientific Rapid Prototyping Model for the Haskell Languageccceveueuerernriisienniniesisssssessnsesseseceeenene
Brian J. d'Auriol, Sungyoung Lee, and Young-Koo Lee
Application Concept Maps into Teaching Materials Design: A Case Study of Program

‘ Ling-Hsiu Chen and Yi-Chun Lai

An Intelligent Fault Diagnosis Method Based on Empirical Mode Decomposition

2 SUDPOTT VECIOT MACKING (... vonivsisisrosssesssnissssassssinsostassasssesnonssisssinssssssnsssnsnasisansupnipsrensuinsspisotonshosssssasabonsiessionsussiiss
Shen Zhi-xi, Huang Xi-yue, and Ma Xiao-xiao

Continuous Position Control of 1 DOF Manipulator Using EMG Signalscccceveveveriimnieiniiiiiiiiiineines
Wondae Ryu, Byungkil Han, and Jaehyo Kim

A Location-Aware Smart Bus Guide Application for SE0Ulcciviiiiiiiniinii e
Joo-Yen Choi, Ja-Hyun Jung, Sungmi Park, and Byeong-Mo Chang

xiii

.

Copyright © 2008 by The Institute of Electrical and Electronics Engineers, Inc.

All rights reserved.

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries may photocopy
beyond the limits of US copyright law, for private use of patrons, those articles in this volume that carry a code at
the bottom of the first page, provided that the per-copy fee indicated in the code is paid through the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

Other copying, reprint, or republication requests should be addressed to: IEEE Copyrights Manager, IEEE Service
Center, 445 Hoes Lane, P.O. Box 133, Piscataway, NJ 08855-1331.

The papers in this book comprise the proceedings of the meeting mentioned on the cover and title page. They reflect
the authors’ opinions and, in the interests of timely dissemination, are published as presented and without change.
Their inclusion in this publication does not necessarily constitute endorsement by the editors, the IEEE Computer
Society, or the Institute of Electrical and Electronics Engineers, Inc.

IEEE Computer Society Order Number E3407
BMS Part Number CFP0811F-PRT
ISBN 978-0-7695-3407-7
Library of Congress Number 2008928439

Additional copies may be ordered from:

IEEE Computer Society IEEE Service Center IEEE Computer Society
Customer Service Center 445 Hoes Lane Asia/Pacific Office
10662 Los Vaqueros Circle P.O. Box 1331 Watanabe Bldg., 1-4-2
P.O. Box 3014 Piscataway, NJ 08855-1331 Minami-Aoyama
Los Alamitos, CA 90720-1314 Tel: + 1 732 981 0060 Minato-ku, Tokyo 107-0062
Tel: + 1 800 272 6657 Fax: + 1 732 981 9667 JAPAN
Fax: + 1 714 821 4641 http://shop.ieee.org/store/ Tel: + 81334083118
http://computer.org/cspress customer-service@ieee.org Fax: + 81 3 3408 3553
csbooks@computer.org tokyo.ofc@computer.org

Individual paper REPRINTS may be ordered at: <reprints@computer.org>

Editorial production by Patrick Kellenberger
Cover art production by Joe Daigle/Studio Productions
Printed in the United States of America by The Printing House

IBEE

@ computer CPS

S OC! ety Conference Publi

IEEE Computer Society
Conference Publishing Services (CPS)
http://www.computer.org/cps

Third 2008 International Conference on Convergence and Hybrid Information Techmlkgs

A Scientific Rapid Prototyping Model for the Haskell Lang

Brian J. d’ Auriol, Sungyoung Lee, Young-Koo Lee
Department of Computer Engineering
Kyung Hee University

: Korea
{dauriol,sylee} @oslab.khu.ac.kr,yklee @khu.ac.kr

Abstract

A simple methodology for computational and scientific

rapid prototyping in Haskell is proposed. The methodology
is based on identifying abstractions that are defined over
entire list data structures combined with identifying a set of
processes that initially construct a list data structure and
subsequently modify that data structure in iterative steps
leading to a final post modification process 10 OUlput the
data structure. A case study exemplifies and details an ap-
plication of the proposed model. The results indicate that
the proposed methodology can be easily implemented for
developers or coders with little in-depth knowledge of. func-
tional programming capabilities; thereby, enabling appli-
cability for a wide range of users.

