Modified SHA-1 hash function (mSHA-1)

Abduvaliyev Abror, Sungyoung Lee and Young-Koo Lee
Dept. of Comp. Eng., Kyung Hee University, Global Campus, Suwon, Korea.
{abror, sylee}(@oslab.khu.ac.kr, yklee@khu.ac.kr

Abstract

In this paper we propose a modification to SHA-1 hash
Sfunction. For our scheme, we use the regularly distributed
pseudo random function instead of logical functions. This
changing produces unique hash values for unique messages
and provides collision—resistance requirement to hash
function.

1. Introduction

As we know, the hash function SHA-1 has been
adopted by many government and industry security
standards, in particular standards on digital signatures for
which a collision-resistant hash function is required. In
addition to its usage in digital signatures, SHA-1 has also
been deployed as an important component in various
cryptographic schemes and protocols, such as
pseudorandom number generation, user authentication
(Mercurial, Monotone) and key agreement, including TSL,
SSL, PGP, SSH, S/MIME. Consequently, SHA-1 has been
widely implemented in almost all commercial security
systems and products [7, 8].

There were some analysis and publications for finding
collisions in SHA-1. For example, In early 2005, Rijmen
and Oswald devised an attack on a reduced version of
SHA-1 — 53 out of 80 rounds — which finds collisions
with a computational effort of fewer than 2*° operations. In
February 2005, an attack by Xiaoyun Wang, Yiqun Lisa
Yin, and Hongbo Yu was published.

The attacks can find collisions in the full version of
SHA-1, requiring fewer than 2* operations. (A brute-force
search would require 2% operations) [3, 4].

In this paper, proceeding from above results, we
present new modifications to SHA-1. We use the pseudo
random function instead of logical functions. The pseudo
random function gives us the unique numbers depending on
input message; it helps us to provide collision-resistant
criteria for hash functions.

The rest of the paper is organized as follows. Section 2
contains related works. In Section 3, we give a description
of SHA-1. Section 4 is dedicated to describing our
proposed algorithm. Section 5 is devoted to conclusions for
this paper.

- 1320 -

2. Related Works

Yi-Shiung Yeh et al. [5] proposed two SHA-1
corrections to enhance the security of SHA-1. They re-
wrote the original recursive equation into a general form
and changed the indexes of the message schedule. The
main advantage of this modification was the cost of time
as it was in SHA-1. But on the other hand, it can not
provide collision-resistant criteria for SHA-1.

Praveen Gauravaram and John Kelsey [2] also
analyzed that the security of Damgard/Merkle variants
which compute linear-XOR or additive checksums over
message blocks, intermediate hash values, or both, and
process these checksums in computing the final hash
value have some weaknesses. Their result shows that,
linear-XOR or additive checksums cannot protect hash
functions from generic attacks.

3. Description of SHA-1

The hash function SHA-1 takes a message of length

less than 2 * bits and produces a 160-bit hash value [1].
The input message is padded and then processed in 512-
bit blocks in the Damgard/Merkle iterative structure. The
purpose of message padding is to make the total length of
a padded message a multiple of 512. The overall process
of this algorithm can be explained using the following
steps:

Step 1: Appending padding bits:

The message is padded so that its length in bits is
congruent to 448 modulo 512. Suppose that the length of
the message, M, is | bits. Append the bit “1” to the end of
the message, followed by k zero bits, where k is the
smallest, non-negative solution to the equation 1 +1+
k=448 mod 512. Then append the 64-bit block that is
equal to the number 1 expressed using a binary
representation. For example, the (8-bit ASCII) message
“abce” has length 83 = 24, so the message is padded with
a one bit, then 448 - (24 +1) = 423 zero bits, and then the
message length, to become the 512-bit padded message.
Step 2: Initialization Vector:

A 160-bit buffer is used to hold intermediate and final
results of the hash function. The buffer can be represented
as five 32-bit registers (A, B, C, D and E). These registers
are initialized with the following 32-bit hexadecimal
values:

A: 0x67452301

B: 0OxEFCDABS89

C: 0x98BADCFE

D: 0x10325476

E: 0xC3D2E1F0
Step3. Processing message in 512-bit blocks:

After this 16 blocks with the length of 32-bits (from

M to M) change to 80 blocks with the length 32-bits
(from W, to W) with the help of below algorithm:

W.= M,, where i=0,1,...,15;

