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Abstract— In this paper, we present a new approach to solving
the distributed facility location problem using the recent model-
ing and computational methodology of factor graph and message-
passing. We first formulate the problem as finding a valid network
configuration that minimizes the overall cost. We then represent
the problem using a factor graph, and derive simplified, localized,
broadcast-based message-passing rules which can elect a near-
optimal set of facility nodes in a few iterations. Simulation results
for small-world network topologies show that the algorithm is
able to achieve good convergence rate and approximation ratio,
and scalable to the network size.

I. INTRODUCTION

Facility Location Theory [1] can be used to model a
wide range of important application scenarios in large-scale
networks concerning the placement of service facilities so as
to minimize the overall service costs. For instance, an Internet
service provider (ISP) needs to dynamically setup a set of
servers or placing caches at dedicated or virtual hosts [2].
On the one hand, every client demands to have access to the
servers as close as possible so as to minimize the transmission
delay. On the other hand, setting up a server at a hosting
autonomous system incurs overhead, bandwidth used to carry
the traffic, and maintenance costs, for which that particular
host may charge the ISP. In this context, the facility location
problem precisely captures the resulting trade-off between the
cost (i.e. the number of servers to be installed, as well as their
locations) and the efficiency of deploying such services.

The facility location problem can also be applied to wireless
sensor networks (WSNs), typically consisting of thousands
of tiny nodes deployed to collect and transmit sensing data
to external observers. Sensor clustering has been shown to
be an effective approach to hierarchically organizing network
topology for a wide range of applications [3]. Having a few
cluster-heads (CHs) is desirable to maximize the fusion ratio
and minimize the relay cost. However, this leads to the increase
in transmission power for intra- and inter-cluster communica-
tions, since the distances between CHs, and beween each CH
and their associated nodes are increased also. By applying the
distributed facility location algorithm, we can select the best
candidates to act as CHs so as to minimize the overall energy
consumption and prolong the network lifetime.

For general network models, it is known that facility loca-
tion is an NP-hard problem. There are a variety of algorithms
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with guaranteed constant approximations in the literature.
However, they are inherently centralized, and their time and
message complexity are not efficient for distributed realization
in large-scale networks.

In this paper, we present a simple and highly localized
message-broadcast protocol for solving the distributed facility
location (DFL) problem. Using behavioral modeling, we first
reformulate the DFL problem as finding a valid network
configuration that minimizes the overall cost in Section II, We
then use the recent modeling and computational methodology
of factor graph and message-passing [4], which is very con-
venient for distributed realization in large-scale networks, to
model and solve the formulated min-sum problem in Section
I1I. We provide message simplification, then devise a broadcast
version of the algorithm in Section IV, to further reduce
the number of message transmissions, resulting in a simpler
and more cfficient algorithm, Simulation results presented in
Section V show that the algorithm is able (o achieve good
convergence rate and approximation ratio for different network
sizes. We give concluding remarks and future extensions in
Section VI.

II. BEHAVIORAL MODELING FOR FACILITY LOCATION
PROBLEM

Let G = (V,€&) be a connected undirected graph represent-
ing a network defined by a set of nodes V = {1,2,..., N} and
a set of edges &. For each node ¢ € V, we assign a weight
fi representing the facility cost for deploying the service at
node ¢, and a weight ¢;; representing the connection cost for
accessing the service at some facility 5 € A(i). Here we
denote by N (i) the open neighbor set of i, which includes
all nodes within k-hop from ¢, with k& given depending on
the scope of the applications. We further define the closed
neighbor set of ¢ as N[i] := N (i) [J{i}.

The objective of the facility location problem is to select
a nonempty subset of nodes §2 C V to act as facilities so
as to minimize the overall joint-cost C'(€2) of deploying the
facilities and connecting the clients:

C) =3 fit ¥ G
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where o (i) € N (i) is the facility that is closer to 7. For general
network models, it is known that facility location is an NP-
hard problem. To the best of our knowledge, there are no
distributed algorithms that can solve this problem efficiently.

