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Abstract

Real-time multiprocessor systems frequently assume that there exists a dedicated
processor for task allocation that never fails. This assumption is, however, too
strong in the sense that all the physical objects are subject to failure. Moreover,
once the dedicated processor fails, the whole multiprocessor system will fail. As a
way to solve this problem, we propose a fault-tolerant scheduling algorithm based
on moving dual-token. While the primary processor holding a primary token
performs task allocation, the backup processor holding a backup token, in case that
the primary processor has failed, does primary  processor creation. Since no
dedicated processor for task allocation exists in this scheme, failure of the whole
multiprocessor system due to that of the dedicated processor can be avoided.
Meanwhile the deadline-based scheduling policy used for backup task allocation,
compared to heuristic scheduling, allows easier implementation and improved
scheduling predictability.  Simulation results show that the proposed dual-token
based algorithm yields low rejection rates over those with dedicated processor for

task allocation.

footnote: Research supported in part by contract AB-97-G-0655 from the Department of

Information and Communication in Korea



1. Introduction

Real-time systems usually have stringent performance and reliability requirements.
Since failures in these systems may cause severe consequences, they are required to be
fault-tolerant, i.e. tolerant of component failures. Task scheduling play crucial roles in
maintaining high system rcliability and good system performances. Duc to diversified and
expanded application domains, real-time systems tend to have highly complex and dynamic
environments. In these systems, usually both periodic and aperiodic tasks exist. While
periodic tasks can bc scheduled at pre-run-time, apcriodic tasks in gencral cannot, duc to
unpredictable arrival times. An approach to scheduling such aperiodic tasks i1s to make
run-time scheduling attempt at their arrival times.

Several scheduling algorithms have been developed for real-time systems. Since the
general problem of optimal scheduling of tasks on a uniprocessor or a multiprocessor system
is NP-complete, different heuristics have been used to schedule real-time tasks with the aim
of maximizing performance measures such as acceptance ratio and processor utilization.
Among these heuristics, only a few scheduling algorithms have attempted to provide fault
tolerance in real-time systems [1, 2, 3, 4, 5, 6, 7].

Liestman and Campbell [1] proposed a fault-tolerant scheduling algorithm to handle
transient faults. The tasks are assumed to be periodic, and short(backup) copies of all tasks
are scheduled on a uniprocessor system to guarantee minimum performance for each task.
This approach assumes that the task periods are multiples of each other. Krishna and
Shin[KS86] suggest a run-time scheduling algorithm for periodic tasks in multiprocessor
systems.  Their algorithm handles processor failures by maintaining contingency backup
schedules. These schedules are used in the event of processor failure. To generate the
backup schedule, an optimal schedule is assumed to exist, and the schedule is enhanced with
the addition of "ghost” tasks each of which functions as a backup task. Also Oh and Son [3,
4] describe a fault-tolerant scheduling strategy for periodic tasks in multiprocessor systems.
In this strategy, a backup schedule is created for tasks in the primary schedule. The tasks
are then rotated such that the primary and backup schedules are on different processors and
do not overlap. Thus, it is possible to tolerate up to one processor failure in the worst case.
To provide a single failure-tolerant schedule, this scheme requires twice the number of
processors required for a non-fault-tolerant schedule. All of these algorithms deal with

periodic tasks.

A fault-tolerant scheduling algorithm for aperiodic tasks in multiprocessor systems is
suggested by Ghosh et al. [5]. This algorithm, unless another processor failure occurs until a
previously failed processor has been recovered, guarantees a successful completion of
scheduled tasks. In addition, by scheduling multiple backup tasks at the same time slot on
thc samc processor and by rclcasing the resources rescrved for a backup task when the
primary task has been successfully completed, it allows scheduling of more tasks. In case
of a processor failure, however, it requires backup tasks to have enough laxities for their
scheduling and executions. Tsuchiya et al. [7] propose an algorithm with which successful

task completions can be guaranteed even with insufficient laxities. This algorithm is,



however, heuristic.

The scheduling algorithms for aperiodic tasks in multiprocessor systems have two
problems in relation to processor failures. First, in case that a processor on which tasks are
being executed and/or scheduled for execution fails, the backup copies of these tasks must be
scheduled and executed on the other processors. Second these algorithms assume that a
processor 1is dedicated for task allocation and that it never fails. This assumption is,
however, too strong in the sense that all the physical objects are subject to failure.
Moreover, once the dedicated processor fails, the whole multiprocessor system will fail. As a
way to solve these problems, a fault-tolerant non-preemptive task scheduling algorithm based
on moving dual-token is proposed. In this algorithm, the processor holding a primary token,
so called the primary processor, takes the role of allocating tasks, and the backup processor
holding a backup token performs processor selection and gives the processor selected a
primary token in case that the primary processor has failed. The primary copy of a task is
scheduled on the primary processor and the backup copy on the backup processor. Since the
tokens are moving - i.e., there is no dedicated processor for task allocation - in this scheme,
failure of the whole multiprocessor system due to that of the dedicated processor can be

avoided.