W, = 0, @ W, ®W,,, O, <] wher

i=16,17,...,79;
Step4. Defining functions and constants:
The main loop contains a sequence of logical functions

Jos 1 f79 and four constants. Each f;,,0<i<79,
operates on three 32-bit constants B, C, D and produces a
32-bit word as output. f;(B,C,D)is defined as follows:
for constants B, C, D:
I. f(B,C,D)=(BAC)V((—B)AD) ., K, -
0x5A827999, i =0,...,19;
2. fi(B,C,D)=B®C®D , K, = 0x6EDYEBALI,
i=20,...,39;
3. fi(B,C,D)=(BAC)v(BAC)v(CAD) K, =
0x8F1BBCDC, i =40,...,59; ’
4. f,(B,C,D)=BO®C®D , K, = 0xCA62CID6,
i=60,..,79;
Step5. The main loop:

In this step we will process message blocks with the

help of below procedures. Firstly, we have to initialize five
working variables a, b, ¢, d, e as below:

a=A;b=B;c=C,d=D,e=E,
Then we will begin processing in main loop, so the pseudo
code of the main loop is:

for i=01to 79 {
T =(a<<< 5)+ fi(b,c,d)+e+ K, +W,;
e=d;d=c;c=(b<<< 30)

=a;a=t

A+a;, B=B+b;C=C+c;D=D+d,

b
H
A
E =F + ¢;

- 1321 -

The last step is appending five working variables to one
variable:

Hash = A|[B||C||D|[E;
4. Our proposed algorithm

4.1 Description of pseudo-random function.

As we mentioned above, hash functions have to be
collision-resistant. There are also 2 more requirements in
hash functions [7, 8]:

1. Deterministic. Two identical or equivalent inputs
have to generate the same hash value or output.

2. Second pre-image resistance: It is infeasible to
find any second input which has the same output as pre-
specified input message.

According to these requirements we need to use the
function which gives us a unique output for unique input.
In this way, as a main function for modification to SHA-
1 we choose a pseudo-random function which generates a
unique pseudo-random number according to its input
message. Full explanation of this function is given
below:

It is known that if there is a sequence of pseudo
random numbers in regular intervals distributed in an
interval (0; 1), with the help of this sequence can be
received the sequence of random variables with any laws
of distribution. There are many algorithms for pseudo
random number generators with the normal sequence, but
the strongest is the following algorithm [6]:

F(i) = {x, *Q};where {.} - Number’s fractional part.

Q is the number which was chosen in special way and
we can use the following values:

Jm 2 B 5 51
o5 30 45 B

Here +/2 is the best value for this algorithm. The
reason is it gives us the strongest normal sequence and

the longest repeating period. X;is the value which was

defined by users, in other words, we can say X, is the key

for this algorithm. The pseudo-code of this algorithm is
given below:
temp = Math.sqrt(2)* x,;
fori=1tok {
arr|i] = toString (temp — Math. floor(temp));
arr[i] = substring(arr[i], 2, 11);

For analyzing and evaluating the power of this This function gives us 80 pseudo-random values with the

algorithm we generated 1000,000 numbers. According to length of 32-bits for each number. Consequently, we will
our findings, the repeating period equaled to 1000,000 with have the following changed pseudo code for the main
the first 8 digit of fractional part of values, so we can take loop:

the first 9 digits of fractional part of the number in terms of fori=0to 79 {

uniqueness. It means that all generated 1000,000 numbers
are regularly distributed, unique and totally different from

T=(a<<<5)+f,(W)+e+K,+W;

each other. The benefits of this algorithm are high speed of e=d;d=c;c= (b <<< 30);
generating and the longest repeating period. The Figure 1

below shows the proof of regular distribution of pseudo- b=a;a=t,

random number generator that shows number of random)

numbers which were distributed regularly in (0; 1) interval:

A=A+a;B=B+b;C=C+c;D=D+d,
E=FE+e

Regular distribution

00000 9959 100000 100001 10002 99999 100000 99999 100001 99599
100000

The last step is appending five working variables to one
variable:
Gl Hash = A|[B||C||D|[E;

The Figure 2 shows us the round of this hash function:

A B C D E

il

Humber of random numbers

01 02 03 04 05 06 07 08 08 A1

Intervals

Figure 1. Regularly distributed pseudo random function.
Let’s see this algorithm in a real example:

H
We have x; =1, then the procedure looks like this: @ []
temp=+/2*1=1.4142135@; h
arr[1]= toString(1414213562-1.0)=0.4142135@; = o
arr[i]=substring('0.414213%2",2,10) = [] K

