

Design and Implementation of the Content Manager

Sungyoung Lee, Young-Rae Hong, Hyung-Il Kim, Byeong-Soo Jeong

Abstract
Content managem eaming system is

. Introduction
nology for multimedia

l

 G2 are widely
sed in the Internet environment.

ot consider

g Protocol) [6] and RTP

in a Multimedia Streaming Framework

School of Electronics and Information

Kyung Hee University
South Korea

ent in a str
important since it allows users to access media
contents more easily by efficiently handling meta
information about media contents for the
streaming server, web server, and clients. This
paper describes a design and implementation of
the content manager in Integrated Streaming
Service Architecture (ISSA). The proposed content
manager is not only to provide these functions
efficiently, but also to provide streaming
information to the media manager and the
transport manager for efficient streaming.
Furthermore, it supplies database interface by
which ISSA can interwork with BeeHive database.
Keywords: streaming, multimedia, real-time

1
Streaming is a tech
communications that makes it possible to
deliver and display multimedia (such as
audio and video) data in real-time. By using
streaming technology, users can access
multimedia contents immediately upon
demand without waiting for the whole file to
be downloaded. It is well suited to the
transmission of video data that has real-time
characteristics and requires high bandwidth
communication. Several commercial
products for multimedia streaming, such as

* This work was partly supported by Inte ationarn

-9Collaborative Research Program (TRP 803-6)
sponsored by Ministry of Information and
Communication of Korea

Microsofts Window Media Technology and
RealNetworks RealSystem
u
 Even though numerous streaming
systems have been designed and
implemented, most systems do n
interoperability with other streaming systems
and do not support diverse media formats and
network interfaces. Thus, they lack flexibility,
extendibility, and network transparency. For
this reason, ISSA (Integrated Streaming
Service Architecture) has been proposed to
overcome the limitations of existing
streaming systems while providing diverse
audio and video CODEC and the ability to
run adaptively on different operating systems
and networks [1,3].
 Since ISSA uses standard real-time
communication protocols, such as RTSP
(Real-Time Streamin
(Real-Time Transport Protocol) [7], it can
provide openness. It also provides the
function of media data storage by
interoperating with a real-time multimedia
database system (BeeHive). ISSA is an
integrated streaming service architecture that
provides a group of library functions by
which streaming applications such as VOD
system and real-time broadcasting system can
be easily developed. ISSA consists of several
modules, including Session Manager that

controls the session of streaming
applications; Transport Manager that
supports RTP, TCP, and UDP for media data
transmission; Media Manager that manages
diverse media types; Gateway that provides
interoperability with other streaming
frameworks, such as CORBA A/V streaming
service [8,9]; and Content Manager that
provides database connections (with BeeHive
and Oracle) and transaction processing.
 Generally, streaming applications deal
with large amounts of media content that
have diverse formats and categorization.
Thus, in order that users may easily access
media contents when they want, the
streaming framework should manage
information about media contents and
efficiently provide them to the streaming
server, web server, and clients respectively.
Media contents can be classified into three
categories, on-demand media contents
streamed by user demand, live media
contents streamed directly from video camera
or microphone, and scheduled media contents
streamed during the predefined time interval.
Media contents are often stored in file objects
or database objects and need different
interfaces to handle them. For efficient
streaming, the system needs additional
information like compression type,
transmission type (multicast/unicast), and
QoS parameters; and the Content Manager
should efficiently provide such information
to streaming the server. In this paper, we
describe the design and implementation of
the Content Manager in ISSA.

This paper proceeds as follows. Section 2
provides an overview of existing content
management implementation. In Section 3,
we

been developed and some have been
ful. However, most

describe the system architecture and
functions of our integrated streaming
framework (ISSA). Section 4 describes the
design and implementation of ISSA Content

Manager, and Section 5 explains how to
interoperate with BeeHive, a real-time
multimedia database through a database
connector controlled by the Content Manager.
Finally, we state our conclusions in Section 6.

2. Related Work
Currently, many streaming systems have

commercially success
systems have focused on the streaming
function itself and there has not been much
attention to content management functions.
IP/TV [10], B · media [12], and Sonera Live
[11] are a few examples that consider content
management as an important component in a
streaming system. Here, we will describe
IP/TV briefly to compare it with our content
manager design.

