
Creating Global Economies through Innovation and Knowledge Management: Theory & Practice 55

Building an Integrated Framework for Ontology Evolution Management

Asad Masood Khattak, Department of Computer Engineering, Kyung Hee University, Korea

asad.masood@oslab.khu.ac.kr

Khalid Latif, School of Electrical Engineering and Computer Science, NUST, Pakistan

khalid.latif@seecs.edu.pk

Sung Young Lee, Department of Computer Engineering, Kyung Hee University, Korea

sylee@oslab.khu.ac.kr

Young-Koo Lee, Department of Computer Engineering, Kyung Hee University, Korea

yklee@khu.ac.kr

Tahir Rasheed, Department of Computer Engineering, Kyung Hee University, Korea

tahir@oslab.khu.ac.kr

Abstract
Ontology engineering, evolution, and maintenance

are collaborative processes. The crucial task is how

to accommodate the new changes in the ontology

while preserving its consistency. We provide here a

framework for ontology evolution. As new

concept(s) emerge, the proposed framework

automates the process of how these new changes

will be detected and then committed to the ontology.

The change in focus can be a single concept, group

of concepts, and/or concepts in a hierarchical

structure. A log of all the implemented changes is

maintained using Change History Log (CHL) with

conformance to Change History Ontology (CHO) to

eliminate conflicts and to support the undo and redo

operations.

Keywords: Ontology, Ontology Evolution, Change
Log, Emerging Concepts, Change History Ontology

1. Introduction

Ontologies are formal description of shared

conceptualization of a domain of discourse. They

evolve with the passage of time as humans develop

better understanding of their perceived knowledge

[17]. In other words, ontology evolution takes place

when the perspective under which the domain is

viewed has changed [12]. The evolution process

deals with the growth of the ontology and capturing

new information. More specifically, ontology

evolution means modifying or upgrading the

ontology when there is a certain need for change or

there comes a change in the domain knowledge.

The process of evolution takes an ontology

from one consistent state to another [6]. In doing so,

the process may involve different strategies such as

merging and integration [4]. The evolution process

has several subtasks, which are:

1. The first step is to capture the required

change(s) to be applied to the ontology.

2. Consequently, all the required changes are

described using a common representation

format.

3. The effects of the required changes are tested

on the ontology for consistency and if required

some deduced changes are also included in the

change. All these deduced changes become part

of the required changes.

4. The complete change request is executed by

implementing the changes in the ontology.

5. Change verification subtask then validates the

subject ontology to confirm that the requested

changes have been committed to the ontology.

6. Finally, the changes are propagated to all the

dependent artifacts.

The current ontology evolution techniques have

several weaknesses, such as: manual specifications

of new changes, manually resolving inconsistencies

and/or selecting deduced changes from available

alternatives, and also the absence of proper and

complete undo and redo facilities. These

weaknesses need to be eliminated in order to

automate the ontology evolution process to the

available extent. Automation of the process is also

necessary because human intervention in the

evolution system tends to be time consuming and

error prune.

The goal of this research is to build a

framework which will automatically detect the

changes to be made to the ontology triggered by the

change request. To ensure the consistency of the

ontology, the proposed framework generates

deduced changes after analyzing the change

semantics based on the work presented in [16].

Finally the changes are implemented and logged

using Change History Ontology to provide

undo/redo functionality.

This paper is arranged as follows: Section 2

describes the existing research work in the field of

ontology evolution and change management.

Section 3 presents the Change History Ontology. In

Section 4 we present our proposed framework of

ontology evolution and implementation details and

Creating Global Economies through Innovation and Knowledge Management: Theory & Practice 56

results are discussed in Section 5. Finally we

conclude our findings in Section 6 and provide an

outlook of the future directions.

2. Related Work

Research on ontology evolution is being carried

out by different researcher groups. In [17], the

author proposed a six phase ontology evolution

process which copes with the ontology changes due

to business requirements and dynamic environment.

It first systematically analyses the reasons for

changes and makes a complete request for change

while preserving consistency of the ontology and

the dependent artifacts, and then implements all the

changes. In [10], the author presented a framework

for change management and ontology evolution for

distributed ontologies. It provides way to formally

describe ontology changes required to perform in

evolution of ontology.

The version log concept has been given in [16],

which is providing an evolution procedure while

dealing with different versions of the ontology. It

also is a five phase evolution procedure which are

change request, change implementation, change

detection, change recovery, and change propagation.

New concepts discovery process is given in [1];

it supports the ontology enrichment activity for

multimedia ontology evolution. Here the main

contribution is the automatic discovery of new

concepts with help of ontology matching techniques

presented in [3], from multimedia objects/resource

with additional metadata.