In this paper we formulate the facility location problem to
be a min-sum labeling: For each node 7 € V), assign a label x;
containing the identity (ID) of the associated facility node, i.e.
x; € N[i], in such a way that the total cost in the network is
minimized. The cost of each node ¢ now depends on its label
x;, or equivalently, its role in the network:

67,(LL7,) = { Cij b= = N(L)
Let & = {x; : ¢ € V} be the set of NV labels of

the network. Let the n-tuple x := (z1,%9,...,zy) denote
the configuration (or labeling) of the whole network. Since
the system is specified via its configuration, this approach is
known as behavioral modeling; and x can be a valid or invalid
configuration. For instance, consider a neighbor j of ¢. If node
Jj selects 1 as its facility node (i.e., x; = 4), while node 4 itself
is not correctly labeled as a facility node (e.g., x; = k # %),
then this is an invalid configuration. We further denote by
X5 the configuration of nodes in closed neighbor set of i,
ie., xnp = (z; : j € Ni]). We use the constraint function
0:(xnrpi)) to enforce valid configurations between the label ;
of node 4 and the labels of its neighboring nodes. For the
min-sum configuration ( min-sum semiring [5]) problem, the
constraint function gives a penalty of 0 or 4-oco for a valid or
invalid configuration respectively, defined as follows:

ifz; #ibut3j e N(@) tzj =14

otherwise

+00,
0i(Xnrpip) = { 0

Clearly, the configuration of the whole network is valid if
and only if, for each and every node ¢ € V, the configuration
of its closed neighbor set is a valid one. The facility location
now becomes the problem of finding a min-sum configuration
of the network among the valid ones, defined as:

Xopt i= argmin {Z ei(z;) + Z 0s(Xarpa)) (1)
& i€V i€V

To solve this global minimization problem, we use the
recent modeling and computational methodology of factor
graph and message-passing [4]. A Factor graph can be used to
represent a complicated global function, which can be factored
into simpler “local” functions, each of which depends on a
subset of the variables. In a factor graph, message-passing
algorithms can compute, either exactly or approximately, var-
ious function marginalization and maximization using simple
message passing rules.

ITII. FACTOR GRAPH AND MESSAGE-PASSING RULES

To derive the factor graph F for the min-sum constraint
satisfaction problem given in Eq. (1), we represent each label
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x; by a (hidden) variable vertex, each cost function e;(x;) by a
factor e; connected to variable vertex z;, and each constraint
0i(xnrfy)) by a factor 0; connected to the involved variables
which are components of x ;). We denote the set of constraint
factors connected to x; as ©(x;), and this set excluding 6; as
O(zi)\0;.

By applying the Min-Sum algorithm on F, we derive the
standard message-passing algorithm (MEPA), with messages
exchanged between constraint factors and variable vertices
defined recursively:

ph, v, () = eqlws) + z pitaded - @
01EO(xi)\b;
b e [ Gileavgleg) o
o, - (@4) = min = T
ey T i | k:eAZsz] \j Hoy)
At any time instant ¢, each node z; can evaluate the optimal
label mf”t by summing up all received messages:

22" = arg min | e;(x;) + Z pg:_l“ (x;)

= 0x€O (i)

4

In the standard form of messages above, each message is a
vector of length |[A/[i]|. In the sequel we provide a message
simplification, inspired from [6], in which each message
becomes a scalar, making the derived message passing rules
very simple and efficient for practical implementation. The
proofs are based on the derivation of data clustering algorithm
in [6], which can be considered as a special case of the
facility location problem with a fully connected graph, i.e.,
N[ = V,Vi € V. We start with the following important
observation:

Observation 1: Vxj # i, the elements of vector message
“(th—»m,v in Eq. (3) are identical.

Proof: The observation follows by analyzing in detail the
vector message u, ., (v;]z; # 1) in two cases: i = j and
i % j. First, if 4 = j (or 0; = 6;), meaning that node j is not a
facility node (since «; # j), then the constraint ; (xrpij|2z; #
j) guarantees that the neighbors of j must not take j as their
facility node, or equivalently, z) # 4,Vk € N(j). Thus Eq.
(3) becomes

U lmiAi=g)= ¥ )

kEN (j)

. |
AT o (k)
T @y =0

Second, if ¢« # j (or 6; # 0;), Eq. (3) becomes

b, g, (T 75 ’il# j)= 1
B, =sa, AR Y min /wbi:_»e.,- (zk),

. keN(i)\j Tk n

min " o (2;) + N e Bk

’*‘i#"'ul’" o () kE/\/Z('l)\.'}wk:#iu“’ o (k)

min

(6)



Clearly, for both cases, the message #éﬁ»u[(iﬂj | Va; # i)
does not depend on the values of ;, and thus they are
identical. |
As a direct result of this observation, we have the following
corollaries:

Corrolary 1: The vector message in Eq. (3) can be written

S 3 i T ), o
as sum of two components, ILAQ,_HI_‘<.L_)) = g, —a, (j) +
Diyesiits which are dependent and independent of x; respec-

tively, with Bz, = Mg, —__ (xj # i), and
0, ey

Hg,—; (0), wj =i

fg; —w; (25) =
Corrolary 2:

Z iy, sy (25) :/7,5‘,_‘/_.;z:1<.’1;j),VIL’j eNl] O
0, €O (w;)
and, similarly:
Z bg,—a;(2;) =0, if m; =i (8)

0, €0 (x;)\0;
Corollary 2 provides intermediate results used to prove the

following lemma:

Lemma I: To evaluate the optimal ]abel Zopt given in Eq.
(4), each vector message /1,},’_%1, and gt can be reduced
o a single, real-value number.

Proof:  Applying the above corollaries, we have:

@, —6,;°

2f = argmin {ei(z) + T
o 0,€O (i)
=argmin |e;(z;) + D
L 0,€O ()
= arg min |e;(z;) + fig,, —a; (:1;,;)]

iy

t—1
/“1'0/ -y

(@)

,[170‘.—4:17, (‘L’)

Hence, each factor ¢; needs to send a single number
fio, —w, (; = j) for variable a; to evaluate the optimal label.
Consequently, each variable x; needs to send a single number
flar, —p, (xi = j) for factor 6, to update its message. -
From the result in Lemma 1, we derive the simplified message-
passing rules stated in the following theorem. The proof is
given in the Appendix.

Theorem 1: The optimal label «”* given in Eq. (4) can be
cvaluated by the simplified message-passing rules:

¢
/‘L;::,—»H, =i

: : : 9

()= auin (e +uil ] Vi N ©)

/"é),a.p, = 10)

nax {U : /1,3/__1“1,/ = //:__LU — 11in {U.\ Ni;l_g, }} :
with
:“’(r}, -y Z min {07 'u’:itzl—'ﬁ;} (11

kEN (i)
The simplified MEPA protocol requires customizing infor-
mation for each particular neighbor. In wireless communica-
tions systems, e.g. WSNs, this means separate transmissions
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for each and every neighbor, wasting energy and further
exacerbating the contention conditions of the shared communi-
cation channel. It would be simpler and more energy efficient
if each node could fuse the received messages and broadcast a
single message without the need for customization. In the next
section we will present a broadcast version of this simplified
MEPA protocol,

IV. MESSAGE-BROADCAST PROTOCOL FOR DISTRIBUTED
FACILITY LOCATION

A. Message-Broadcast: Reducing Transmissions

We consider next another variance of MEPA in which nodes
broadcast the same message to all neighbors. This differs
from the standard and simplified MEPA as it does not require
updating and sending separate messages to separate neighbors.
We start from important observations stated below

Observation 2: Consider a node ¢ e G. The intra-node
messages u?,/‘im/ (in Eq. (11)) and /1, E (from Eq. (9), with
j = 1) are constants for all neighbors k& € N (i).

Observation 3: Consider a node 4 and its neighbor j.
Denote the set S = {c,ﬂ,(/\;)—ﬂz'g:i,l ke Ni\j}:
we are interested in the value minS in order to eval-
uate the message in Eq. (9). Denote further the set
s’ {ei(k) +/‘0/~1 k€ Ni]}. We have minS' =
uun{S ei(4) + p } which implies e;(j) + p}

v

e —a 9 -

min S, Thus Wl, havc two cases:

1) if e;(y) + 10 > min S, then min $ = min S .

2) if e;(5) + y& L, = nin S, then min S = second min S’
From these obsuvauons we are able to derive a broadcast

version of MEPA, stated in the following theorem.