1. Introduction

Nowadays, the computing infrastructure for computa-
tional sciences relies heavily on networked computers with
on-demand access to high performance computers if and
when needed. In addition, such computing infrastructures
also include networked clusters, server-based clusters and
in some cases, peer-to-peer clusters. There are many avail-
able options for the programming of these systems, depend-
ing on user choice and computing needs, for example, Java
and related languages are commonly used for networked
cluster based applications whereas FORTRAN and C are
also commonly used for high-ended performance compu-
tations. Moreover, there are many libraries and packages
that also can be incorporated into applications, for example,
LAPACK, BLAS, VECLIB and MPL

There are many computer resource, programming lan-
guage, and library models that are available choices for
the development and coding phases of computational ap-
plications. Many of these have individual conceptual mod-
els for procedure and data representations. In some cases,
the models can integrate together; for example, typical

978-0-7695-3407-7/08 $25.00 © 2008 IEEE
DOI 10.1109/ICCIT.2008.187

MPI-based parallel programming ofuem

farming (master-slave) and Single P

(SPMD) models combined and integ

code. Moreover, the models may hawe
stractions, which in some Cases, Y
ing conceptual layouts, for examphe, €
well known to provide low-level pu
point communication specification,
guage level and the latter at the it
tion. However, models based om @
based languages (e.g. FORTRAN-D
guages such as Linda or Haskell |
specification requirements and maore
implicit’ concepts. A number of
idea of program skeletons, that s,
fragments. The complexity of chome
ure 1

This paper follows from the carfiuen
we have defined the term: Programs
models to describe the viewpoint of *
allel program is guided by at least oo
guided by several.” This paper contm
rection. Here, we are motivated by ai
choice upon the user for scientific amé
model development. This scientific s
cess needs to be supported by moded &
fast development while allowing the
trate on core ideas. Hence, this paper
the development time for research pe
velopers to more quickly produce c@
in the business, science and ubiquite

This rest of this paper is structured:
describes the scientific rapid proto
requirements. Section 3 presents the
structures that we propose as suitable
tional and scientific rapid prototypimg. |
a case study application and conclusag
tion 5.

structure patterns that support rapid prototyping; in partic-
ular, that allow the developer to concentrate on solution as
opposed to algorithm. Therefore, despite the general pur-
pose capability and the many special functional capabilities
of the language, we suggest simpler structures that we feel
may be easier for the developer to program in, especially
for those who do not have in-depth knowledge of functional
languages. In this paper, we concentrate on the basic model
of such structure patterns that is widely applicable to many
programmed solutions, however, which might not be uni-
versally applicable.

Haskell’s features of recursion and outer-layer pattern
matching provide a nice compact semantic and grammar
notation for tail recursion. Here, we introduce the term take
1, drop 1 recursive processing of a list data structure to de-
scribe this pattern structure. There are three purposes that
such a recursive procedure abstraction serves: 1) reduce a
list to a scalar, 2) modify each element in a list (i.e. con-
struct a new list), or 3) filter each element in a list (i.e. con-
struct a sub-list). Note that any particular code fragment
could combine the latter two. This structure uses the pat-
tern specification (x:xs) to implement the take 1, drop
1 concept; recursion terminating upon the pattern. []; and
explicit list construction using the : operator. Such a pat-
tern requires processing individual data elements. The time
required to code is comparative large.

Haskell also provides a list comprehension abstraction
whereby a list construction can be specified by including
three parts: the list element, the set of data inputs that col-
lectively determine the output set and various filters over the
inputs. This syntax is much more compact than the take 1,
drop 1 structure, and can capture the latter two purposes of
the take 1, drop 1 structure. Semantically, this structure still
deals with element by element, however, in a overall single
list manner.

Lastly, Haskell also provides a number of high level
abstractions (and more experienced coders can implement
user-defined abstractions). Examples of pre-existing func-
tions in this category include: £o1d (and its variants), map,
zip and its variants, and £ilter. Collectively such ab-
stractions apply over an entire data structure.