=414213562 \ \ \ \
B C D E

4.2 Modification to SHA-1 A

As we mentioned above, we are going to use pseudo-
random function instead of logical functions. The logical
functions in SHA-1 just shifts or rotates the bits to left-right

Figure 2. One round of hash function

and use the fixed numbers (constants). But we process the Let’s see this algorithm in a real example step by step:
unique numbers which were generated with the help of Stepl. Adding bits:

above algorithm. Additionally, we can add one more We have the message “abc”. The binary

variable to this function as a secret key K, so it can be used representation of “abc” is 01100001 01100010

for message authentication. But a detailed discussion of this 01100011. We need to convert it to 512-bit block; the
solution is outside the scope of this paper. So, we re-write description of converting is given in Section 3, Step!. So,
Step4 in SHA-1 as below: we have the following 512-bit block: s o

The constants are the same as SHA-1, but the main

function is changed to:

01100001 01100010 01100011 1 00..00 00..011000.

- - -
g e et =24

Ffi(w) = F{w *2},i=0,,..79;

Step?2. Initialization Vector:
A: 0x67452301

- 1322 -

B: 0OxEFCDABg9
C: 0x98BADCFE
D: 0x10325476
E: 0xC3D2E1F0

Step3. Processing message in 512-bit blocks:
The 512-bit block divided to 16 M, ... M| 32-bit

blocks are assigned to compute 80 W, ... W, 32-bit blocks:
M, = 61626380; M, =00000000; ... M, =00000018;

Consequently,
W, =61626380; W, =00000000; ... W,,=2110912391;

Step4. Computing main functions and main loop:

In this step, we show how to compute f;(w;) function,
incasei =0:
Jolowy) = Fy oy *4/23:
F, ={61626380%1.414213562 =

=87152862372965560-871528620 =0.372965560

= substring("0.372965560',2,10) = 372965560
= /. (w,) =372965560

Other f;(w,) values also computed like the example above.

The following schedule shows the hex values of 5
values a, b, ¢, d and e which are taken from main loop:

t = 0; a = 73ab231e; b = ebc3462a; ¢ = 53deb222; d =
2dac725c; e = 324ac647; ...

t=79; a =Db53add17; b = a99444b1; ¢ = 352dbca7; d =
2dac725c¢; e = c23a2244;

The final hash value is defined as:

A =67452301 + b53add17 = cde899a5

B = efcdab89 + a99444b1 = 9961103a

C = 98badcfe + 352dbca7 = 1¢800018

D =10325476 + 11adeb9c = 2104012

E =¢3d2elf0 + ¢23a2244 = 860d0434;

Hash = A|BJ|C||D||E =

= cde899a5 9961103a 1¢800018 2104012 860d0434;

5. Conclusions and future works

We have proposed the new algorithm which shows
modification of SHA-1 hash function with the help of
pseudo random function with real example. The greatest
benefit of this algorithm is using unique numbers according
to the input message. It means that the value of function
depends on message only, not on constants as it was in
original SHA-1. In future, we can use this algorithm for
computing message authentication and integrity code by

- 1323 -

adding one more variable to pseudo random function as a
secret key.

6. Acknowledgments

This research was supported by the MKE (Ministry
of Knowledge Economy), Korea, under the ITRC
(Information Technology Research Center) support
program supervised by the IITA (Institute of Information
Technology Advancement)" (IITA-2009-(C1090-0902-
0002)) and is supported by the Brain Korea 21 projects
and was supported by the Korea Science and Engineering
Foundation(KOSEF) grant funded by the Korea
government (MOST) (No. 2008-1342) and is supported
by the IT R&D program of MKE/KEIT, [10032105,
Development of Realistic Multiverse Game Engine
Technology]

References

[1T NIST. FIPS 180-2, Secure Hash Standard. US
Department of Commerce, Washington D.C., August
2002.

[2] Gauravaram, P., Kelsey, J. Linear-XOR and
Additive Checksums Don’t Protect Damgard-Merkle
Hashes from Generic Attacks. In Malkin, T. (ed.)
CT-RSA 2008. LNCS, vol.4964, pp. 36-51.
Springer, Heidelberg,2008

[3] Wang, X., Yin, Y.L., Yu, H.. Finding collisions in
the full SHA-1. In Shoup, V. (ed.) CRYPTO 2005.
LNCS, vol. 3621, pp. 17-36. Springer, Heidelberg,
2005.

