
Design and Implementation of a Scalable Collaborative System
for Industrial Design

Jinmo Yang, Sungyoung Lee and Byeong-Soo Jeong

School of Information and Electronics , Kyung Hee University

449-701 Seo Cheon Ri 1, Ki Heung Eup, Young In Si, Kyung Ki Do, Korea

(isoli@oslab.kyunghee.ac.kr, sylee@oslab.kyunghee.ac.kr, jeong@nms.kyunghee.ac.kr)

 �

Abstract

This paper describes our experience with the design and implementation of a collaborative system framework that aims
at developing specific applications such as 3D animation, computer game, and industrial design. The proposed
collaborative system enables users, who may be far removed from each other geographically, to do collaborative work
in a single virtual space. The system basically adopts client/server architecture, in order to develop a platform
independent, scalable and easily portable collaborative system framework. In order to achieve this goal, the server was
implemented on Java platform and it adopts a hybrid architecture in order to take advantage of both centralized and
distributed architecture. Thus, the system is functionally divided into several modules, such as User Manager Server
(UMS), Session Manager Server (SMS), and Information Server (IS). The role of UMS is to manage the information
about users who participate in collaborative work, SMS is to support the conferences in the system, and IS is to provide
the means of connection among the UMSs. For the user's convenience, the client was implemented on Visual C++ in
Windows environments. It also supports several collaborative tools, such as 3D Studio Max which is extended to work
for distributed environments, chatting, and white board features.

1. Introduction
With the improvement of Internet, multimedia, virtual

reality, and high speed processor technology, systems

which can provide a collaborative working environment

in virtual shared space are being made available.

Collaborative systems have the potential to improve

productivity where groups of users work together, such

as industrial design, 3D animation, team diagnosis, and

teleconferencing. However, since in such applications,

several groups of geographically dispersed people may

jointly work on multiple shared data artifacts, building

collaborative applications is fraught with difficulties. The

collaborative system developers should be concerned

with technical issues such as synchronization,

concurrency, communications, registration and more [11].

 Even though each collaborative application reveals

its own specific requirements, most collaborative

* This work was supported by Core S/W Technology Development

Program (#NS-01-08-A-24) sponsored by Ministry of Science and

Technology in Korea.

applications commonly require several functionalities [5].

First, for better coordination among users, there should

be mechanisms so that users are generally aware of what

other participants are doing. Second, a concurrency

control mechanism should be provided for keeping the

shared data consistent even though users may attempt to

make simultaneous, conflicting changes. Third, because

of the interactive nature of a collaborative application, it

should ensure interactive response time to users’ actions

while maintaining shared data consistency. Fourth, since

the number of users in a collaborative work environment

tends to increase, it should provide scalable server

performance without regard to the number of clients.

Last, it should provide an efficient mechanism to store

shared data persistently since collaborative work tends to

be accomplished over a long period.

 Collaborative system architectures that are

currently being implemented are generally classified into

the three categories of centralized, distributed, and

hybrid [3]. Centralized architecture gives the advantage

that shared data can be easily maintained and overall

implementation is somewhat easy compared to other

approaches. But there is the possibility of server

bottleneck. Again, distributed architecture can eliminate

sever bottleneck by distributing workloads, but

maintaining shared data consistency in distributed

architecture is very difficult. The hybrid approach

intends to take advantage of both approaches. It

replicates shared data objects in distributed architecture,

but meta data information about shared data objects is

managed in a centralized manner.

 In this paper, we present our experience of

designing and implementing a collaborative system

intended to support industrial design (including 3D

design) processes. Our design goal is to provide

platform-independent, highly scalable, and easily

portable framework for collaborative applications. Our

system adopts a hybrid model that is a compromise

between centralized and distributed alternatives. Overall

system implementation represents client-server

architecture and the server part is functionally divided

into several modules in order to extend easily with

workload increase. The server part consists of three

modules: the User Manager Server is responsible for

preprocessing of collaborative work, such as user

connections, message communication, and event

management; the Session Manager Server deals with

project schedule management and session management;

and the Information Manager Server provides

information exchange between User Manager Servers.

The client part mainly handles user interaction and is

implemented by Visual C++ in Windows environments

while focusing on user friendliness. As collaborative

application tool, we implement chatting and white boards.

We also extend 3D Studio Max to distributed

environments by using a plug-in mechanism.