Figure 3 illustrates the suggested relative abstractions of
the above structures. Due to the preference of defining op-
erations over a data structure as opposed to element by el-
ement, we determine the order of preference for coding for
rapid prototyping: high level, then mid level, then low-lever.
High level functions can be implemented by low level ab-
stractions; ultimately, all code can be implemented via the
recursive structure.

The semantics of using higher level functions influences
the way programs are developed. This leads us to propose a
simple three stage algorithm methodology: 1) create a basic
data structure representing the input, modify the basic data

Apply solutions In decreasing
order of abstraction level.

High-evel Mid-level Lowdeug

- fold €¢=====~=vsemafocmcnacconccoces .1

- map, zip, zlpwith <f-----=-=c------cn -3

e fllt@r 4= ===eevamcndocccnencecccocos -3
List

comprehension

Figure 3. Abstraction levels of ide
structure patterns

Basic
Data
Structure,
= e
Data
Structure,
Figure 4.

structure, in some cases, by applying an
cation steps, 3) final process of the mod
leading to the final output. This methodd
in Figure 4.

4 Application

We have applied the proposed moded s
palindrome identification in bioinformuss.
sults indicate the potential benefit of e |
for rapid computational and scientific g
section, we briefly show the applicatice %
identification problem.

A palindrome in an RNA or DNA sy
cleotide sequence consisting of pgp’ wim
quence of length n and p’ is the reverse g
also of length n and g is a subsequence g
p'. The significance of identifying swch
cleotide sequence is varied, for exampii,
secondary structure formations in RNA. s
use the proposed model to give a sobumum
identification. The input sequence is regpuses
The final output of the Haskell progrum

Second Substring

eTggac 253 258 gtccag
caagtc 223 228 gacttg
sgtcce 194 199 gggact
Ttacca 135 140 tggtaa
ctgcgy 96 101 ccgecag
ctgcgy 182 187 ccgecag
tgegge 181 186 gccgea
gcgget 180 185 agccge
getegt 263 268 acgagc

Final output of the Haskell program
the proposed model: the report
omes of length 6 for a portion
litis C virus NS5 gene, sequence
the NCBI Nucleotide database,
$9711, and consists of 269 bases.

shown in Figure 5.

devel code is given below, in par-
functions palindromeFormat and
Header represent the final process of

imethodology.

int Int->String->I0()
int n s = putStr

omeHeader ++

omeFormat (palindrome n s))

n palindrome contains a reference to the
.1d and reverseComplement as well as
This function is further discussed below.

Int->String->[PalindromeInfo]

f'n 8 =
8 = zip (i n s) (build n s)
L lifst x, fst x+n-1),
st y, fst y+n-1), snd x, snd y) |

(reverseComplement (snd y)) 1

.+ Int -> String -> [Int]

take (length s - n + 1) [1..]

stion build represents the construction of the
structure from the string representation of the
sequence. This data structure is a list of strings,
 element represents a possible nucleotide subse-
e data structure contains all such prospective p
at successive indices in the original sequence.
the use of the length function in the guard

857

here is likely to be an expensive operation; for rapid pro-
totyping, this is likely acceptable, however, subsequent re-
finement is needed if the prototype is to be refined for per-
formance.

build :: Int -> String -> [String]
build _ []1 = []
build n (x:xs)
| (length xs) >= (n-1) =
(x:take (n-1) xs) : build n xs
| otherwise = []

The use of the high level zip function in palindrome
represents a modification to the basic data structure, hence,
defining a first iteration upon the modification part of the
methodology. At this point, in reference to Figure 4, this
part of the process effects the transition from ‘Basic Data
Structure’ to ‘Modify Data Structure’. This modification
constructs a new list with each of the prospective ps com-
bined with its starting index represented as a pair (i.e., two-
tuple).

The main part of palindrome is a list comprehension
which implements both a modification and a filtration of the
previous modified data structure. This further modifies the
data structure to contain appropriate information necessary
to the required output (see Figure 5) as well as filters the
data structure to contain only identified palindromes (with-
out duplication). At this point, in reference to Figure 4,
this part of the process effects two transitions from ‘Modify
Data Structure’ to ‘Modify Data Structure’ (i.e., there are
two modifications when considered individually).

