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Abstract. Wireless Sensor Network (WSN) applications nowadays are
an emerging avenue in which sensor localization is an essential and crucial
issue. Many algorithms have been proposed to estimate the coordinate
of sensors in WSNs, however, the attained accuracy in real-world appli-
cations is still far from the theoretical lower bound, Crame-Rao Lower
Bound (CRLB), due to the effects of fading channels. In this paper,
we propose a very simple and light weight statistical model for rang-
based localization schemes, especially for the most typical localization
algorithms based on received signal strength (RSS) and time-of-arrival
(TOA). Our proposed method infers only the order or the nomination of
given distances from measurement data to avoid significant bias caused
by fading channels or shadowing. In such way, it radically reduces the
effects of the degradation and performs better than existing algorithms
do. With simulation of fading channels and irregular noises for both the
RSS-based measurement and the TOA-based measurement, we analyze
and testify both the benefits and the drawbacks of the proposed models
and the localization scheme.

Keywords: Localization, Nonmetric, Fading channel, Shadowing.

1 Introduction

Node Localization plays a fundamental role in Wireless Sensor Network applica-
tions which are rapidly growing. Especially, in applications for dynamic environ-
ment such as manufacturing logistics, asset tracking, context aware computing,
where sensors may change their locations time by time without notice. In addi-
tion, in large scale WSN applications where sensors are deployed randomly in
vast areas, for instant, environment monitoring, conservation biology and preci-
sion agriculture, the measured information must stick with location information
so that the data are meaningful. Hence, it is critical that self-localization or node
localization must be implemented in those applications.

Many localization algorithms have been proposed to compromise the trade-
offs between low cost, low energy consumption, and high accuracy and robust-
ness. These algorithms are categorized into range-based schemes and range-free
schemes. The range-based schemes estimate the location of sensors based on
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given pairwise distances transformed from measurements such as received sig-
nal strength (RRS), time-of-arrival (TOA), time of different of arrival (TDOA),
angle of arrival (AOA). Usually, TOA, TDOA are suitable for applications re-
quiring high accuracy (in order of centimeters) but it will be costly to equip
those measurements. Meanwhile, if the first priority is low cost, RSS is the best
candidate. However, the drawback of using RSS is that it is difficult to overcome
the bias due to the irregular distribution of radio rank. To improve the accuracy,
in case of using RSS, Patwari et al. proposed a novel localization algorithm based
on maximum likelihood relative estimation (MLE) [1]. Recently Costa et al. [2]
introduced a scalable, distributed weighted-multidimensional scaling (dwMDS)
algorithm. The main issue of range-based schemes is the adding cost of hard-
ware to measure the distance. Therefore, in recent years, other scholars proposed
range-free schemes.

The locations of sensor, in range-free schemes, are estimated from the con-
nectivity or the number of hops between each pair of sensors. Thus, range-
free schemes do not require any hardware to determine the pairwise distances.
Obviously, it significantly reduces cost and power consumption as well. Conse-
quently, range-free schemes are suitable for the resource-limited WSNs. Some
of the best papers working on the range-free scheme should be mentioned here
including MDS-MAP [3], Isomap [4], area-based approach [5], DV based po-
sitioning [6], mobile and static sensor network localization [7]. Recently, some
novel approaches in range-free schemes were proposed such as the distributed
localization algorithm with improved grid-scan and vector-based refinement [§].
Naturally, range-free schemes take precedence over range-base schemes when
cost and energy are the main concerns. However, the range-free scheme has its
own drawback, that is, it is very hard to obtain high accuracy, particularly, in
real-world applications with fading channels and unpredictable noises.

