
Change Tracer: Tracking Changes in Web Ontologies

Asad Masood Khattak1, Khalid Latif2, Manhyung Han1, Sungyoung Lee1, Young-Koo Lee1,
Hyoung-Il Kim3

1 Dept of Computer Engineering, Kyung Hee University, Korea,

{asad.masood, smiley, sylee}@oslab.ac.kr, yklee@khu.ac.kr

2 School of Electrical Engineering and Computer Science, NUST, Pakistan
khalid.latif@seecs.edu.pk

3Digital Media & Communications R&D Center, Samsung Electronics Co. Ltd.

meeso.kim@samsung.com

Abstract

Knowledge constantly grows in scientific

discourse and is revised over time by domain experts.
The body of knowledge will get structured and
refined as the Communities of Practice concerned
with the field of knowledge develop a deeper
understanding of issues. The knowledge model, as a
result evolves to a new state to accommodate the new
knowledge. Keeping trail of these changes in
semantically rich and formally sound mechanism, has
pragmatic advantages for providing the undo and
redo facility and to recover to a previous state of the
knowledge body (i.e. ontology). In this research, we
have developed and tested comprehensive
methodological framework for Change Tracer. The
ontology changes are captured and then stored in
Change History Log (CHL) in conformance to
Change History Ontology (CHO). The CHL is later
used for reverting ontology to a previous consistent
state and visualization of change effects on ontology.
The system is compared with ChangesTab of Protégé,
a comprehensive evaluation of the accuracy of roll-
back and roll-forward algorithm has been conducted
over Documentation ontology. The system is also
tested over a standard dataset of OMV and high
accuracy results are observed for both roll-back and
roll-forward algorithms.

1. Introduction

Ontologies are formal description of shared

conceptualization of a domain of discourse. Ontology
change management is the solution to the problem of
deciding the modifications to perform in ontology in

response to a certain need for change [1]. It also deals
with the implementation of these changes and the
management of their effects in depending data,
ontologies, services, applications, and agents.
Ontology evolution process deals with the growth of
the ontology in response to certain need for change or
the prospective under which the domain is viewed
has changed [2, 3].

Ontology change management is a complicated
and multifaceted task, which has led to the
emergence of several different, but closely related,
research areas. Ontology Integration, Merging,
Versioning, and Evolution, deal with different
aspects of this problem [1]. Changes do occur in
ontology and are reflected in the ontology by
implementing these changes. As a result it evolves to
a new state [4, 2]. Consequently, an ontology change
management solution has to answer a number of
questions [5]. First question is posed to the systems’
overall working, “how to maintain all the changes in
a consistent and coherent manner?” Other issues
revolve around the applications of all these logged
changes for the purpose of ontology recovery,
visualization of change effects and understanding for
the semantics of change.

The goal of this research article is to provide
preliminary experimental results for our semantic
structure and framework [5, 6] for temporal
traceability in ontology evolution management. We
developed Change History Ontology (CHO) [5] for
maintaining ontology changes semantically. We
envisioned a number of applications for the logged
changes such as, ontology change management,
change in semantics of the concepts, ontology
recovery in case the system crashes, query
reformulation, reconciliation of ontology mappings,
change traceability, and to some extent navigation

and visualization of the changes and change effects
[6].

We have implemented and build a framework as a
plug-in for Protégé (an ontology editor) as ‘Change
Tracer’. It automatically detects and logs all the
changes happened to ontology using CHO, triggered
by the change request from ontology engineer. After
that, whenever required, the CHL changes are
accessed. The plug-in roll-back and roll-forward any
changes and get the ontology in any previous
consistent state [6]. We have tested its working on
Documentation ontology and the experimental results
depict excellent performance of the system in terms
of roll-back and roll-forward of ontology changes.
We have also compared our system results for change
capturing with ChangesTab of protégé and our
system has outperformed ChangesTab. We have also
tested Change Tracer working over a standard
dataset OMV and results depicts excellent
performance of the system in terms of roll-back and
roll-forward of ontology changes.

This paper is arranged as follows: Section 2
discusses the related work. Section 3 is an
introduction to Change Tracer framework and CHO.
Section 4 comprises of the implementation and
results details, while comprehensive discussion on
system performance and accuracy is presented in
Section 5. Finally we conclude our findings in
Section 6 and talk about future directions.