Requirements that an ontology management

system should provide for ontology evolution are

given in [19]. The author also provided a formal

model for handling semantics of change included in

the ontology evolution process of OWL ontologies.

D. Oberle in [15] provides a six phase

(discussed in Section 1) ontology evolution

technique, for business oriented ontology

management. During the change implementation, all

the changes which are performed to ontology are

logged for the purpose of undoing changes and

provide facility of recovery.

A detail view of the methods and tools available

for ontology evolution and their working is provided

in [18]. In [9], the author presented an exhausted

view of change management activity and also

provided the different kinds of changes that can

occur in ontologies, and detail of tracking different

changes is available in [13] and [14].

The existing systems for ontology evolution do

not consider new emerging concept(s). In [16] they

are manually creating requests for change. [17],[15]

needs ontology experts for conflict resolutions, and

[1] after discovering a new concept needs ontology

expert to insert the concept at suitable place, while

in our system these all are done automatically.

3. Change History Ontology

A number of changes, ranging from concepts to

properties, could affect the ontology. Most of these

changes are discussed in greater length in [1]. Here

we will briefly highlight some of the critical

changes in concepts:

� New Concept: This is the most common change

in any ontology. New concepts emerge and

have to be accommodated in the concept

hierarchy.

� Concept with Changed Properties: This is the

case when the concept in focus is already

present in the ontology but its properties and

restrictions are dissimilar from those associated

with existing concepts.

� Simple vs. Aggregated Concept: The concept in

focus might be a combination of two or more

existing concepts (or vice versa). The ontology

framework shall preferably detect and act

accordingly to accommodate the change.

� Concept vs. Property: Different modeling

approaches are followed by ontology engineers

for building ontologies. One such case is

modeling the same concept either as a class in

OWL or as a property of some other existing

class. For example, the concept deliverable

could be a separate class or could be modeled

as property of the concept project. In the first

case it could have been implemented as a

subclass of document and in the second case it

could take the instances of software as its value.

Understanding of change types is necessary to

correctly handle explicit and implicit change

requirements [7], and also to engineer the Change

History Ontology (CHO). The baseline for CHO is

the Log Ontology presented by Yaozhong David

Liang [11]. We have modeled quite a few

extensions to the baseline and come up with CHO as

shown in Fig 1 where detail is given in [21]. Some

of the extensions include:

� Capturing such provenance information as the

change author, reason, timestamp.

� We introduced a class OntologyChange. It has

further sub classes including AtomicChange and

ChangeSet. The AtomicChange tackles all types

of changes that can be applied to an ontology at

its class and property levels.

� ChangeSet holds information about the changes

whether it is an instant or composite and

stretched change over a defined time interval.

All instant changes are considered members of

the change set for the stretched changes.

ChangeSet also helps in properly maintaining

the sequences of the changes. With the help of

ChangeSet, all the changes of some defined

time interval is organized and managed

together, which in future help us to roll-back

and roll-forward the changes and get the

previous state of ontology.

Creating Global Economies through Innovation and Knowledge Management: Theory & Practice 57

Fig 1. Snapshot of CHO

4. Ontology Evolution Framework

Here we present the proposed framework for

ontology evolution management. The aim is to

develop interfaces for the baseline modules and to

integrate functionality of existing components

dealing with change detection and description,

inconsistencies detection, or change implementation

and verification. Fig 2 depicts an overview and

interconnection of the components. In a holistic

manner, these modules ensure that the ontology has

evolved to a consistent new state incorporating all

the required changes. The working details of these

modules are given in the subsequent sections.

Fig 2. Overview of framework architecture

Input for the evolution process is the domain

ontology. An ontology, as described earlier, is not a

static entity and will change as new concepts

emerge in the domain or other reasons. The change

may take place because of a single concept, group of

concepts, or even concepts in a hierarchical

structure. Source of the change is not restricted as

new concepts can spring from, for instance, the

change request by the domain expert or ontology

engineer.

Change Detection & Description

The first step in the process is to detect changes.

For example, it has to be detected whether the new

additions are already present in the target ontology.

Additionally, schema and individual level

differences can be detected effectively as reported in

[20]. In case the concept in focus is totally new and

there is no additional information, the H-Match

algorithm [3] is used. Its Semantic Affinity measure

provides the contextual matching facility through a

set of four models namely: surface, shallow, deep,

and intensive. It takes the new concepts for addition

and the target ontology as input and returns the best

matching concept in the ontology in order to

identify taxonomic position for the concept [2]. In

either case, automatic detection through H-Match

algorithm or through ontology engineer’s input, the

change detection module make the identification of

the change target certain with respect to the

ontology.