The remainder of this paper is organized as follows. Section 2 presents a system
model. Section 3 describes scheduling algorithms based on moving dual-token. Section 4

presents simulation results. Section 5 gives conclusion.

2. System Model

The system consists of N processors with shared memory. Figure 1 shows the
system model. Three different types of queues exists in the system: a global task queue,
three processor queues (active, ready, and idle queues), and N local task queues; all these
qucucs arc in the shared memory. While the processors with currently-cxccuting tasks arc
queued in the order of earliest completion time in the active processor queue, the processors
with the tasks that have been scheduled but have not been executed yet, are queued in the
order of largest free time-slot in the ready queue. Lastly, the idle processors whose local
task queue is empty are queued in the idle processor queue. The assumptions used in this
paper are as follows:

Al) All tasks are independent and no resource limitations exist in the system.

A2) A primary task and its backup task are identical; i.e. they have the same execution
times.

A3) The time between two successive processor failures is not less than the time between
the start time of a primary task and the completion time of its backup task.

A4) We consider processor failures only.

A5) The primary token and the backup token can never be lost while they are being passed.

A6) All the processors in the system can participate in task scheduling, in addition to task

allocation.
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Figure 1. System model

The notations and terminologies used in this paper are as follows:
Tok(P): Primary token.

Tok(B): Backup token

PC(T): Task T's primary copy.

BC(T): Task T's backup copy

P: Processor (Prokcp), Prokm), Prcr), Pser)

Tq Task T's arrival Time.

T4 Task T's deadline.

T.: Task T's computation time.

Q1. Global task queue

Qp: Processor queue (idle(IdleQp), ready(Ready@Qp), active(ActiveQp) )
RP(BC(T)): Redundant part of task T's backup copy.
BP(BC(T)): Recovery part of task T's backup copy

BP(T.): The computation time of the backup copy of task T.
FSpp: Primary processor’s free time-slot.

FSpp: Backup processor’s free time-slot.

3. Dual Token-Based Fault-Tolerant Scheduling

3.1 The Basic Concept

The proposed scheduling algorithm consists of two parts: one for token allocation and
the other for backup task scheduling. To allocate a primary token, the system first examines
the idle queue. If there exists an idle processor in the queue, a primary token is assigned to
that processor. If not, the ready and active queues are being searched; a primary token is
assigned to the processor having the largest free time-slot in this case. The way how a
backup token is allocated is similar to that of the primary token allocation. The backup
processor that holds a backup token, in case that the primary processor has failed, performs
processor selection and assigns the processor selected a primary token. In this way, failure
of the whole multiprocessor system due to that of the primary processor can be avoided.
Deadline-based scheduling approach is taken for the scheduling of backup tasks. In this

approach, once the primary copy of a task is scheduled on the primary processor, the backup



scheduler attempts to schedule the backup copy as close as possible to its deadline. By
doing this, when the primary copy has been successfully completed, the backup copy can be
deallocated; hence, the deallocated cpu resource can be used for scheduling other tasks.

The proposed dual-token based scheduling algorithm can be summarized as follows.
The primary processor checks whether it can accept the primary copy of a task for
scheduling. If so, the backup processor checks whether it can schedule the backup copy.
Only when the scheduling of both copies are possible, they are scheduled for execution on the
primary processor and the backup processor respectively. After the scheduling (allocation) of
a task copy, token passing follows immediately. In this way, not only failure of the whole
multiprocessor system due to that of a dedicated processor for task allocation can be avoided
(since the tokens are moving, there’s no dedicated processor for task allocation) but also the
system utilization can be improved. Of course, a processor failure can also be tolerated since
the primary copy and the backup copy of a task are scheduled on two different processors.
Figure 2 shows the logical flow of the proposed scheduling algorithm.

START

Figure 2. Logical flow of dual-token based scheduling algorithm

Since all the processors are idle at the beginning, the primary token and the backup
token are given to two arbitrarily chosen processors respectively. There are four processor
states: (Prokp), Prok), Prcr), Ppcrm). In Prokcp), the processor performs task allocation;
if there exists a task for scheduling in the global queue, it schedules the task if there exists
a free-time slot enough for the scheduling of that task (FSpp =T, (at this point in time, the
backup processor also schedules the backup copy of that task in exactly the same way).
Unless both the primary and the backup copies can be scheduled, the task is rejected. Once

the task is scheduled, the primary processor decreases its free time-slot by the execution



time of the task (IFF'Spp= FSpp — T.). Then it passes the primary token to a processor with
the largest free time-slot, by executing the token allocation algorithm. In Prok), the
processor takes the role of the backup processor; it schedules backup task copies using a
deadline-based non-preemptive scheduling algorithm. In case that a failure of the primary
processor has been detected, it performs recovery by creating a new primary processor.
When the primary copy of a task is accepted for scheduling by the primary processor, the
backup processor checks whether it can schedule the backup copy (FSpp =T¢). If so, the
backup copy is scheduled as close as possible to its deadline. Then the token allocation
algorithm 1s invoked to pass the backup token. The task that is not schedulable is rejected.
In Ppcer), the processor executes the primary copy of a task. On successful completion of
the primary copy, the backup processor is notified of it, and hence it can perform deallocation
of the backup copy. In Ppcr), the processor, when informed of the completion of the
primary copy of a task, performs the deallocation of the backup copy. When not informed of
the completion of the primary copy, it assumes failure of the primary copy and hence it will

execute the backup copy until completion.