2. Related Work

Change is the only constant. Changes in
ontologies are always expected to accommodate new
knowledge of the domain. These changes are mostly
due to the uncontrolled, decentralized, and complex
nature of the Semantic Web, which makes ontology
change management a complicated and multifaceted
task. As mentioned above, ontology evolves as
conceptualization of the domain changes. These
changes are very important so should be maintained
properly for future use.

Protégé provides change management facilities,
but all the changes plus the command history are
stored temporarily in a file as a script for undo/redo
operations [7]. When the project is closed then all
these changes and the command history entries are
lost.

Y. David Liang in [8] presented a concept of Log
Ontology. The author logged multiple ontology
changes in Log Ontology II. Then these logged
changes are used for the purpose of query
reformulation over the evolved ontology to answer

user queries transparently. CRM1 ontology is used for
system evaluation.

The system in [9] provides two basic facilities:
Change Tracer: Changes between two different
versions of an ontology are detected using
PromptDiff [10] and OntoView [11], and then logged
using their own format. Change History Manager: It
keeps user informed about logged changes and their
effects on the ontology. The ChangesTab [13] of
Protégé capture different changes but it does not
provide the facility for ontology recovery.

All the above systems provides the facility to log
the changes temporarily [7] and persistently [8, 9 and
13]. But none of these systems provides the facility
for proper undo/redo operations. They do not use the
log for ontology recovery, reverting ontology to
previous state, and visualization of changes and
change effects on ontology. Their log format is also
not appropriate for ontology recovery.

3. System Architecture

Here we briefly introduce the Change Tracer
architecture (see Figure 1), while detail description is
given in [6]. For proof of concept, we have developed
it as a plug-in for Protégé an ontology editor. It can
also be used in integration with other ontology
editing tools provided they support the hooks we
have implemented.

Change Listener: Change listener is a module that
actively listen all types of changes happening to
ontology model opened in protégé. Whenever a
change is triggered, it collects complete information
about the change.

For listening changes, we have implemented the
action listener interfaces provided in PROTÉGÉ and
PROTÉGÉ-OWL API’s (see Table 1). For every
change their respective listener interface action is
triggered and change listener capture information of
that change, available in event object of method
implemented in that interface.

Change Logger: In this module, all the changes,
captured in previous module, are logged using CHL
with conformance to CHO.

We claim that we handle all the changes at atomic
level; no matter it is atomic change (e.g. deleting a
single concept) or complex change (e.g. deleting a
sub tree). Atomic change is simple, let’s consider the
complex change. Consider the CHO given in Figure
2; if we delete Change_Agent class then it is a

1 http://cidoc.ics.forth.gr/index.html

Figure 1. System architecture for Change Tracer

complex change, because it will also result in
deletion of its subclasses. Protégé internally provide
us the facility that when such a deletion occur, then
first its leaf level classes are deleted one by one and
then classes a level above leaf level are deleted and
so on going to the top. So every deletion triggers its
own event, we capture these changes atomically and
then its information is logged.

When this module is activated then it first
initializes the ontology model from CHO and logs all
the changes in CHL using CHO representation.

Change History Log: To recover database from
failure, several different techniques [12] are used, to
name few: logging, checkpointing, shadowing, and
differential tables. Among these, logging technique is
most practical and most suited for recovery. We have
adopted the logging technique of database recovery
for ontology recovery. We log each and every single
event related to ontology change, which later on help
us in cases like abnormal shutdown, and closing

Table 1: List of Change Listeners Implemented in

the Change Tracer Plug-In.

Change Listener Description
ProjectListener It listens all the project related

events: like saving, closing, form
changed, and runtime class widget
created.

KnowledgeBaseListener Helps in listening changes related
to the model. It overlaps in its
provided methods with all the
listeners listed below.

ClsListener Helps in capturing the class, sub-
class, and super-class level
changes.

SlotListener Helps in capturing the slot, sub-
slot, and super-slot level changes.

FacetListener It helps in capturing the changes,
such as restrictions, on frames.

InstanceListener It helps in capturing changes
related instances and individuals.

model in Protégé without saving or discarding
changes, to undo/redo changes and get ontology to
some consistent state.

Change History Log [5] is a repository that keeps
track of all the changes made to ontology. It is also
required for reversibility purpose when an ontology
engineer want to roll-back or roll-forward some of
the changes then this log is accessed and changes are
simply reverted. The log uses Jena based triple store
and change description is provided by CHO [5] given
in Figure 2, to preserve changes for later use.