0 —VL'

Theorem 2. To evaluate the optimal labels at each iteration,
each node ¢ needs to broadcast only one messagu to all neigh—
bors, contdmmg three numbers: 1) « 1= /10 l, e /11__%} =)
Bysi= min S, and 3) Pon= secondnuné

At each neighbor j, the messages in Eq. (9) and Eq. (10) can
be reconstructed using its prior messages sent to ¢, as follows:

ei(J) — B
ei(J) — B2

ife;(j) + y,g:iml > O
if ei(§) + 1o, Ly, = B

“5)1—»:1-, = max {() , @ —min {U‘ /l,fl,jil,’ }}

B. Protocol Execution

t
N:mﬂ@,- B

From Theorem 2, we provide the pseudocode of broadcast-
based MEPA protocol for each node ¢ in Algorithm 1, in-
cluding two phases: Facility node selection, then facility node
association. Note that each set {x;, ¢;,0;} of vertices in factor
graph F corresponds to a node i in network graph G. Thus,
we denote by m; the message ;(l 8 and by n; the message
;La —u, Supposed to be sent from i to j € N (4). The messages
can be initialized arbitrarily [4]. In our implementation we
initialize them to zeros.



Algorithm 1: Broadcast MEPA for each node ¢

Initialization

N[i] « Neighbor discovery

estimate and exchange e;(j) with each j € N1]
m; =0,n; =0 VjeN[]

update and broadcast tuple < «, f1, B2 >

end

Facility Node Selection
repeat
for each neighbor j € N'(i) do
set Timer to receive message from j
if MessageReceived then
| reconstruct incoming messages m;, n;
else if 7TimeOut then
| recall previous incoming messages myj,n;

update and broadcast tuple < «, f1, 82 >
until max_iter

end

Facility Node Association
Ttemp — argmin [e;(4) + n;)
JENTH)

if ©temp = mylD then
T final — mylD
announceFacilityNode(myl D)
collectJoinFacility()
else

Xcandidates < collectAnnounce()

T final < J € Xcandidates with least cost
| joinFacility(myl D,  finat)

end

In the pseudocode of Algorithm 1, the facility node selection
procedure — the main procedure — essentially consists of
receiving, updating, and broadcasting messages containing
three numbers < «, (1,02 >. The procedure terminates
when the maximum number of iterations max_iter is reached.
We elaborate this upper bound in the subsequent evaluation
section.

V. PERFORMANCE EVALUATIONS

In this section, we analyze the minimum cost approximation
rate of MEPA protocol with respect to the number of itera-
tions. We compare the total cost found by MEPA with the
optimal cost found by a centralized algorithm using the Inte-
ger Linear Programming solver (ILP) of TOMLAB/CPLEX
optimization packet. We evaluate our broadcast MEPA on
synthetic Barabasi-Albert small-world graphs generated using
the BRITE graph topology generator, with incremental growth
model m = 2. The number of nodes is from 200 to 1000. We
set the connection cost as hop distance, with neighborhood
of each node defined in 2 hops, and fixed facility cost as
diameter of the largest connected component of the graph.
We implement a round-robin message initiation pattern using
unique, orderable node IDs, with each node sends out initial
messages immediately, and sends out its k** messages only
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after receiving (k—1)*" messages from all of its neighbors. We
use a damping factor [6] of 0.3 to avoid numerical oscillations.

Cost Ratio (MEPA / Centralized)

Iterations

Fig. 1. Approximation ratio of MEPA compared to centralized algorithm
using CPLEX MILP solver

Fig. 1 shows the convergence properties of MEPA protocol
under different node density, averaged over 100 runs for
each configuration. First, the minimum cost found by MEPA
quickly converges to the optimal cost found by ILP solver, as
the number of iterations increases. After 3 iterations, MEPA
can achieve an approximation ratio around 1.5 for different
node density, and then gradually improves the approximation
ratio to reach 1.2 approximation after more than 5 iterations.
Second, the convergence rate and approximation ratio are quite
consistent for different node density, showing the scalability
of the protocol.

VI. CONCLUSION AND FUTURE WORK

In this paper we proposed a distributed and localized
min-sum message-passing algorithm for solving the facil-
ity location problem in large-scale networks. We showed
that the algorithm is highly localized, able to achieve good
convergence rate and approximation ratio, and scalable to
network size. Since the factor graph F contains loops, we
are currently working further on the convergence properties
of the algorithm.
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APPENDIX
DERIVATION OF SIMPLIFIED MESSAGE-PASSING RULES

In this proof we derive the update rules for single value
messages [ig; g, (%; = i) and [y, g, (z; = j). We start by
analyzing the message “é;,—om,- sent from factor €; to variable
xj, given in Eq. (3), in case x; = ¢ (node j takes i as its



facility node)
If i = j (or 0; = 6;), then the message becomes

Z 111111;11 _*9 (k)

keN (i)

Wy, (s = i = j) = (12)