[4] Wang, X., Yu, H.. How to Break MD5 and Other
Hash Functions. In Cramer, R.JF. (ed)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 19-35.
Springer, Heidelberg, 2005.

[5] Yi-Shiung, Y., Huang, T., Chen, I., Chou, Sh.
Analyze SHA-1 in message schedule. Journal of
Discrete Mathematical Sciences & Cryptography,
2007

[6] Rastrigin, L.A. Static methods of searching.
M:Nauka, 1965

[71 Schneier, B. Applied Cryptography, John Wiley &
Sons, New York, 1994

[8] Henri Gilbert & Helena Handschuh. Security
analysis of SHA-256 and sisters. Lecture notes in
computer science, Springer, Berlin, ISSN 0302-9743,
2008

[9] Henri Gilbert, Helena Handschuh. Security Analysis
of SHA-256 and Sisters. In Selected Areas in
Cryptography 2003, pp175-193

User keystroke authentication based on stable digraph pairs

Y oshihiro KANEKO

Taku YAMAMOTO

Faculty of Engineering, Gifu University, Japan
E-mail: kaneko@info.gifu-u.ac.jp

Abstract

Both Joyce-Gupta method and Bergadano-Guntetti-
Picardi method are well-known for user keystroke
dynamics authentication by comparing latency of two
consecutive keystroke, termed digraph, of test sample
with that of reference sample. By millisecond units, one
does not always type keys with the same keystroke
latency. However, it seems that some digraphs are
always faster than other slow digraphs, which is stable
and unique to person. In this paper, we call such fast
and slow digraph pair a stable digraph pair, based on
which we propose a new method for user keystroke
authentication. By combining the previous methods, we
have tested our approach on 7 individuals, for a total
of 35 samples achieving both false alarm rate and
impostor pass rate of 0%, which is better result than
those methods alone.

Keywords: Keystroke dynamics, user authentication,
Joyce-Gupta method, Bergadano-Guntetti-Picardi
method

1. Introduction

Recently there are various authentication systems
using physical and behavioral features. Our study
belongs to the latter and is in the area keystroke
characteristics. In this area, two keys typed one after
another is called a digraph. For instance, the type
”Japan” has four digraphs such as Ja, ap, pa, and
an. More precisely, we use the latency (the elapsed
time between the depression of the first key and that of
the second) of digraphs for user authentication. We
present a new method to utilize stable relationships
between two digraphs such that some digraphs are
always faster than other digraphs, which is unique to
person. Throughout some experiments, we show our
proposed method is valid.

2. Preliminaries
2-1. Relevant work

Much research on keystroke authentication has been
done in the last decades. In [1], they outline keystroke
user authentication methods until then. By the names of
authors, their method is called JG method, which is

well-known in this area and has affected so many other
researches[2-6].

In most of researches so far, users first input short
words repeatedly such as login-name, password, user-
name and so on in order to make reference samples. In
our study, input situation is different, where users are to
input a longer words or sentences, but not so often. In
[2], they deal with almost the same situation, but their
authentication method described below is different
from ours.

2-2. Joyce-Gupta method (J-G method)

This method is based on absolute difference of
digraphs. Let N be a set of digraph. Suppose both
samples T, and T, contain all elements of such N. For a
digraph j, let t;! and t? denote the mean of the latency of
j in T, and T,, respectively. Let us define the norm
between those two samples by

Norm (Tl7 Tz) - ZjeN | tjl_th | (1)

Suppose some user r have k samples. Then as a
reference sample, let R be the collection of such k
samples together. We calculate each norm between R
and r's own samples and then get the mean and standard
deviation of such k norms, denoted by N, and Ng,
respectively.

Using a positive scale S, we set the threshold 7 such
as

I =Nn + SxNy 2).

If a test sample T of some person t satisfies Norm(R,T)
<[, then we judge that the users r and t are the same
person and otherwise they are different.

2-3. Bergadano-Guntetti-Picardi method

This method is based on relative difference of
digraphs. Suppose, for instance, that “Japan” contain
the mean of the latency of four digraphs such as

Ja: 100mS, ap:110mS, pa:90mS, an:80mS.
Then those digraphs are sorted with respect to the
latency in ascending order and ranked like

an: rank 1, pa:rank 2, Ja:rank 3, ap:rank4.

- 1324 -