Parser: Parser job is to: 1) Parses CHL for all the
Change_Set(s) that corresponds to the open model in
Protégé on user request. 2) It also produce the reverse
changes of the stored ones, because, user might
require to recover pervious state of ontology, then all
the Range_Addition instances will be converted
Range_Deletion as shown in Figure 3. The sequence
of applying changes back is also in backward order,

Figure 2. Change History Ontology (CHO)

log:Range_Addition_Instance_1224702072640
a cho:Range_Addition ;
cho:hasChangedTarget doc:hasAuthor ;
cho:hasPropertyType owl:ObjectProperty ;
cho:hasRange doc:Author ;
cho:hasTimeStamp 1224702072640 ;
cho:isPartOf log:Change_Set_Instance_2474557 .

log:Range_Deletion_Instance_1224702072640
a cho:Range_Deletion ;
cho:hasChangedTarget doc:hasAuthor ;
cho:hasRange doc:Author ;
cho:hasPropertyType owl:ObjectProperty ;
cho:hasTimeStamp 1224702072640 ;
cho:isPartOf log:Change_Set_Instance_2474557 .

Figure 3: Using N3 notations, (A) shows the

change log entry for Range_Addition change,
while (B) shows the parsed listing of (A) for

reverting the change.

A

B

i.e. changes in a Change_Set applied at the end will
be reverted first, then second last changes and so on.
Then these reverse changes are given to the recovery
module which implements these changes.

Recovery: Recovery module is responsible for
implementing the applied changes on model opened
in Protégé, in forward and reverse manner, based on
user request.

When user request to undo/redo any changes or
request for recovering previous consistent state of
ontology, then this module is activated. For any of
the above requests, this module makes request to
parser module to retrieve the required Change_Set
entry and all its corresponding changes. Parser then
make reverse changes of all those. When parser
returns the reverse changes of the corresponding
logged Change_Set, then recovery module
implements it on the opened model. Algorithm 1 is
the roll-back algorithm to recover the model previous
state. To extract all the changes corresponding to a
specific Change_Set instance and their details, we
have tested SPARQL query given in Figure 4. It
provides all the changes and then these changes are
reverted one by one for roll-back and forward based
on user request.

Algorithm 1 rollBack (Process ChangeSet): This algorithm
assumes a pre-defined function, TimeIndexedSort for sorting
member entries of the ChangeSet based on their timestamp.
Input: An ontology O.
Input: An instance of ChangeSet, S∆ ∈ ChangeSet, which lists
changes made in the ontology O.
Output: The previous version O/ of the ontology O after reverting
the changes mentioned in S∆.
1. /* Sort member entries of the ChangeSet in descending order

of their timestamp */
2. TimeIndexedSort(S∆, ‘DESC’)
3. foreach C∆ ∈ S∆ do
4. /* Process class or role addition */
5. If C∆ : OntologyChange ⊓ ∃ changeType.Create then
6. /* Remove the added resource(s), target of the change */
7. O ← O – {x ∣ < C∆, x > changeTarget}
8. else
9. /* Process class or role deletion */
10. If C∆ : OntologyChange ⊓ ∃ changeType.Delete then
11. O ← O ⊓ {x ∣ < C∆, x > changeTarget}
12. else
13. /* Process class or role modification */
14. …………
15. /* Implementation of this algorithm consist of a number of

other if-then statements to check type and to process it
accordingly, such as for annotation */

16. endif
17. End

Algorithm 1, Roll-back ontology changes

Visualization: Visualization module is responsible
for visualizing the ontology, ontology changes, and
the change effects on ontology. The visualization is
in graph like structure rather than tree like structure,
because the ontology with class and subclass
hierarchy can also have associative relationships with
other classes.

Jobs of this module are: 1) A user can request for
visualization of the changes in CHL, then these
changes are simply parsed and passed to visualization
module by the parser without performing any revert
operations. On receipt, these changes are visualized.
2) The visualization module also visualizes the
current loaded model in Protégé to the user on
request. 3) If user wants to visualize the history of
ontology evolution process, then visualization
module will first request the recovery module to
revert the current state of ontology to its previous
state with the help of corresponding Change_Set
changes. The recovery module request parser to
extract the required Change_Set with complete
changes and produce its reverse changes. The result
of the parser is implemented by the recovery module,
which revert ontology to its previous state and return
that state to visualization module, which then
visualizes it. The same way if user keeps on
requesting, then the same steps are followed. If, at
some previous state of ontology, user wants to shift
to its next state, rather than previous, then the steps
will be same but the parser will not generate the
reverse changes, as by implementing the next logged
Change_Set changes will get ontology to next state.