If 4 # j (or 8; # 6), since ®; = i, z; must be equal to @
for a valid conh&,uratlon or equivalently, mmpL wa (z;) =

;zt, g, (i). Thus the message /10 - (z;) begomes

*’%J) 1...0(")'4'

> ming _,9’ (Zg)

keN (i)\j “k

/() —, (z;
(13)

For vector messages (of length |[NT[d]]) from variable u;
to factor 0, we also rewrite them as the sum of constant
and variable (with respect to @;) components, s, —g, (@) =
Foy sty + finys (®1). Lot L 1, (@), then

= 11191&11/4J
we have min iy, g, (¢
#

€L

wi—8;
) =0, and it follows that:
1;}111 B —e; (2i) = min{0, fy, g, (x; = 7)} (14)

In the following, by rewriting the messages into two
components as described above, then applying the above
results, we further simplify the messages:

Applying Eq. (8) to Eq. (2), /L_,’Flﬁ()/_(:::,,-) =

== ()/('l’l’i) 1 Z o, _"/<:I"‘l) + Z ﬂ()/,g—vzlr,
e (2i)\8; 0, €O (x;)\b;
&)+ X g, ifwi=j
0, €O (w; )\,
eifzy) + Ho,, —m, (:L‘-,:) + Y Ppeas T #EJ

0, €0 (m;)\ 0y
Applying Eq. (14) to Eq. (12), /1,27_”“1 @y=t =)=

> minfig, e (2r) + S

keN (i) “k kEN (i)

Il

ﬁ:z:k —0;

. . ’ = 15
= % win {0}t X Fapes,
KEN (i) KEN (i)
Applying Eq. (14) to Eq. (13), up, - (g =Tl 1) =
= f"""'("‘*{)/ <[’) i Z ll,l‘ill /7'»’1'/, —0; (:l;l\'> e Z H:L:;“—»G,
o KeN (i)\j “F keN[i)\j
= Hg;—06; (1)+
+ Y min{0,fa-6@)+ T s
keN (i)\j N\
(16)

Applying Eq. (14) to Eq. (5), pf, ., (xi # j =1) =

= Z Illlll,lll,_;g E ;11_,9 Z Ty —0;

keN (i) kEN (i kEN (i)
(17
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Applying Eq. (14) to Eq. (6), ,u,g,’_ﬂ,‘l(:u‘,‘ # ook 9 =
>

Ty —0, () + 111111//,,ﬂ0 (mr),

e KEN(i)\j
TR min Haisog(@i) + - ) 111111/1,Aﬁ9 (21)
@i KENT(i)\j Ch 7
it Z ﬁ:uk-ﬂ(‘)l
keNTi)\j
=min< 0, fig;—e, (4) + > min{0, iy, -0, (i)}
KEN (i)\j
i Z :U’.'z:/,‘—'b';
kENTi]\j

(18)
Now we are ready to derive the simplified upddte equations
101 the variable component messages by solvmg Byt {d) =

/' w;—0; (/) s N.xm,—»()l and /'10,—“',("’) /”(),—o:r () /19,—~::‘/'

Ha—0; (5 | 5 € Ni]) = p . (4) = mig b g, (@)
«()+ X !

0,€0(x;)\8;

b9 —w;

—111;1611 l( )+“9 -*-*L/( 'L) T Z 716);‘—':1;,

o 0, €O (xi)\0;
ei(4) — 111;12 [e,;(:u/;) + fg,, —a, (@4)]

o, (0] € M)
—/'Lel——rl () /'((9,—01, —lO—u () H() -, (1’/#0

If © = 7, from Eq. (15) and (17) we have fig,—, (i) =

i Z Hlin{o\ﬁ:x:/\—’ﬁ,('[-)} + Z /11/"() > / vy —0;
kEN (i) KEN (1) kEN (i
= > min{0, iy, —e, (i)}

kEN (i)
Similarly, if 7 # j, from Eq. (16) and (18) we have:

f9; -, (1) = Hay—e,(0) + > min{0, fig,—p,(0)} +
kEN (i)\j
—min ¢ 0, fa;—e, (1) + Y,  min{0, Ty, —e,(

i)}
keN (i)\j
0, fby,—p, (4) + > 111111{() Tl il
KEN (i

—min{0, fi; g, ()} }
= max {0, i, -0, (¢) + fig,—a,; (i) — min{0, fiy, o, (i)} }
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