To deal with the effects of fading channels and irregular noises in measuring
distances, some novel approaches have been proposed recently. V. Vivekanandan
and W.S Wong [9] improved MDS-MAP [3] by using ordinal Multidimensional
Scaling (MDS) instead of classical MDS. In Ordinal MDS/MDS-MAP(O), which
will be described more details in the section XX, it only requires a monotonicity
constraint between the shortest path distance and the Euclidean distance for
each pair of nodes. The results show that ordinal MDS gives higher accuracy
than classical MDS. However, MDS-MAP(O) [9] still uses the metric model as the
input of algorithm. N. Patwari and P. Agrawal [I0] build up an algorithm which
infers localization information from link correlations in order to avoid significant
effects from correlated shadowing on links, in connectivity, localization, and in
radio tomographic imaging. Even so, current literatures estimate the coordinates
of sensor mostly from a given matrix of pairwise distances. This kind of approach
inherits the bias of measurements as well as the converting measurements into
Euclidean distances.

Unlike previous work, in this paper, we proposed a very simple model based on
nonmetric model MDS [I1] to reduce the effects of fading channels and irregular
noises. This method is technically similar to averaging (AR) in signal processing.
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In such way, the major errors of measured distances will be somewhat canceled.
For that reason, when integrated with range-based algorithms as the input, the
model will perform significantly better than the stand-alone algorithms do. We
also remark that only Gaussian noise in the localization problem is concerned
in most existing work. We however focus on how to cope with non Gaussian
noise, fading channels, and artifacts. In this paper, first we define the problem
formulation, then we propose the nonmetric distance model, so-called NoDis
Model, for the most common measurements in nowadays, the received signal
strength (RSS) and the time-of-arrived (TOA). Next section, we will show and
analyze the performance of our proposed scheme via simulation the NoDis model
with MDS-MAP [3] and MDS-MAP(O) [9]. Finally, we end the paper with our
conclusions and future work.

2 Problem Formulation

In this section, we first introduce the mathematical localization problem. Then
we talk over models of RSS and TOA in realistic and simulate WSN networks.
Finally, we explain the rough challenges of fading channels in real applications
and how to model such phenomena.

2.1 Localization Problem

In this paper, we consider a network which includes n sensors, normal nodes, ran-
domly deployed in d-dimensional space (d=2 or 3) without location information,
and very few m beacons (m < n) with location information. Let N=n+m denote
the total number of sensors in the considering WSN, X = {z;: i = 1.N},x; €
R, be the actual vector coordinates of sensors and X = {#;:i=1.N},7; € R%,
be the estimate vector coordinates of sensors. The problem of localization in
Wireless Sensor Networks is formalized as follows: Given n normal nodes, m
beacons, and a set of pairwise vector distances {d;; : 4,7 = 1..N}, the locations
of normal nodes must be estimated. We assume that all measured pairwise vec-
tor distances, {d;; : i # j and 4, j = 1..N}, are available and ||0;; = |19;:(l, (||.]|
is the 2-norm). This assumption doesn’t restrict the application of the proposed
algorithms. The more pairwise vector distances are given, the higher accuracy is
achieved. Note that our method is developed to adapt any type of range mea-
surements, for instance, RSS, TOA, or AOA. However, in this paper, we mainly
discus on RRS and TOA model because of their low cost and most typically
used in WSN applications.

2.2 No Fading Channels

For most existing work, they only solve the localization problem with Gaussian
noise on the distance only. In other words, there is no noise that is much greater
than the data containing location information. In this paper, we concern only
two typical measurement models, received signal strength (RSS) and time of
arrival (TOA) because of their popularity.
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In RSS-based, distances are measured by converting power of radio signal
with the following formula:

dij = do10Fo=Fi3)/(10m5) (1)

where, d;; is the converted distance between sensor ¢ and j. Py and P;; are the
power in decibel milliwatts at distance dy and d;; respectively. n, is the path
loss and depends on the environment and can be known from calibration and
measurement.

Naturally the equation [Tl reflects the degradation of received signal strength
with corresponding distances. Furthermore, RF channel measurements of F;; is
mainly constant over path length [Rappaport 1996] and [I]. Thus, it is possible
to model Pj; as a Gaussian model in form

Pij ~ N(Pij’ O'(%B)v (2)
where P;; is the mean value of signal power received at distance d;; and 025 is
the variance of the irregular distribution of radio range.