 The rest of the paper is organized as follows. In

section 2, we briefly summarize previous work on

collaborative system implementation. Section 3 and 4

describe the implementation details of our system,

Collaborative System Server and Client parts

respectively. Section 5 introduces experimental results to

evaluate server performance. Finally, section 6 presents

some concluding remarks and directions for future work.

2. Related Work
Collaborative applications can be classified according to

the patterns of collaboration and the degree of

geographical distribution between collaborating users as

in Figure 1. First of all, by way of interaction in

collaborative groups, systems are divided into

Synchronous and Asynchronous. Synchronous

collaborative applications, such as teleconferencing,

require that each participant’s activity should be

synchronized in a real time domain. Asynchronous

collaborative applications, such as E-mail, can be

accomplished without synchronization. According to the

geographical dispersion of collaborative users,

collaborative systems are classified into Co-located and

Remote.

j�T s������ y�����

h� ���

z ���

j�T h��������

��� h������������

t������ y����

t������

z �����

j�����������

z �����

t���������

j�����������

y���T {���

j�����������

ss��������������

pp ��
��
��
��
�
�

�
�
��
�� ��

��

t������ y���

j�����������

j�T h��������

t������ z �����
Figure 1. Classification of Collaborative Systems

Many experimental implementations for

collaborative applications have been done during the last

few years. Some representative examples are Habanero

[3], GroupKit [12], and EGRET [7] which have

influenced our system design to some degree. Habenero

is a collaborative system framework implemented by

Java. It provides an environment where Java objects can

be shared through the Internet and also provides API for

collaborative application development. By using Java,

Habanero makes it possible to develop platform

independent collaborative applications easily. However,

it has the deficiency that existing PC application

software cannot be easily integrated.

GroupKit is a groupware toolkit for building real-

time conferencing applications developed at the U. of

Calgary. Its run time architecture reveals replicated

forms across a number of machines as in Figure 2. The

session manager and conference process are replicated

processes, one per each participant. The session manager

provides both a user interface and a policy dictating how

Regis trar

Sess ion
Manager

Conference
B

Conference
A

Sess ion
Manager

Conference
B

Conference
A

h I~���T r���I ~����������

n�����N� ~���������� t�� N� ~����������
Figure 2. GroupKit’s Run Time Architecture

conferences are created or deleted.

The registrar is a centralized process that acts as a

connection point for a community of conference users. It

provides the current state information for conferences to

collaborating users by maintaining a list of all

conferences and their users. The major contribution of

GroupKit implementation is that it formalizes the design

and implementation of general groupware conferencing

toolkits and provides a basis for generalizing existing

application or toolkit features.

EGRET is a collaborative system framework for

exploratory collaboration that was developed at the U. of

Hawaii. In order to provide exploratory services in a

responsive interactive environment, EGRET implements

a dynamically extendable framework that consists of

Multi-Server, Multi-Client, and Multi-Agent. As for

database management, it uses client-server database

architecture. To reduce server workloads, it tries to

distribute data processing workloads to clients if possible.

Local Gtable
Data S tructure

j����� w������

Gtable
Node

k������� w������

Local Gtable
Data S tructure

j����� w������

j�����T ���������

n{���� �������

z�����T ���������

n����� l����

z�����T ���������

n����� l����

Figure 3. EGRET’s Gtable Architecture

As for shared data management, it uses a hypertext

mechanism where data is accessed by predefined links

and also it defines the Gtable structure in order to

efficiently process hypertext data.

3. Collaborative System Server
Generally, collaborative systems are comprised of two

parts, a server part that deals with session management

for collaboration and a client part that actually performs

collaboration work by connecting the server. Our

collaborative system is also implemented by separating it

into two parts. In this section, we describe the

implementation details of the server part.

3.1 Server Model
As previously mentioned, our collaborative system

consists of server part and client part. Our collaborating

server is functionally divided into independent sub

servers, such as Information Server (IS), User Manager

Server (UMS), and Session Manager Server (SMS). Such

server architecture aims for scalable system architecture.