Lastly, as part of the palindrome identification filter
in palindrome, the function reverseComplement
is referenced which itself uses high level functions (e.g.
reverse and map) to define p’ as a single operation over
the input subsequence string.

complement :: Char -> Char
complement ¢

| e==tcr =g’

| c=mrgt = e

| c=='a’ =t

| c=='t’ ra

reverseComplement String -> String
reverseComplement s

(reverse map complement)

S

5 Conclusions

In this paper, we propose a simple methodology for com-
putational and scientific rapid prototyping in Haskell. The
methodology is based on identifying abstractions that are
defined over entire list data structures combined with iden-
tifying a set of processes that initially construct a list data

structure and subsequently modify that data structure in it-
erative steps leading to a final post modification process to
output the data structure. We have detailed an application
of the proposed model in a case study of a palindrome iden-
tification algorithm for bioinformatics. The application de-
scribed here illustrates how the proposed methodology can
be easily implemented for developers or coders with little

in-depth knowledge of functional programming capabili-

ties; thereby, enabling our simple approach for a wide range
of users.

The approach and results in this paper, although both en-
couraging and preliminary, should be developed further. In
particular, user experiments to establish quantitatively the
benefit for rapid prototyping should be conducted. Also,
we would like to more qualitatively determine the range of
algorithms that can be realized by our proposed model. In
line with our earlier work both in model identification of
program structures and in the visualization of the same, we
are motivated to re-consider our work in this paper for ap-
plication in software visualization.

Acknowledgements

This research was supported by the MKE (Ministry of
Knowledge Economy), Korea, under the ITRC (Informa-
tion Technology Research Center) support program super-
vised by the IITA (Institute of Information Technology
Advancement)”(II'TA-2008-C1090-0801-0002) and by the
MIC (Ministry of Information and Communication), Korea,
Under the ITFSIP (IT Foreign Specialist Inviting Program)
supervised by the IITA (Institute of Information Technol-
ogy Advancement, C1012-0801-0003.softeng:Davies2005
Also, this work is financially supported by the Ministry
of Education and Human Resources Development (MOE),
the Ministry of Commerce, Industry and Energy (MOCIE)
and the Ministry of Labor (MOLAB) through the fostering
project of the Lab of Excellency.

References

(1]
(2]

(3]

(4]

(5]
[6]

7]

(8]

Haskell. http://haskell.org.
P. Coveney, J. Freq, D. Gavaghan, J. Essex, and §
Rapid prototyping of usable grid middleware. 2
abstract, April 2005 — April 2007.

B. J. d’Auriol and J. Ulloa. Specification and g
metrics for parallel programs. In H. R. Arab
Proceedings of The 2005 International Confen
ware Engineering Research and Practice (SERF
Fourth International Workshop on System/So,
tures 2005 (IWSSA’05), pages 101-107, Monte
Las Vegas, NV, USA, June 2005. CSREA Press.
N. Davies, J. Landay, S. Hudson, and A. Schemid
tion: Rapid prototyping for ubiquitous computig,
vasive Computing, 4(4):15-17, 2005.
P. Hudak and M. P. Jones. Haskell vs. ada vs. ge
..., an experiment in software prototyping prod
M. Rauterberg. An iterative-cyclic software
Proceedings of the Fourth International Cong
ware Engineering and Knowledge Engineering,
607, Capri, Italy, June 1992. IEEE.

C. D. Rickett, S.-E. Choi, C. E. Rasmussen, anf
Rapid prototyping frameworks for developing
cations: A case study. Journal of Supercompummg,
134, 2006.

D. Skillicorn and D. Talia. Models and langu
computation. ACM Computing Surveys, 3
1998.

	최종협약서0018.JPG
	최종협약서0019.JPG
	최종협약서0020.JPG
	최종협약서0021.JPG
	최종협약서0022.JPG
	최종협약서0023.JPG
	최종협약서0024.JPG

