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Abstract

A simple methodology for computational and scientific

rapid prototyping in Haskell is proposed. The methodology
is based on identifying abstractions that are defined over
entire list data structures combined with identifying a set of
processes that initially construct a list data structure and
subsequently modify that data structure in iterative steps
leading to a final post modification process 10 OUlput the
data structure. A case study exemplifies and details an ap-
plication of the proposed model. The results indicate that
the proposed methodology can be easily implemented for
developers or coders with little in-depth knowledge of. func-
tional programming capabilities; thereby, enabling appli-
cability for a wide range of users.

1. Introduction

Nowadays, the computing infrastructure for computa-
tional sciences relies heavily on networked computers with
on-demand access to high performance computers if and
when needed. In addition, such computing infrastructures
also include networked clusters, server-based clusters and
in some cases, peer-to-peer clusters. There are many avail-
able options for the programming of these systems, depend-
ing on user choice and computing needs, for example, Java
and related languages are commonly used for networked
cluster based applications whereas FORTRAN and C are
also commonly used for high-ended performance compu-
tations. Moreover, there are many libraries and packages
that also can be incorporated into applications, for example,
LAPACK, BLAS, VECLIB and MPL

There are many computer resource, programming lan-
guage, and library models that are available choices for
the development and coding phases of computational ap-
plications. Many of these have individual conceptual mod-
els for procedure and data representations. In some cases,
the models can integrate together; for example, typical
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structure patterns that support rapid prototyping; in partic-
ular, that allow the developer to concentrate on solution as
opposed to algorithm. Therefore, despite the general pur-
pose capability and the many special functional capabilities
of the language, we suggest simpler structures that we feel
may be easier for the developer to program in, especially
for those who do not have in-depth knowledge of functional
languages. In this paper, we concentrate on the basic model
of such structure patterns that is widely applicable to many
programmed solutions, however, which might not be uni-
versally applicable.

Haskell’s features of recursion and outer-layer pattern
matching provide a nice compact semantic and grammar
notation for tail recursion. Here, we introduce the term take
1, drop 1 recursive processing of a list data structure to de-
scribe this pattern structure. There are three purposes that
such a recursive procedure abstraction serves: 1) reduce a
list to a scalar, 2) modify each element in a list (i.e. con-
struct a new list), or 3) filter each element in a list (i.e. con-
struct a sub-list). Note that any particular code fragment
could combine the latter two. This structure uses the pat-
tern specification (x:xs) to implement the take 1, drop
1 concept; recursion terminating upon the pattern. []; and
explicit list construction using the : operator. Such a pat-
tern requires processing individual data elements. The time
required to code is comparative large.

Haskell also provides a list comprehension abstraction
whereby a list construction can be specified by including
three parts: the list element, the set of data inputs that col-
lectively determine the output set and various filters over the
inputs. This syntax is much more compact than the take 1,
drop 1 structure, and can capture the latter two purposes of
the take 1, drop 1 structure. Semantically, this structure still
deals with element by element, however, in a overall single
list manner.

Lastly, Haskell also provides a number of high level
abstractions (and more experienced coders can implement
user-defined abstractions). Examples of pre-existing func-
tions in this category include: £o1d (and its variants), map,
zip and its variants, and £ilter. Collectively such ab-
stractions apply over an entire data structure.

Figure 3 illustrates the suggested relative abstractions of
the above structures. Due to the preference of defining op-
erations over a data structure as opposed to element by el-
ement, we determine the order of preference for coding for
rapid prototyping: high level, then mid level, then low-lever.
High level functions can be implemented by low level ab-
stractions; ultimately, all code can be implemented via the
recursive structure.