In TOA-based, sensors are commonly equipped hardware ranging mechanism
such as a speaker and a microphone or ultrasound. The mathematical transfor-
mation physical measurements into Euclidean distance is independent of partic-
ular hardware. To measure the distance between sensor ¢ and j, sensor ¢ first
sends a radio message and waits some interval of time, ¢geiay, to ensure that
node j receives the message. Then node i emits a sound. Node j, based on the
time of receiving the radio signal, it notes the current time ¢,.,4;,. When node j
hears the sound, it again note the current time tsyynq. Using the fact that radio
signal travels very much faster than sound in the air, the distance between node
¢ and j is simply computed as

dij = (vradio - vsound) * (tsound - t'radio - tdelay)
= Avx At, (3)

where V4450 and vsoung are the speed of radio and sound traveling in the air,
respectively. Assume that the air is unique and there is no obstacle on the trav-
eling path of sound, the bias in TOA case is mostly caused by the error in time
measurement. Therefore, the At can be modeled as
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Fig. 2. Effects on measured data in real application: (a)from fading channel; (b)from
irregular radio range

At~ N(Bt,02), (4)

where At is the mean value of At and o2 is the variance of the traveling time
of sound.

2.3 Fading Channel Models

The physical location of sensors is critical for both network operation and data
gathering. Nowadays, network communication in WSNs mostly use radio signal
to transmit or receive data and many localization algorithms execute relied on
the connectivity or the propagation of the transmission. However, the connectiv-
ity or hop-counting must face with fading channels due to unexpected obstacles
in real-world environment. In Fig. Zh, sensor A and sensor B can not directly
communicate with each other because of the obstacle between them. The num-
ber of hops or the distance estimated between sensor A and B, through the path
A— C — D — E — B, consequently is much greater than the actual distance.
Fig. @b illustrates the effect of irregular radio range in WSNs. In practical, the
radio range is not symmetric. Therefore, based on measured data, one will think
that node B is closer to node A than node C is, even that is not true.

To simulate these phenomena, non Gaussian noise or artifacts, we proposed
a method as hereafter. For the RSS model, the radio signal is significantly de-
graded when there are obstructions on the link. And the ratio of sigma over
path loss o4 /np represents this phenomenon, fading channels or artifacts. As a
consequence, if we increase the o4 /n, of some random links in a wireless sensor
network by adding a constant C, their corresponding measured distances will be
significantly larger than true values.

To simulate the fading channel in TOA case, analogously, we randomly
multiply a number of measured time values, /At, by a fixed coefficient «.

di; = ax Avx At. (5)

In summary, by creating fading channels on some random links like our method,
the corresponding measured distances are radically different from the actual
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distances. In order to cope with both non fading channels (Gaussian noises) and
fading channels (non Gaussian noise), we propose a new model which based on
nonmetric models and will be described in next section.

3 Owur Proposed Model

3.1 Nonmetric Distance Modeling

The input {d;; : ¢ # j and 4,j = 1.N} of a localization scheme is a set of
pairwise distances among sensors in a network, which is a metric space or so-
called metric distance model. That is, it represents various properties of the data
related to algebraic operations (addition, subtraction, multiplication, division).
The pairwise distances are converted from other measurements such as RF signal
(RSS), Time of Arrival (TOA) or hop-distances (connectivity). Because of the
present of fading channels and unpredictable obstacles in real-world applications,
there are some measured distances which are significantly different from their
actual values. This phenomenon consequently biases the output of a localization
scheme, coordinates of normal nodes. To lessen the effect of noise, we convert
metric distance models into nonmetric distance models [IT].