4. Implementation and Results

We envisioned our proposed framework as an
enabling component for the ontology editors. In itself
it doesn’t provide ontology editing services. The
framework architecture is designed to be
implemented as a plug-in for different ontology
editors provided they support the hooks we have
implemented. Different individual components in the
framework have their own tasks, related to change
history management. Change Logger component, for
instance is responsible to preserve the changes and
the recovery component on top of all other
components should provide ontology recovery
services.

To validate the working of the proposed
framework, we have developed a TabWidget plug-in,
Change Tracer Tab, for Protégé ontology editor;
where detail procedure for plug-in development is
available in [14]. The details of all the five main
modules and their implementations are available in
[6]. Here we provide the evaluation details of the
system.

SELECT ?change ?changedTarget ?isSubClassOf ?isSubPtyOf ?hasPtyType ?oldName
 ?changedName ?hasDomain ?hasRange ?timeStamp
WHERE
{
 ?change docLog:isPartOf changeSetInstance .
OPTIONAL {?change docLog:hasChangedTarget ?changedTarget} .
OPTIONAL {?change docLog:isSubClassOf ?isSubClassOf} .
OPTIONAL {?change docLog:isSubPropertyOf ?isSubPtyOf} .
OPTIONAL {?change docLog:hasPropertyType ?hasPtyType} .
OPTIONAL {?change docLog:hasOldName ?oldName} .
OPTIONAL {?change docLog:hasChangedName ?changedName} .
OPTIONAL {?change docLog:hasDomain ?hasDomain} .
OPTIONAL {?change docLog:hasRange ?hasRange} .
 .
 .
 ?change docLog:hasTimeStamp ?timeStamp
}
 ORDER BY DESC(?timeStamp)

Figure 4, SPARQL query for extracting changes with their details for the given Change_Set instance

Figure 5, Comparison of Change Tracer against

Changes Tab of Protégé

For the development and testing of the plug-in,
Documentation ontology is used. First of all the
results of the plug-in for change capturing are
provided using the Documentation ontology. The
plug-in is also compared with ChangesTab of protégé
for its change capturing capability.

Change Capturing: There is no such system
available (that claim all the features our plug-in
provides) to compare the plug-in with. But a Protégé
plug-in (i.e. ChangesTab) is available that do provide
the change capturing facility.
To evaluate the change capturing capability of the
developed plug-in, we compared it with the
ChangesTab of Protégé. Both the plug-ins (i.e.

ChangesTab and Change Tracer) were enabled in
Protégé and changes were made to ontology
(Documentation Ontology) in Protégé. 35 different
changes were made to the Documentation ontology
covering all the four different categories (i.e. Change
in Hierarchy, Change in Class, Change in Property,
and Other Changes). Out of these 35 changes,
ChangesTab of Protégé was able to capture 26
changes while our plug-in i.e. Change Tracer
captured 31 changes. The graph representing these
results is given in Figure 5; where the y-axis
represents the number of changes captured and the x-
axis represents the number of changes made.

5. Discussions

The aim of this discussion is to validate whether

the proposed algorithm for ontology recovery is
correct and can scale up to complex ontologies.
Validation and verification of the outcome of the
recovery process is an essential and critical aspect.
There has to be a mechanism to prove the hypothesis
that the output ontology after applying the recovery
process on top of the Change History Ontology
(CHO) is correct. In order to quantitatively measure
the performance of the recovery algorithm, an
evaluation measure has been used which is discussed
below.

For the evaluation of the recovery procedure, we
have taken two different versions of ontology i.e. OV1
and OV2. Now the changes between the versions i.e.
C∆ are stored in Change History Log (CHL) using
CHO. After identifying and logging the changes
between the two versions, we come up with equation

Table 2. Roll Back and Roll Forward procedures results

Roll Back
 Tests Correct Results Problem(s) Accuracy
Initial Attempts: 12 5 Domain Addition,

DT Pr. Del. (Range)
41.67

1st Revision: 12 7 Inverse Property 58.34
2nd Revision: 12 12 Nil 100

Roll Forward
 Tests Correct Results Problem(s) Accuracy
Total Attempts: 12 12 Nil 100

for the verification of recovery procedure. As our
plug-in provides both Roll Back and Roll Forward
facilities, so we have separate equations for both of
these procedures verification.