The semantics of using higher level functions influences
the way programs are developed. This leads us to propose a
simple three stage algorithm methodology: 1) create a basic
data structure representing the input, modify the basic data
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4 Application
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Second Substring

eTggac 253 258 gtccag
caagtc 223 228 gacttg
sgtcce 194 199 gggact
Ttacca 135 140 tggtaa
ctgcgy 96 101 ccgecag
ctgcgy 182 187 ccgecag
tgegge 181 186 gccgea
gcgget 180 185 agccge
getegt 263 268 acgagc

Final output of the Haskell program
the proposed model: the report
omes of length 6 for a portion
litis C virus NS5 gene, sequence
the NCBI Nucleotide database,
$9711, and consists of 269 bases.

shown in Figure 5.

devel code is given below, in par-
functions palindromeFormat and
Header represent the final process of

imethodology.

int Int->String->I0()
int n s = putStr

omeHeader ++

omeFormat (palindrome n s))

n palindrome contains a reference to the
.1d and reverseComplement as well as
This function is further discussed below.

Int->String->[PalindromeInfo]

f'n 8 =
8 = zip (i n s) (build n s)
L lifst x, fst x+n-1),
st y, fst y+n-1), snd x, snd y) |

(reverseComplement (snd y)) 1

.+ Int -> String -> [Int]

take (length s - n + 1) [1..]

stion build represents the construction of the
structure from the string representation of the
sequence. This data structure is a list of strings,
 element represents a possible nucleotide subse-
e data structure contains all such prospective p
at successive indices in the original sequence.
the use of the length function in the guard

857

here is likely to be an expensive operation; for rapid pro-
totyping, this is likely acceptable, however, subsequent re-
finement is needed if the prototype is to be refined for per-
formance.

build :: Int -> String -> [String]
build _ []1 = []
build n (x:xs)
| (length xs) >= (n-1) =
(x:take (n-1) xs) : build n xs
| otherwise = []

The use of the high level zip function in palindrome
represents a modification to the basic data structure, hence,
defining a first iteration upon the modification part of the
methodology. At this point, in reference to Figure 4, this
part of the process effects the transition from ‘Basic Data
Structure’ to ‘Modify Data Structure’. This modification
constructs a new list with each of the prospective ps com-
bined with its starting index represented as a pair (i.e., two-
tuple).

The main part of palindrome is a list comprehension
which implements both a modification and a filtration of the
previous modified data structure. This further modifies the
data structure to contain appropriate information necessary
to the required output (see Figure 5) as well as filters the
data structure to contain only identified palindromes (with-
out duplication). At this point, in reference to Figure 4,
this part of the process effects two transitions from ‘Modify
Data Structure’ to ‘Modify Data Structure’ (i.e., there are
two modifications when considered individually).

Lastly, as part of the palindrome identification filter
in palindrome, the function reverseComplement
is referenced which itself uses high level functions (e.g.
reverse and map) to define p’ as a single operation over
the input subsequence string.

complement :: Char -> Char
complement ¢

| e==tcr =g’

| c=mrgt = e

| c=='a’ =t

| c=='t’ ra

reverseComplement String -> String
reverseComplement s

(reverse map complement)

S

5 Conclusions

In this paper, we propose a simple methodology for com-
putational and scientific rapid prototyping in Haskell. The
methodology is based on identifying abstractions that are
defined over entire list data structures combined with iden-
tifying a set of processes that initially construct a list data




structure and subsequently modify that data structure in it-
erative steps leading to a final post modification process to
output the data structure. We have detailed an application
of the proposed model in a case study of a palindrome iden-
tification algorithm for bioinformatics. The application de-
scribed here illustrates how the proposed methodology can
be easily implemented for developers or coders with little

in-depth knowledge of functional programming capabili-

ties; thereby, enabling our simple approach for a wide range
of users.

The approach and results in this paper, although both en-
couraging and preliminary, should be developed further. In
particular, user experiments to establish quantitatively the
benefit for rapid prototyping should be conducted. Also,
we would like to more qualitatively determine the range of
algorithms that can be realized by our proposed model. In
line with our earlier work both in model identification of
program structures and in the visualization of the same, we
are motivated to re-consider our work in this paper for ap-
plication in software visualization.
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