{���{�����

Event Manager

Connect
Manager

Session
Manager

C lient
Socket

C lient
Socket

|�|����� tt������������

zz����������

Event
Manager

Connect
 Manager

Session
List

Session
Event Manager

W hiteboard
Tool

Chat Tool

3DSM Tool

Access Contro l
Manager

C lient
Socket

C lient
Socket

zz������������

zz���������� t������ t��������

zz����������

Shared
O bjec t

S torage

Session DB

IS
Manager

Event Manager
Connect
Manager

User
Manager

Search
Manager pp�������������������� z�z���������

User

Search
Manager

Message
Manager

l���� m���

w������

Figure 4. Collaborative System Server Architecture

Figure 4 shows this server architecture. UMS provides

several services that are needed before performing actual

collaboration work, such as user connection, processing

requests for session creation, and message exchange.

SMS deals with managing collaborative work schedules

and sessions that are currently activating. It also provides

event handling services that are needed for shared date

management. IS is provided for system scalability. As

system load increases, UMS and SMS can be multiply

configured as in Figure 5. IS supports information

exchange between UMSs.

As you may see in Figure 4, UMS handles all kinds

of communication between server part and client part.

After receiving service requests from users, it checks the

user’s authentication and provides a session by

contacting SMS. SMS not only provides session service

to users via UMS but also controls consistency of shared

data by using an optimistic locking method. For system

scalability, each server module can be replicated and run

on different machines as in Figure 5. Server modules are

implemented by using platform independent Java (JDK

1.2.1) and carefully packaged for easy maintenance.

The infrastructure of collaborative server part is

comprised of a communication module and event

handling module. A communication module supports

interconnection between server part and client part by

way of an event processing module. Service requests

from each client are transferred by the form of event.

Such events are passed and processed on each event

handling routine according to event type.

Communication modules are implemented by using TCP

sockets and Java RMI. For extendibility and processing

efficiency, we have devised our own event management

structure and define a packet type that will be explained

in the next section.

IS

SM S

SM S

UM S UM S

SM S

SM S SM S SM S

UM S

Figure 5. Extended Collaborative System Architecture

3.2 Event Processing Model
Event processing modules are responsible for handling

all kinds of events that occur from a client part or within

a server part. An event processing structure is designed

for effectively supporting the interactive response

requirements of collaborative systems. For fast response,

non-conflicting events are processed in parallel. This

also makes it possible for newly defined events to be

easily added for other collaborative applications. Such an

event processing structure is a main body of our

collaborative system and commonly used over UMS,

SMS, and IS. An event processing structure consists of

CEvent Class that defines event type, Event Thread Class

that actually processes events, and Event Monitor that

implements a priority based event queue.

l���� {�����

Event
Generator

Event
Generator

l����

l����t������

l������

l����

w���������

l����t������

y��������

Figure 6. Event Processing Model

 In order to reduce resource usage, Event Thread

enters a sleep state when the event queue (Event

Monitor) is empty. For the purpose of processing

multiple Event Threads simultaneously, Event Generator

can be an Event Thread. That is, Event Thread can

propagate events to other Event Threads by Event

Monitor Reference. As in Figure 7, one Event Thread

can refer to multiple Event Monitors and provides an

event dispatch function to Event Monitors of Event

Threads that process different events so that non-

conflicting multiple events can be executed in parallel.

l���� {�����

l���� t������

l���� {�����

l���� t������

l���� {�����

l���� t������

l���� {�����

l���� t������

l���� {�����

l���� t������

l����

l����

l����

l����

l����

n��������

l����

n��������

l����

n��������

l����

n��������

Figure 7. Extended Event Processing Model

R-DBMS

Collaborative Application

VIrtual Space V iewer

Com m unication Manager

Session Manager User Manager

Session V iewer User V iewer

Chatting W hiteboard 3D S tudio M ax

Session

C
o

m
m

u
n

ic
a

tio
n

 M
a

n

Shared Object
Manager

|���

z�����

v�����

|��� t������ z�����

z
�
�
�
��

�
t

�
�
�
�
�
�
z
�
�
�
�
�

Figure 8. Collaborative System Client

4. Collaborative System Client
While contacting the server for project schedule

information and current status of collaborative work, the

client system supports collaborative design processes

where multiple participants are working together. For

this purpose, client system is divided into two stages,

preparing stage modules for collaborative work and

collaborating stage modules as in Figure 8. In the

preparing stage, client modules provide current status

information of collaborative work to users by

communicating with USM in the server part. Such

information is transmitted through the Communication

Manager, processed by the Session Manager and User

Manager, and finally shown to users via user interface.