IP/TV Viewer

Unix Server
with MBone

tools

IP/TV
Content Manager

MBone
Server

Internet

IP/TV Server

IP/TV program
IP/TV program description
MBone program
MBone program description

(a) IP/TV Components – Scheduled Programs

IP/TV
Content
Manager

IP/TV Viewer IP/TV Server Cluster

1. IP/TV Viewer receives OnDemand program descriptions
2. IP/TV Viewer makes OnDemand request

Browser

OnDemand
program database

Journal database to
record OnDemand
usage information

3. Content Manager redirects Viewer to least busy server

4. IP/TV Viewer makes OnDemand program request of server

5. Server serves OnDemand program to Viewer

1 2
3

4

5

6

6. Server control and status

(b) IP/TV Components – OnDemand Programs

Figure 2. Architecture of Cisco’s IP/TV

IP/TV is a streaming system that can
tra 1,
MPE

e
scribe the

that has
a

nsmit diverse media formats, e.g., MPEG
G2, MPEG4, and H.261 on IP-based

LAN and WAN (Internet). IP/TV consists of
three parts; the viewer that plays media
stream, the content manager that provides
media meta information to the viewer, and
the server that transmits media contents. The
content manager of IP/TV handles two kinds
of media, on-demand media and scheduled
media that can be provided from live media
and stored media data.
 Streaming architecture for scheduled
media and on-demand media is described in
Figure 1. Lists of scheduled media are
controlled by the content manager. Scheduled
media does not produce an excess of network
traffic since it uses the multicast protocol. By
contrast, on-demand media requires more
network bandwidth since it establishes an
individual channel to every client.

3. Integrated Streaming

Framework Architectur
In this section, we de

architecture of our streaming system
content management function. Our

streaming framework aims to support diverse
audio and video CODEC and adaptively run
on different operating systems and network
environments. As shown in Figure 2, the
overall system architecture of our streaming
framework consists of two parts, Streaming
Applications and ISSA (Integrated Streaming
Service Architecture). The latter is comprised
of a Content Manager, a Control Manager, a
Session Manager, a Transport Manager, a
Resource Manager, a Media Manager,
Database Connector, and Gateway Modules.
MOA (Media Object Architecture) resides
between them. ISSA performs the essential
functions for multimedia streaming services
and MOA provides an API (Application

Programming Interface) as object-oriented
wrapper classes that can be easily used by
streaming application developers. VOD
(Video On Demand) server and client
programs developed by using MOA can be
one example of the Streaming Applications
layer.

ISSA Basic Architecture
Content
Manager

Session
Manager

Transport
Manager

Resource
Manager

Media
Manager

Directory Service

Web InterfaceDirectory
Manager

Application Wrapper
WinAmp
plug-in

DirectShow
Soure Filter

Gateway Module
CORBA
Gateway Web Interface

Database Connector
BeeHive

Connector

MOA (Media Object Architecture)

Control
Manager

Streaming Application

Oracle
Connector

 Figure 2. Architecture of Integrated
 Streaming Framework

The Ses s session
ontrol functions between streaming

sion Manager perform

c
application programs, such as session
creation/destruction. It is also responsible for
streaming media control, such as play-back
and stop. These functions are provided by
implementing RTSP (Real-Time Streaming
Protocol) developed by IETF (RFC 2326) in
1998. The Control Manager supports the
Session Manager by informing several
control information from users. The Media
Manager provides several functions related
with media data processing, media file I/O
through file systems or DBMS, A/V CODEC
to encode/decode diverse media data, and
control of audio/video devices. The Content
Manager is a component for managing media
data such as audio and video. It facilitates
interaction with DBMS in order to retrieve
and store media data. A Database Connector
is required to interact with different DBMS.
The Resource Manager provides QoS related

functions, including QoS specifications,
mapping, monitoring, memory buffer
management, and thread scheduling. The
Gateway Module is a component of ISSA
that is intended to allow interworking with
other streaming frameworks such as the
CORBA A/V Streaming Service and to
support streaming service in the WWW
(World Wide Web) environment. The
Transport Manager performs packetization
and depacketization of multimedia data
represented by diverse media formats and is
responsible for transmitting such packetized
media data in real time through the diverse
network environments. These functions are
accomplished by implementing RTP (Real-
time Transport Protocol) that was developed
by IETF (Internet Engineering Task Force) in
1996 (RFC 1889) as an application level
protocol for multimedia transport.