Metric distance models only preserve the rank or the order of the metric data.
For example, if §;2 = 12 and d34 = 9, a nonmetric distance model maintains only
the property as d12 > d34. Therefore, we constructs a new model of given distance
51']‘ — 6ij = f(ém) so that

if 51']' > 01 then S\ij > S\kl- (6)

Note that we also can use the requiring monotonicity 3\1‘]‘ > Skl, however, neither
3\1‘]‘ > gkl nor /6\1']' > Skl strengthens models in practice, because one can always
add a very small number € to one side of the equality. R

There are many ways to obtain a nonmetric distance model d;; satisfying (G).
In this paper, we propose a simple and lightweight method as follows and name
it the NoDis model. First we create a vector v = {v; : i = l.n(n — 1)/2}
from elements below the diagonal of the given pairwise distances d;;. Then we
derive an index vector u = {u; : i = l.n(n — 1)/2} from sorting vector V in
ascending order. Obviously, each element u; contains the index of corresponding
v;, and u; < n(n —1)/2, i = 1.n(n — 1)/2. We also stress that the index of u
is the order of elements of v. Next step is that we construct a nonmetric vector
v=A{v;: i=1.n(n—1)/2} where,

Uy, =1, i = l.n(n—1)/2. (7)

Finally, one easily builds the nonmetric distance model D by converting v into
a square, symmetric format matrix, in which d;; denotes the nonmetric distance
between the ith and jth sensors in the given metric distances, and satisfies ().
We use this nonmetric model ﬁ7 a square symmetric matrix with all elements on
the diagonal are zero, as the input of algorithms based on the MDS technique. A
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Table 1. Symbolic metric distances d;;, order (index of v), nomination vector v, index
vector u, nonmetric nomination vector v and symbolic nonmetric distances d;;

dij Order v u v E/l\ij
dia 1 9 3 2dp
dis 2 3 5 3dis
du 3 5 7 4ddu
dos 4 7 9 1das
daa 5 15126 das
dsa 6 12155 dsa

very simple example with only 4 nodes (n = 4) given in Tab. [[lwould be useful to
understand converting nonmetric distances from given metric distances. Let dag
and ds4 be kind of fading channels, apparently the discrepancies between them
and other distances are reduced in vector . This sort of transformation weakens
the effects of large bias on input data. It consequently somewhat improve the
accuracy and convergence speed as well.

3.2 Model Limitations

We note that our proposed NoDis model has hereafter limitations. Firstly, NoDis
is mainly developed for range-based schemes. We only test the NoDis model with
rang-based algorithms in our simulation. However, it is possible to apply our
proposed with range-free schemes by calculating pairwise distances analogously
to DV-HOP [6].

Secondly, the NoDis model is most appropriate to localization algorithms
which perform well on networks in which sensors are randomly deployed. In
this paper, we analyze and investigate our proposed model [l and [6] with classical
(MDS) and ordinal MDS. With some other localization algorithms, our proposed
model may not suffice to improve the performance.

Finally, the NoDis model has not integrated the effects of multi-paths which
impairs given distances. The power received at a receiving sensor may be the
multi-path components transmitted by many sensors, not only the considering
sensor in pair with receiving sensor. The NoDis assume that the receiver only
receives power from only one of its neighbors at a time. An update model, which
considers the correlation between multi-paths, should be developed to archive
better solution.

The proposed nonmetric distance model does not perfectly represent for all
cases of noises in wireless sensor network localization, however, it does simplify
the existing algorithms, makes them applicable for real world applications.

4 Experimental Results

In our experiments, we access the performance of our proposed NoDis modle
when using the model as the input for MDS-MAP [3] and ordinal MDS [9]. To
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(b) The result of localization with TOA measurement, ratio of noise is 25%. The
estimate locations are marked as ”v7”. RMSE = 0.0592m.

Fig. 3. Illustration of 100 randomly deployed sensors and their estimated locations
marked as 77"

compare the performance of our proposed localization scheme, we also implement
MDS-MAP and ordinal MDS (MDS-MAP(O)). For comparable convenience, all
experiments run on a same network topology. That is, 100 nodes are deployed
randomly in a 20m x 20m square. 4 reference nodes or beacons are placed at 4
corners and one at the center of the area (see Fig. Bla ). For instant, Fig. Blb
shows the result of the localization problem in TOA case with the ratio of noise is
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25% and the obtained RMSE is 0.0592m. Noises and artifacts are generated for
(non) fading channel models for both RSS and TOA measurements. The initial
coordinate of sensors is randomly assigned for each trial of our simulations. We
conduct the simulations on two phrases, the former is without fading channels
and the latter includes fading channels.