3.2 Token Allocation Algorithm
The token allocation algorithm allocates primary and backup tokens to processors. A
pseudo code for this algorithm is shown in Figure 3.

: if a token-holding processor P has failed
: then if P is the primary processor

then Create a new primary token;

ooy o>

else Create a new backup token;
//P is the backup processor//

: else Get P's token;

: If IdleQ, is not empty

N

7: then Choose a processor P' from
the head of IdleQ,;
8: else if ReadyQ, is not empty
then Choose a processor P' from
the head of ReadyQ,;
10: else Choose a processor P' from
the head of ActiveQ,;
11: If processor P' has already had a token
12: then Ignore P' and Goto 6;
13: else allocate a token to P';

Figure 3. Token Allocation Algorithm

The pseudo code consists of two parts. At the first part (lines 1-5), a token that is
to be passed is obtained. If the primary processor is shown to have failed, a new primary
token is created (line 3). If the backup processor is shown to have failed, a new backup
token is created (linc 4). Otherwise (no failure), the token that is currently held by processor
P is chosen. At the second part (lines 6-13), the obtained token is passed to a newly

selected processor. Processor selection is done by inspecting the states of processor queues,



in the order of idle, ready, and active queues; a processor with the largest free time-slot is
chosen (lines6-10). At line 11, the processor selected is checked to see whether it has
already had a token, which is necessary to prevent the processor from having both the
primary and the backup token. Figure 4 shows a flow chart of the token allocation
algorithm.

In case that the primary (or backup) processor has failed, the backup (or primary)

processor performs token allocation to create a new primary (or backup) processor. Figure 5
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Figure 4. Flow chart of the token allocation algorithm
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Figure 5. Recovery of the primary and backup processors

3.3 Deadline-based task scheduling

The basic idea is to make the backup processor schedule each backup task as close
as to its deadline. The pseudo code is shown in Figure 6. First, it updates the arrival time
of a task T (line 1). If there is no free-time slot (FSpp) large enough to schedule T, it
adjusts T, in a way to get a larger free-time slot (lines 2-3). Once found, it sets T, to be
the start time of the FSpp found (line 4). And the task BC(T) is queued in the local task

queue. The flow chart of this algorithm is shown in Figure 7.



1: Update T, by T; - T

2 : If FSgp which can hold BC(T) not exist

3 then Find the proper FSgp;

4 Adjust T, to the start time of
the found FSgp;

5 : Insert BC(T) into local Qr

Figure 6. Deadline-based task scheduling algorithm
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local Q, adjust 77, ‘

Figure 7. Flow chart of the deadline-based scheduling algorithm

Figure 8 shows an example. The primary copy of a task is scheduled as early as
possible, while the backup copy scheduled as late as possible. By scheduling in this way, the

chances of deallocating the backup task copies can be increased.

Processor PC(T)
P that
has PC(T] RP(BC(T), BP(BC(T))
P that }\\\\
has BC(T) .
Time
T, Tyle Tt 74

Figure 8. An example: task scheduling with deadline-based policy

4. Simulation Results

We compare our algorithm with those [5, 6] having a dedicated processor for task
allocation. The parameters used for simulation are as follows:
e "he number of processors (IN): The number of processors is set to 6.
« The average task execution time (c): The task arrival is assumed to be uniformly
distributed and the average execution time is set to 5.

» rocessor load ( 7): The total amount of cpu time used for task execution. The inter-task



arrival time becomes shorter as load ¥ increases. The inter—task arrival time is assumed
to be uniformly distributed with average a (=c/y*P).

* "he number of tasks is set to 1000.

e “he task window w; is defined to be the task deadline (di) - the task ready time (r).
The window size is uniformly distributed with average c x .

Figure 9 shows the rejection ratios of tasks with varying window size and load. As
shown in this figure, the dual-token based algorithm yields low rejection rates over that with
a dedicated processor for task allocation. We can also observe that the rejection ratio
increases with increasing load and with decreasing window size. However, the overhead
incurred due to token passing has not been accounted for in this simulation. Further work

and analysis will be pursued with such overhead taken into consideration.

—— central WS=3
= token WS=3

Load

Figure 9. Rejection ratios with varying load and window size

5. Conclusion

A dual-token-based scheduling algorithm for fault-tolerant real-time multiprocessor
systems has been proposed. Since no dedicated processor for task allocation exists in this
scheme, failure of the whole multiprocessor system due to that of the dedicated processor can
be avoided. In addition, the system utilization can be improved by utilizing all the processors
in the system for task scheduling. Lastly, the deadline-based scheduling policy used for
backup task allocation, compared to heuristic scheduling, allows easier implementation and

improved scheduling predictability.
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