Roll Back: To roll back the changes from OV2 to
OV1, we simply need to subtract all the changes i.e.
C∆ from the ontology which are the causes for its OV2
from OV1. Now this subtraction of the changes from
OV2 is all made using recovery (roll back) algorithm
we have proposed. The equation for verification is as
under;

OVx = OV2

 - C∆
 (1)

difference(OV1 , OVx) =

Now applying the recovery (roll back) process on
OV2, then it will return OV1. But we store the
recovered version in another temporary version OVx
and then checking this temporary recovered version
against the available version OV1. Here we differ OV1
from the recovered version i.e. OVx and if the
difference is null (empty) then it means that the
recovery process for roll back has given correct
result.

Roll Forward: To roll forward the ontology from
OV1 to OV2, we simply need to add/apply all the
changes i.e. C∆ to the ontology, which are the causes
for its OV2 from OV1. Now this addition of the
changes to OV1 is all made using recovery (roll
forward) algorithm we have proposed. The equation
for verification of roll forward algorithm is;

OVx = OV1

 + C∆
 (2)

difference(OV2 , OVx) =

Applying the recovery (roll forward) process on
OV1, it will return OV2. But here we also store the
recovered version in another temporary version OVx

and then checking this temporary recovered version
against the available original version OV2. Then we
differ OV2 from the recovered version i.e. OVx and if
the difference is null (empty) then it means that the
recovery process for roll forward has given correct
result.

For getting the difference between two ontology
models we have used the difference() method of
Model class from Jena API. We have also checked
both these in Protégé using PromptTab. Using the
Documentation ontology, we have tested the roll
back and roll forward algorithms and got very good
results. The details of those results are given in Table
2, while their descriptions are given below.

For Roll Back, we tested the plug-in for 12 times
and we obtained 5 correct results. The problems are;
(1) when a Domain_Addition entry is rolled backed
then it is reverted as Domain_Deletion. So the
algorithm actually has deleted the domain of some
property, but Protégé internally assigns owl:Thing as
domain to all those properties which do not have any
domain. (2) When datatype property is deleted then
range of that property was not captured properly.
Because of these two problems we had very low
accuracy level of our plug-in for roll back. We solved
these problems and then tested the plug-in for 12
more times and obtained 7 correct results. This time
we had only one problem i.e. when a property is
made as inverse property then information about the
other property to which this property is made inverse
to, is missing. We corrected all these problems and
conducted 12 more experiments. This time we got 12
correct results and have no problems.

Roll Forward has been implemented after we have
completed the implementation of Roll Back and
removed all the problems which we faced during roll
back. That’s why, out of 12 roll forward experiments,
we obtained 12 correct results with 100% accuracy.

The changes capturing ability of the developed
plug-in has been compared with the ChangesTab of

Table 3, Number and types of changes among
different versions of OMV ontology

Ontology

Versions

OMV.owl
&

OMV-0.7.owl

OMV-0.7.owl
&

OMV-0.91.owl

Total Changes 38 189

Change in

Hierarchy

18 71

Change in

Classes

6 34

Change in

Properties

25 123

Protégé and the results show that the plug-in have
better accuracy than the ChangesTab. The recovery
algorithms (i.e. Roll Back and Roll Forward) are
tested on Documentation ontology and results of high
accuracy are achieved.

Evaluation Using OMV: OMV is Ontology
Metadata Vocabulary and is used by the community
for better understanding of the ontologies for the
purpose to properly share and exchange the
information among organizations.

To achieve this goal, this standard is set and
agreed by the community for sharing and reuse of
ontologies. OMV actually provides common set of
terms and definitions describing ontologies, so called
ontology metadata vocabulary. OMV have different
versions available online containing different set of
concepts, properties, and restrictions. We have tested
our developed plug-in on three different versions of
OMV. The OMV2 versions we have used for the
experimentation are omv-0.6.owl, omv-0.7.owl, and
omv-0.91.owl.

Table 3 shows complete details about the types
and number of changes among different versions.
These changes are captured and stored in CHL with
the help of Change Tracer. Using these logged
changes we applied the roll back and forward
procedure given in equations 1 and 2, which resulted
in recovered versions. We have checked all the
recovered versions with the original version and they
all were correct.