4.1 Simulations without Fading Channels

To model the errors in the simulation network, we add Gaussian noise to the
received signal strength for the RSS model and to the distance for TOA model.
For RSS case, the ratio of sigma over path loss o4p/n, varies from 1 to 2. For
TOA case, the ratio of noise o, varies from 5%(0.05) to 25%(0.25). We run 10
trials for each type of considering algorithms, the Root Mean Square Error of
each algorithms is plotted in Fig. 4l
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Fig. 4. Root Mean Square Error for the simulations without fading channels
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From the graph, it is easy to realize that the performances of our proposed,
RMSE of MDS-MAP-NoDis and MDS-MAP(0O)-NoDis are similar to those of
MDS-MAP and MDS-MAP(O) when the ratio of noise is low. However, NoDis
seems to give better accuracy when the noise increases, particularly with the
MDS-MAP algorithm in RSS model. The reason is that MDS-MAP suffers from
large bias when noise is increasing but NoDis. However, the NoDis model also
reduces the resolution of TOA measurement, MDS-MAP-NoDis in the Fig @b
therefore can not get high accuracy like the MDS-MAP can.

4.2 Simulations with Fading Channels

To add fading channels into the above network topology to analyze the perfor-
mance of algorithms, we vary the percentage of channels in the network from
5%(0.05) to 25%(0.25). We note that the channels or links selected to transform
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Fig. 5. Root Mean Square Error for the simulations with fading channels
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into fading channels are random. To transform a normal channel to a fading
channel, we fix parameters o45/n, and o, at 1.6 and 20% respectively and dou-
ble distances calculated by () and @]). The fading channels only vary in quantity,
indeed.

Again, we run 10 trials for each type of considering algorithms. Fig. [§] shows
their results on the fading channel cases. This time, MDS-MAP-NoDis is much
better than MDS-MAP, and achieving as good results as MDS-MAP(O) or MDS-
MAP(O)-NoDis. Obviously, the NoDis model works very well in the case of
having a lot of fading channels and it is suitable for the real -world application
where there are many unpredictable obstacles. We also remark that MDS-MAP,
the basic MDS-MAP [3], can not work appropriately when the number of fading
channels excesses 10%(0.1) of total channels in the network. This limitation can
be explained by that optimizing with Mean Square Error (MSE) technique in a
metric space can not perfectly remove artifacts or fading channels. That is why
its graphs are irregular in the Fig. Bl

4.3 Convergence

As we have studied, the accuracy attained by MDS-MAP(O) [9] and our pro-
posed MDS-MAP(O)-NoDis are almost similar in both cases of with and without
fading channels. However, when the irregular noises are high, especially when oc-
curring many fading channels, MDS-MAP(O)-NoDis converges much faster than
MDS-MAP(O) does. The reason is the NoDis model discards the significantly
different distances in the given pairwise distances d;;. In addition, MDS-MAP
algorithms are technically based on minimizing Mean Square Error which largely
depends on the value of bias and MDS-MAP(O) is not an exception.
Thus, MDS-MAP(O) require many more iterations to get convergence than
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Fig. 6. Convergence vs. level of noise and fading channels
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MDS-MAP(O)-NoDis. Their results are plotted in Fig.[6l The iterations are the
averaging of 10 trials.

5 Conclusions

We propose a new approach for localization that works well with networks con-
taining fading channels. The proposed model, when used as the input for rang-
based schemes or even rang-free schemes, can radically eliminate or reduce the
effects of fading channels and artifacts. Previous methods often use the metric
pairwise distances to estimate the coordinate of sensors. In such way, it is hard
to overcome the problem caused by fading channels. Our approach does not
have this limitation. It estimates the location of sensors from the nomination
or the order of pairwise distances in nonmetric space. Simulations using various
network measurements and different levels of noise illustrate that our proposal
gives higher accuracy and convergence speed than the previous work, especially
when there are many fading channels.
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