After this every identified change is represented

in a consistent format, where these changes may be

elementary (atomic), or composite. Changes are first

assembled in a sequence, and then this sequence is

followed for the change implementation. We are

following the steps for atomic changes and

considering all the composite changes as an ordered

sequence of atomic changes. Finally, the changes

are represented using CHO. The same

representation is also used for logging the ontology

changes in the CHL is discussed later on.

Inconsistencies Detection

In this module ontology changes are resolved in

a systematic manner to ensure that consistency of

the ontology is not lost. The ontology may become

inconsistent because of the changes. Two types of

inconsistencies can occur, 1) syntactic: when an

undefined entity at ontology or instance level is

used, 2) semantic: when meaning of ontology entity

is changed due to performed changes. To keep the

ontology in consistent state deduced changes are

introduced in the ontology. After this a complete

request of both, the required changes and the

deduced changes is made.

In the first version of the evolution management

we are expecting expert intervention for resolving

discrepancies, but machine learning techniques

could be used to learn first from different types of

change resolutions and then act for these conflicts in

future without expert intervention. KAON API [5] is

used to identify the alternatives and deduced

changes. These changes are presented to the

ontology engineer and then the ontology engineer

selects one of the alternatives. For one induced

change there may be more than one deduced

changes. The decision is made in favor of those

changes which have the lesser impact on the

ontology structure and fewer deduce changes.

Creating Global Economies through Innovation and Knowledge Management: Theory & Practice 58

Change Implementation & Verification

All the induced and deduced changes which

make a complete change request are applied to the

ontology. The framework is designed to manage

three characteristics. Firstly, when a change is

applied then it should be completed in isolation,

change must be atomic, durable, and consistent.

Secondly, after every change implementation,

change verification is made to check that the

required changes have been committed to the

ontology. And thirdly, after every change

implementation the change must be logged in the

change history log, to keep track of the changes

performed in an ordered manner. This helps in

undoing any changes by simply reversing the logged

changes on the ontology.

Change History Log

It is a repository that keeps track of all the

changes made to the ontology. It stores every

change after it is implemented. The CHL is also

required for reversibility purpose when an ontology

engineer wants to undo or redo some of the changes

then this log is accessed and changes are simply

reverted. The log uses Jena based triple store and the

change description provided by CHO to preserve the

changes.

It stores a complete change set for changes with

information like; who made these changes, reasons

for changes, what kind (instant or interval) of

change, if interval change then what is the

beginning and end time of changes. It stores all

types of changes that can happen to ontology during

evolution, which are given in [9] and [11]. We

consider composite changes as a set of atomic

changes. CHO is used to enable the proper undo and

redo operations which will completely revert back

the whole change set and take the ontology to any

previous state for undo operations.

We log all the changes with the time stamp at

which they are performed. Though a single change

is performed at an instant of time, at times a lot of

changes (sequence of changes) are performed

together over an extended time interval. To

effectively log both types of changes we add time

stamps using OWL-Time Ontology [8]. A single

change is logged as a change at a time instant while

a sequence of changes in combination is logged as

change over a time interval. As the ontology can be

target of change at different times triggered by

ontology engineers located at distributed places,

using a singleton time format (zone) might create

some ambiguity or conflicts for certain changes. By

the use of OWL-Time Ontology these

problems/conflicts can easily be sorted out.

5. Implementation and Results

Though for the purpose of clarity and

implementation of the claims, we have targeted

“Documentation” ontology, but the proposed

framework is not restricted to a specific domain.

Here we show the evolution process by an

example. Fig 3(a) shows the new emerging

concepts, while in Fig 3(b) we have the domain

ontology O to which change will be made and Fig

3(c) shows the evolved ontology O. Due to space

limitation we have shorten the description of the

example.

Fig 3. (a) Shows the emerging concepts, (b) domain ontology O and (c) domain ontology O after

evolution

Creating Global Economies through Innovation and Knowledge Management: Theory & Practice 59

The first step in the process is detection and

description of the changes. As described in Section

Change Detection & Description Semantic Affinity

is calculated using H-Match algorithm [20].