6. Conclusions and Future Work

Ontology change management is relatively new
area of research. Most of the existing research work

2 http://ontoware.org/frs/?group_id=39

is based on the ideas from other related fields such as
database recovery, ontology merging, and
integration.

In this paper we have shown the experimental
results for the system and the semantic structure for
logging ontology changes. As clear from all the
discussion above that the backbone of the system is
the Change History Ontology, which acts as a glue to
bind different components in the framework. The
changes logged in Change History Log guarantee
effective recovery (roll back and roll forward).

The framework for traceability of ontology
changes is validated by developing and implementing
a plug-in for the Protégé editor. We are planning to
extend the framework by using Change History Log
to understand the semantic of different changes on
the existing constructs in ontology. Reestablishment
of ontology mappings based on the stored changes is
also in pipeline.

7. Acknowledgment

This research was supported by the MKE

(Ministry of Knowledge Economy), Korea, under the
ITRC (Information Technology Research Center)
support program supervised by the IITA (Institute of
Information Technology Advancement)" (IITA-2009-
(C1090-0902-0002)) and was supported by the IT
R&D program of MKE/KEIT, [10032105,
Development of Realistic Multiverse Game Engine
Technology].

This work also was supported by the Brain Korea
21 projects and Korea Science & Engineering
Foundation (KOSEF) grant funded by the Korea
government(MOST) (No. 2008-1342).

8. References

[1] G. Flouris, D. Plexousakis, and G. Antoniou, “A
Classification of Ontology Changes”, In the Poster Session
of Semantic Web Applications and Perspectives (SWAP),
3rd Italian Semantic Web Workshop, PISA, Italy, 2006.
[2] L. Stojanovic, A. Madche, B. Motik, and N. Stojanovic,
“User-driven ontology evolution management,” In
European Conference on Knowledge Engineering and
Management (EKAW), pp. 285-300, 2002.
[3] M. Klein and N. F. Noy, “A component-based
framework for ontology evolution”, In Proceedings of the
(IJCAI-03) Workshop on Ontologies and Distributed
Systems, CEUR-WS, vol. 71, 2003.
[4] S. Castano, A. Ferrara, G. Hess, “Discovery-Driven
Ontology Evolution”. The Semantic Web Applications and
Perspectives (SWAP), 3rd Italian Semantic Web
Workshop, PISA, Italy, 18-20 December, 2006.
[5] A. M. Khattak, K. Latif, S. Khan, N. Ahmed,
"Managing Change History in Web Ontologies,"
Semantics, Knowledge and Grid, International Conference

on, pp. 347-350, 2008 Fourth International Conference on
Semantics, Knowledge and Grid, 2008.
[6] A. M. Khattak, K. Latif, S. Khan, and N. Ahmed,
"Ontology Recovery and Visualization," Next Generation
Web Services Practices, International Conference on, pp.
90-96, 2008 4th International Conference on Next
Generation Web Services Practices, 2008.
[7] Y. D. Liang, H. Alani, and N. Shabdolt. “Ontology
Change Management in Protégé”. In: AKT DTA
Colloquium, Milton Keynes, United Kingdom. 2005.
[8] Y. D. Liang, “Enabling Active Ontology Change
Management within Semantic Web-based Applications”.
Mini PhD Thesis, University of Southampton, 2006.
[9] D. Rogozan, and G. Paquette. “Managing Ontology
Changes on the Semantic Web”. IEEE/WIC/ACM
International Conference on Web Intelligence. 2005.
[10] N. Noy, S. Kunnatur, M. Klein and M. Musen,
"Tracking changes during ontology evolution", 3rd
International Semantic Web Conference, Florida, USA, pp.
259-273, 2003.
[11] M. Klein, A. Kiryakov, D. Ognyanov and D. Fensel,
"Finding and characterizing changes in ontologies", 21st
International Conference on Conceptual Modeling,
International Conference on Conceptual Modeling,
Tampere, Finland, pp. 79-89, 2002.
[12] R. Elmasri, and S. B. Navathe, “Fundamentals of
Database Systems (4th Edition)”, Publisher: Addison
Wesley, 2003.
[13] W. Liu, T. Tudorache and T. Redmond, “Changes Tab
in Protégé”,
http://protegewiki.stanford.edu/index.php/Changes_Tab
[14] M. Musen, N. Noy and Team, “Protégé Developer
Documentation”, http://protege.stanford.edu/doc/dev.html