4. Design of Content Manager

ontent Manager provides the functions that
dia

nnector that

C
generate meta information about me
contents (such as media title, type, location,
format, and security) and transmit such
information to clients in the form of meta file
and URL. Content Manager handles media
contents differently according to content type,
e.g., on-demand content, live content, and
scheduled content. On-demand content is
streamed by user demand and stored in a
system as file objects or database objects.
Live media contents are streamed
immediately after acquiring data from video
camera or microphone. Thus, VCR functions,
such as fast forward and rewind are not
possible for live media streaming. Scheduled
media content is streamed during the
predefined time interval. Live media content
and scheduled media content can be streamed
by multicast communication protocol. On the
other hand, on-demand media content is

streamed by unicast protocol.
 Another function of Content Manager is
to manage the database co
controls multimedia database access and
performs database transactions. The database
connector provides main functions that
extract media data and meta information
from multimedia databases and supports the
BeeeHive connector for interoperating with a
BeeHive database. As shown in Figure 3,
Content Manager performs its functions by
communicating with the media source that is
responsible for sending/receiving media data
and the database connector that controls
database interface. That is, Content Manager
initializes the corresponding media source by
receiving parameter values, i.e., file name
and database id from the media source, and
by communicating with the database
connector performs information retrieval,
update and several transactions for streaming
service.

Content Manager Database
Connector

Media Source

DBMS

DB connection/transaction

Initialize process transactions
(read, write, find, play) return resultreturn media

source's pointer

return result

stream media data

File
Live

Figure 3. The Structure of Content Manager

en Content Manager, media source, and

 Figure 4 describes the relationship
betwe
database connector by a class diagram of
UML (Unified Modeling Language). As can
be seen in Figure 4, cmContentManager
generates cmBHConnector and
cmBHConnector requests transaction service

to a database server through API of database
interface.

mmMediaSource cmDBConnector

cmContentManager cmBHConnector itrans_clnt

cmDBException

+bh_connector

+ex

 Figure 4. Class Diagram for Content
 Manager

5. Implementation of Content
Manager

 two
pa ntent management, which

ideo Meta Information

The Content Manager largely consists of
rts: media co

provides the mechanism to extract meta
information of media contents, efficiently
show them to users and perform initialization
process for media streaming; and database
interface, which provides interworking with a
BeeHive database and manages database
transactions that read media contents from
the database.

Table 1. Audio/V
media_type == Audio media_type == Video

mt=audio mt=video
title=(title)
author=(author)

g method)

)

thor)
g method) en=(encodin

br=(bit rate)
bps=(bit per sample)

of channelsch=(number
ba=(frame byte align)
fs=(frame size)
sr=(sampling rate)

title=(title)
author=(au
en=(encodin
bps=(bit rate)
fps=(frame per second)

ht) h=(frame heig
w=(frame width)

In order to extract meta information

bout media content, the Content Manager
provide

GetMediaDesc(issaString &path);

);

information (as shown in Table 1) is returned

MediaInit(issaString &path, int type);

F

live);

 ns
 an ISSA environment, we add a BeeHive

s two APIs as follows, which can be

called with the parameters such as URL or
media source reference (mmMediaSource).

issaString

issaString

GetMediaDesc(mmMediaSource &src

After execution of these API functions, meta

as issaString. When users request specific
media after reviewing meta information, the
Content Manager performs an initialization
process according to the type of requested
media. The initialization process is
performed by the following four functions
and returns mmMediaSource reference value.

mmMediaSource *

mmMediaSource *

ileMediaInit(issaString &abs_path);

mmMediaSource *

DBMediaInit(issaString &id);

mmMediaSource *

LiveMediaInit(cmLiveContent &

 In order to utilize BeeHive transactio
in
transaction interface to the Content Manager
of ISSA. The Content Manager of ISSA
provides a database interface with BeeHive
and processes media source requests from
ISSA clients. We use RPC mechanism for
interaction with BeeHive and devise RTTP
(Real-Time Transaction Protocol) for
transaction processing between ISSA client
and server. RTTP is a protocol that handles
transaction requests for BeeHive in ISSA
environments. But it is not directly related
with BeeHive.