Semantic Affinity, SA(c,c
/
), between two concepts c

and c
/
 is a measure of their similarity. A strong

match between the concept results in higher value of

SA not greater than 1. On the other hand, 0 or

smaller values stands for no match or weak

similarity. For two concepts to be considered

strongly similar their semantic affinity value shall

be greater than the threshold ψ. Now the techniques

discussed in [2], which are ontology matching and

reasoning to find most suitable place for the new

concept(s) are used, which suggest that IEEE

Transaction and ACM Transaction come to be the

sub concepts of Documentation concept so should

be merged. For Technical Docs and its sub concepts

are known to be the sub concept of the

Documentation concept, where sub concept of

Technical Docs i.e. Reports and Periodic Reports of

Publisher Docs are same, so merge it and make

Reports as sub concept of both the concepts. Now

default:Class_Addition_1

a default:Class_Addition;

default:hasChangeTarget

<http://www.niit.edu.pk/Documentation.owl#ACM_IEEE_Transaction>;

default:isSubClassOf

<http://www.niit.edu.pk/Documentation.owl#Documentation>.

default:Property_Addition_1

a default:Property_Addition;

default:hasChangeTarget

<http://www.niit.edu.pk/Documentation.owl#hasPublisher>

default:Property_Addition_2

a default:Property_Addition ;

default:hasChangeTarget

<http://www.niit.edu.pk/Documentation.owl#hasVolume>

default:Class_Addition_1

a default:Class_Addition;

default:hasChangeTarget

<http://www.niit.edu.pk/Documentation.owl#Transaction>;

default:isSubClassOf

<http://www.niit.edu.pk/Documentation.owl#Documentation>.

default:Property_Addition_1

a default:Property_Addition;

default:hasChangeTarget

<http://www.niit.edu.pk/Documentation.owl#hasPublisher>

default:Property_Addition_2

a default:Property_Addition;

default:hasChangeTarget

<http://www.niit.edu.pk/Documentation.owl#hasVolume>

default:Class_Addition_9

a default:Class_Addition;

default:hasChangeTarget

<http://www.niit.edu.pk/Documentation.owl# ACM Transaction>;

default:isSubClassOf

<http://www.niit.edu.pk/Documentation.owl#Transaction>.

default:DisjointClass_Addition_1

a default:DisjointClass_Addition ;

default:hasChangeTarget

<http://www.niit.edu.pk/Documentation.owl#IEEE Transaction>;

default:isDisjointWith

<http://www.niit.edu.pk/Documentation.owl#ACM Transaction>;

default:isSubClassOf

<http://www.niit.edu.pk/Documentation.owl#Transaction>.
Fig 4. (a) Change representation using CHO, and (b)

change representation using CHO with deduced

changes.

these changes are represented in proper format.

Descriptions of some of the changes are given in Fig

4, where these are represented using N3 notation.

In the Inconsistencies Detection module,

consistency of an ontology for the required changes

is checked. It is detected using an external source

(WordNet) that IEEE Transaction and ACM

Transaction are disjoint concepts so they must be

separated. This inconsistency is resolved through

deduced changes which are incorporated to handle

inconsistency. Then a complete change request of

both, the required and the deduced changes are

made as shown in Fig 4(b).

In the Implementation and Verification module,

all the change request changes are made to ontology

O. Verification is for two purposes:

• The consistency of ontology O is checked and

verified after every change made, because still

there is a chance of inconstancies. If so, then for

its resolution a request is made back to

inconsistency detection module.

• All the changes implemented to the ontology O

are then logged in change log, to be able to

keep track of implemented changes and to

provide undo and redo facility. In verification

phase it is checked that whether all the required

changes are made or not by accessing the

change request.

Fig 5. Snapshot of prototype system.

Fig 5 is a snapshot of the prototype

underdevelopment. In this the domain ontology is

selected to which the changes are to be made then

the new emerging concepts are selected, which on

selection are also populated into table given below.

From here on the ontology evolution process starts

which includes first matching and then

accommodating the new changes in proper places.

Although the prototype system needs some

human intervention for the changes to be made to

the ontology, but this expert dependency is expected

to be eliminated once the system is completely

developed.

a

b

Creating Global Economies through Innovation and Knowledge Management: Theory & Practice 60

6. Conclusions and Step Ahead

Ontology evolution is not a new area of

research; the work which is conducted in this field is

incorporating work from other related fields such as

ontology matching, merging, integration, and

reasoning. In this paper we presented a framework

for ontology evolution. We first introduced the

change detection and description module for new

changes as new concepts emerge in the domain, and

then represent these identified changes in a

consistent format using Change History Ontology

which acts as a glue to bind different components in

the framework.

New changes are checked for ontology

consistency and where required, deduced changes

are embedded. The changes are then implemented

and stored in the Change History Log. Lastly the

ontology is checked and verified for the required

changes. As ontology changes are stored in Change

History Log, these logged changes can also be used

for deduced changes, change prediction, and

visualization of change effects on ontology.