The User Manager provides information about the

connection status of other users and handles message

transfer services between collaborating users. The

Session Manager provides the information about current

collaborating work status and handles session services,

such as session creation and session join. The Virtual

Space Viewer is a user interface module that outputs user

information and session information.

 The Collaborating stage covers the performance of

actual collaborating work after a joining session by

connecting with SMS while updating sharing data

objects with other collaborating users. For joining

session, user authentication is needed from the User

Manager Server and a session module handles session

join after receiving the required information from SMS.

Collaborative Application modules provide user interface

for collaborative application programs. Current

applications include Chatting, Whiteboard, and 3D

Studio Max.

5. Conclusion
This paper describes our experience with the design and

implementation of a scalable collaborative system

framework that aims at developing collaborative

applications for industrial design. The overall system

architecture adopts basically client/server architecture

and the server part is functionally divided into several

modules, such as UMS, SMS, IS, and communication

modules for the purpose of extendibility and scalability.

We evaluate server performance by experimenting with a

collaborating work environment while varying system

workloads, including the number of users and the event

frequency. Experimental results show that our multiple

sever approach can be well scaled with the increase of

system workloads and easily extended to integrate other

collaborative applications.

 For future work, we are planning to further

investigate issues concerning data consistency and

system performance. As for data consistency in shared

data management, we need to consider different levels of

granularity depending on application characteristics. As

for system performance, we need to devise a mechanism

so that system workloads can be well balanced among

multiple servers by monitoring their workloads.

Reference
[1] S. Bhola, G. Banavar, and M. Ahamad,

“Responsiveness and consistency tradeoffs in

interactive groupware”, In Proceedings of 7th ACM

Conference on Computer Supported Cooperative

Work, November 1998.

[2] S. Bhola, B. Mukherjee, S. Doddapaneni, and M.

Ahamad, “Flexible Batching and Consistency

Mechanisms Building Interactive Groupware

Applications”, In Proceedings of the 18th ICDCS,

1998.

[3] Annie Chabert, Ed Grossman Larry Jackson, and

Stephen Pietrovicz, “NCSA Habanero: Synchronous

Collaborative Framework and Environment”, 1998

[4] P. Dewan and R. Choudhary, “A Flexible and High-

Level Framework for Implementing Multi-User User

Interfaces”, In ACM Transactions on Information

Systems, vol. 10, no. 4, pp. 345-380, Oct. 1992

[5] S. Greenberg and D. Marwood, “Real Time

Groupware as a Distributed System: Concurrency

Control and its Effect on the Interface”, In

Proceedings of the ACM Conference on Computer

Supported Cooperative Work, pp. 207-217, Chapel

Hill, North Carolina, October 22-26, 1994, ACM

Press.

[6] J.H. Lee, A. Prakash, T. Jaeger, and G. Wu,

“Supporting multi-user, multi-applet workspaces in

CBE”, In Proceedings of the ACM Conference on

Computer-Supported Cooperative Work (CSCW'96),

pp. 344-353, 1996

[7] Philip M. Johnson, “Experiences with EGRET: An

exploratory group work environment. Collaborative

Computing”, January 1994

[8] J. Munson and P. Dewan. "A Concurrency control

Framework for Collaborative System", In

Proceedings of the 6th ACM Conference on

Computer Supported Cooperative Work, 1996.

[9] M. T. Ozsu and P. Valduriez, “Principles of

Distributed Database Systems”, Prentice-Hall, pp.

327-329, 1998.

[10] A. Prakash and H.S. Shim, “DistView: Support for

Building Efficient Collaborative Applications using

Replicated Objects”, In Proceedings of CSCW '94,

ACM Press, New York, pp. 153-64, 1994.

[11] Tom Rodden, “A Survey of CSCW Systems”,

Interacting with computers, vol. 3 no. 3, pp. 319-352,

1991.

[12] M. Roseman and S. Greenberg, “Building Real

Time Groupware with GroupKit: A Groupware

Toolkit”, In ACM Transaction On Computer Human

Interaction, vol. 3, no. 1, March 1996

[13] G. Smith and T. Rodden, “SOL: A Shared Object

Toolkit for Cooperating Interfaces”, Technical Report

CSEG/7/1995, Lancaster University, 1995.