a

ISSA
Client

ISSA
ServerBeeHive

Transaction Interface

Stream Interface

ISSA
Client

ISSA
ServerBeeHive

RTTPBeeHive
Connector

File Transfer RTSP

Figure 5. Transaction and Stream Interfaces
between ISSA and BeeHive

Interoperable interface model between

ISSA and BeeHive consists of Transaction
Interface and Streaming Interface (as shown
in Figure 5). Transaction Interface deals with
a series of functions which the ISSA client
requests for transactions of BeeHive.
Streaming Interface provides a mechanism to
stream media between ISSA client and server.
Transaction Interface is composed of a GUI
part that handles transactions requested from
an end-user, a RTTP (Real-Time Transaction
Protocol) part which deals with transaction
processing between ISSA client and server,
and an RPC part which is an interface
between ISSA server and BeeHive.
Streaming Interface consists of a part that
relates with the media display of thw ISSA
client, a part that controls RTSP and RTP
session between ISSA client and server, and a
part that handles media stream transmission
between ISSA server and BeeHive. All
functions previously mentioned are contained
in the BeeHive Connector that resides in the
Content Manager of ISSA server.

6. Conclusion
This paper describes a design and
implementation of Content Manager, which
is a part of our integrated streaming
framework that integrates heterogeneous
environments and works easily together with
other streaming systems. Content Manager

deals with diverse media formats and
provides efficient management for meta
information about media data. It also
provides a user-friendly interface for media
data access by generating a meta file or URL.
Currently, the database interface of Content
Manager supports BeeHive database. We
plan to extend this database interface to
industry standard DBMS like Oracle and
Informix in order to support a wider range of
existing media contents.

Reference
[1] Chan-Gyun Jeong, et. al., "Design for an

Integrated Streaming Framework",
Department of Computer Science,
University of Virginia, Technical Report,
CS-99-30, November, 1999.

[2] HyungIl Kim, Sungyoung Lee, "Design of
Media Object for Multimedia QoS, '98
Korean Information Science Society,
Spring Conference, pp.699-701, April 1998.

[3] ChanGyun Jeong et. al., "Design of
Distributed Streaming System", '99 Korean
Multimedia Society, Fall Conference,
pp.338-343, Nov. 1999.

[4] J. Stankovic, S. Son and J. Liebeherr,
"BeeHive: Global Multimedia Database
Support for Dependable, Real-Time
Applications", In Proc. of Second
Workshop on Active Real-Time Databases,
Lake Como, Italy, September 1997.

[5] J. Stankovic and S. H. Son, "An
Architecture and Object Model for
Distributed Object-Oriented Real-Time
Databases," Journal on Computer Systems
Science and Engineering, Special Issue on
Object-Oriented Real-Time Distributed
Systems, vol. 14, no. 4, pp 251-259, July
1999.

[6] H. Schulzrinne, A. Rao, and R. Lanphier,
“Real-Time Streaming Protocol (RTSP)”,
IETF RFC 2326, April 1998.

[7] H. Schulzrinne, S. Casner, R. Frederick,
and V. Jacobson, “RTP: A Transport
Protocol for Real-Time Applications”,

IETF RFC 1889, January 1996.
[8] Object Management Group, Control and

Management of A/V Streams specification,
OMG Document telecom/97-05-07 ed.,
October 1997.

[9] S. Mungee, N. Surendran, and D. C.
Schmidt, "The Design and Performance of
a CORBA Audio/Video Streaming
Service", In Proc. of the 32st Hawaii
International Conference on System
Systems(HICSS), Hawaii, January, 1999.

[10] Cisco, IP/TV Content Manager: User
Guide,
http://www.cisco.com/univercd/cc/td/doc/p
roduct/software/iptv30.

[11] Sonera, Sonera Live Content Manager,
http://www.live.sonera.com/eng/tools/prod
uction_software.html.

[12] Banta Integrated Media, B·Media Content
Manager,
http://centrus.com/pr_media_body_2.html.

[13] C. Aurrecoechea, A. T. Campbell, and L.
Hauw, "A Survey of QoS Architectures",
ACM/Springer Verlag Multimedia Systems
Journal , Special Issue on QoS
Architecture, Vol. 6 No. 3, pp. 138-151,
May 1998.

[14] S. N. Bhatti and G. Knight, "Enabling QoS
adaptation decisions for Internet
applications", Journal of Computer
Networks, Vol. 31, No. 7, pp. 669-692,
March 1999.

[15] Microsoft Corps., Introduction to
DirectShow,
http://www.microsoft.com/directx/dxm/
help/ds/default.html.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