7. References

[1] S. Castano, A. Ferrara, G. Hess, “Discovery-Driven

Ontology Evolution”. The Semantic Web

Applications and Perspectives (SWAP), 3rd Italian

Semantic Web Workshop, PISA, Italy, 18-20

December, 2006.

[2] S. Castano, A. Ferrara, and S. Montanelli, “Evolving

open and independent ontologies,” Journal of

Metadata, Semantics and Ontologies (IJMSO), vol.

1, No.4 pp. 235 - 249, 2006.

[3] S. Castano, A. Ferrara, and S. Montanelli. “Matching

ontologies in open networked systems”. Techniques

and applications, Journal on Data Semantics (JoDS),

vol. V, pp. 25-63, 2006.

[4] G. Flouris, D. Plexousakis, G. Antoniou, “A

Classification of Ontology Changes”, In the Poster

Session of Semantic Web Applications and

Perspectives (SWAP), 3rd Italian Semantic Web

Workshop, PISA, Italy, 2006.

[5] T. Gabel, Y. Sure, and J. Voelker. “KAON – ontology

management infrastructure”. D3.1.1.a, SEKT

Project: Semantically Enabled Knowledge

Technologies, March 2004.

[6] P. Haase, L. Stojanovic, “Consistent Evolution of

OWL Ontologies”. In Proceedings of the 2nd

European Semantic Web Conference (ESWC), 2005.

[7] P. Haase, Y. Sure. “State of the Art on Ontology

Evolution”, D3.1.1.b, SEKT Project: Semantically

Enabled Knowledge Technologies, August 2004.

[8] J. R. Hobbs, and F. Pan, “An Ontology of Time for

the Semantic Web”. ACM Transactions on Asian

Language Processing (TALIP) vol. 3, No. 1, pp. 66-

85, 2004.

[9] M. Klein. “Change Management for Distributed

Ontologies”. PhD Thesis, Department of Computer

Science, Vrije University, Amsterdam, 2004.

[10] M. Klein and N. F. Noy, “A component-based

framework for ontology evolution”, In Proceedings

of the (IJCAI-03) Workshop on Ontologies and

Distributed Systems, CEUR-WS, vol. 71, 2003.

[11] Y. D. Liang, “Enabling Active Ontology Change

Management within Semantic Web-based

Applications”. Mini PhD Thesis, University of

Southampton, 2006.

[12] N. F. Noy and M. Klein, “Ontology evolution: Not

the same as schema evolution”, Knowledge and

Information System, vol. 6, no. 4, pp. 428–440, 2004.

[13] N. F. Noy, S. Kunnatur, M. Klein, and M. A. Musen,

“Tracking changes during ontology evolution”. In

Proceeding of the 3rd International Semantic Web

Conference (ISWC), Hiroshima, Japan, November

2004.

[14] N. F. Noy and M. Klein, “Tracking Complex

Changes During Ontology Evolution”. Second

International Semantic Web Conference (ISWC),

Sanibel Island, Florida, 2003.

[15] D. Oberle, R. Volz, B. Motik, and S. Staab, “An

extensible ontology software environment”, In

Handbook on Ontologies (Series of International

Handbooks on Information Systems), pp. 311–333,

Springer, 2004.

[16] P. Plessers, and O. De. Troyer, “Ontology change

detection using a versioning log”. In Proceeding of

the 4th International Semantic Web Conference

(ISWC), Galway, Ireland, pp. 578–592, 2005.

[17] L. Stojanovic, A. Madche, B. Motik, and N.

Stojanovic, “User-driven ontology evolution

management,” In European Conference on

Knowledge Engineering and Management (EKAW),

pp. 285-300, 2002.

[18] L. Stojanovic, “Methods and Tools for Ontology

Evolution”. PhD thesis, University of Karlsruhe,

2004.

[19] L. Stojanovic and B. Motik. “Ontology evolution

within ontology editors”. In Proceedings of the

OntoWeb-SIG3 Workshop at the 13th International

Conference on Knowledge Engineering and

Knowledge Management (EKAW), pp. 53–62,

September 2002.

[20] M. Tury, M. Bielikova. “An Approach to Detection

Ontology Changes”. First international workshop on

adaptation and evolution in web systems engineering

(AEWSE), 20006.

[21] Asad Masood Khattak, Khalid Latif, Sharifullah

Khan, Nabeel Ahmed, "Managing Change History in

Web Ontologies," Semantics, Knowledge and Grid,

International Conference on, pp. 347-350, 2008

Fourth International Conference on Semantics,

Knowledge and Grid, 2008.

