DTD20WL: Automatic Transforming XML Documents into
OWL Ontology

Pham Thi Thu Thuy
Ubiquitous Computing Lab
KyungHee University
Yongin, Korea
+82-31-201-2493

tttpham@oslab.khu.ac.kr

ABSTRACT

DTD and its instance have been considered the standard for data
representation and information exchange format on the current
web. However, when coming to the next generation of web, the
Semantic Web, the drawbacks of XML and its schema are
appeared. They mainly focus on the structure level and lack
support for data representation. Meanwhile, some Semantic Web
applications such as intelligent information services and semantic
search engines require not only the syntactic format of the data,
but also the semantic content. These requirements are supported
by the Web Ontology Language (OWL), which is one of the
recent W3C recommendation. But nowadays the amount of data
presented in OWL is small in compare with XML data. Therefore,
finding a way to utilize the available XML documents for the
Semantic Web is a current challenge research. In this work we
present an effective solution for transforming XML document into
OWL domain knowledge. While keeping the origina structure,
our work also adds more semantics for the XML document.
Moreover, whole of the transformation processes are done
automatically without any outside intervention. Further, unlike
previous approaches which focus on the schema level, we aso
extend our methodology for the data level by transforming
specific XML instances into OWL individuals. The results in
existing OWL syntaxes help them to be loaded immediately by the
Semantic Web applications.

Categories and Subject Descriptors

D.2.12 [Software Engineering]: Interoperability Data
mapping. F.3.2 [Logics and meanings of programs]: Semantics
of programming languages — Process models, Program analysics.

General Terms
Languages, Algorithms, Experimentation.

Keywords
OWL, DTD, XML, transformation, semantics.

"Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or afee.

ICIS 2009, November 24-26, 2009 Seoul, Korea
Copyright © 2009 ACM 978-1-60558-710-3/09/11... $10.00"

Young-Koo Lee
Ubiquitous Computing Lab
KyungHee University
Yongin, Korea
+82-31-201-3732

yklee@khu.ac.kr

125

SungYoung Lee
Ubiquitous Computing Lab
KyungHee University
Yongin, Korea
+82-31-201-2514

sylee@oslab.khu.ac.kr

1. INTRODUCTION

In the recent years, XML (eXtensible Markup Language) has
reached a wide acceptance as the relevant standardization for
storing and exchanging data on the Web. When two participants
agree on the XML data format, they begin to transfer and receive
data from each others. To support for this trading, XML
documents are often built based on their given schemas, which are
expressed in DTD (Document Type Definition) or XML Schema.
Actually, a DTD or XML Schema contains the knowledge of a
structure, data type and relationship among elements in XML
documents. In comparing to XML Schema, DTD is the earlier
schema language for XML. It is more compact and higher
readable than XML Schema [1]. Our method targets on DTD,
utilizes its declarations to produce suitable mapping rules. Before
deepening the mapping and transforming processes, let review the
advantages as well as drawbacks of XML data and the reasons
why it is necessary to convert XML data.

The first advantage of XML is its language representation. It uses
human language (not computer), thus its language is readable and
easy to understand. Second, its language is compatible with
common programming languages such as Java, C++, therefore any
application that can process XML can retrieve XML information.
Third benefit is its flexibility. It alows anyone to describe any
content easily by creating their own tags. However, this freedom
can cause lack of understanding between a document’ s author and
its consumer. Since an object can be expressed by different
vocabularies, it is hard for computer to recognize and differentiate
their meaning. For instance, “author” can be described as
“creator”, ‘“inventor”, etc. according to users opinions.
Furthermore, XML exposes disadvantages when coming to the
semantic interoperability. XML mainly focuses on the grammar
but there is no way to describe the semantics of a document [2].
Therefore, problem happens when software agents would like to
understand and reason about these XML data.

To solve this problem, transforming XML documents into domain
knowledge such as OWL is received high interest. Since a DTD
document can be developed to a lot of XML documents, it is
necessary to map DTD to OWL model to create a genera
structure for resulted ontology. Thus many approaches have been
produced to solve schema mapping problem. However, most of
them are replied on extending OWL syntaxes, even they produce a
set of rules for each schema element. There are also few studies
target on conversing XML Schema to existing OWL ontology.
However, most approaches stop at schema mapping step, very few
of them perform the transformation of XML instances into OWL
individuals.

In this paper, we provide not only the DTD mapping process but
also the XML document transformation. Compared to related
approaches, our DTD mapping process is the new methodology
supporting for conversing schema automatically. Moreover, we
extends our procedure to transform XML instances into OWL
individuals which clearly supports the solution for duplicated
data. Our approach results in the existing OWL vocabularies,
hence it is easily loaded by Semantic Web applications, and we
can save avast amount of memory in programming.

The next of the paper is organized as follows. In section 2, we
overview some requirements of transformation and previous
approaches for schema mapping and transforming XML data into
OWL ontology, and then we analyze strengths as well as
wesknesses of them. Section 3 describes our transformation
framework, the mapping notations from DTD to OWL ontology,
together with the detail descriptions of transformation XML
documents into OWL file and illustrated examples. Section 4
gives experiment and discussion. Finally section 5 concludes and
mentions about future directions of this research.

2. TRANSFORMATION REQUIREMENTS
AND RELATED WORK
2.1 Transformation requirements

All XML transformations into OWL ontology should be satisfied
the following demands:

1) Data integrity: The transformation output should
adequately describe the original data.
2) Semantics integrity: In some circumstances, the

transformation output (ontology) does not really convey the
sense of information that described in an XML document.
Therefore, the quality of the transformation should be
analyzed.

Maintaining original structures: Besides the mapping of
elements and attributes, the procedure should support the
relationship mapping of these nodes.

Data-type mappings: An attribute should be mapped
together with its data type.

Use existing OWL syntaxes: In some previous proposals,
the ontology outputs are in strange or in extended ontology
language so that they cannot be loaded directly by other
Semantic Web applications or ontology editors. In this case,
the transformation suffers from the applicability problem.
Therefore, adding more semantics for original data by using
existing destination ontology syntaxesis our target.
Automatic transformation: The process should be done
automatically without any interference. Procedure satisfied
this requirement can be used to transform arbitrary XML
documents.

Our approach tries to meet these requirements during the mapping
and the transforming data into OWL individual steps. By replying
on the DTD descriptions, our method maintains the structure as
well as the meaning of XML data. Moreover, we provide more
semantics for XML instances via adding more definitions for
elements and their relationships in OWL ontology by using
existing OWL vocabularies. Therefore our results can be utilized
immediately without any modification. On the other hand, with
the automatic mechanism, our procedure can be applied to convert
arbitrary XML data.

3

4)

5)

6)

126

2.2 Related Work

Several approaches related to schema mapping and XML
transforming have been proposed. The majority of these proposals
concentrate on matching XML Schema or defining mapping rules
from DTD but lack support for XML data transforming. In this
section, we summarize these approaches as well as analyze their
strength and weakness. Based on such examining, we propose a
more comprehensive and efficient solution for DTD mapping and
automatic XML transforming.

One of typical approaches which aims a OWL ontology is
proposed by Ferdinand et al.[3]. These authors describe mappings
from XML to RDF aswell asfrom XML Schemato OWL, but the
mapping results are independent of each other. The OWL
instances may not suit the OWL model, because elementsin XML
documents are mapped to different OWL domain knowledge
depending users opinion. Moreover, this approach does not
tackle the question how to create the OWL model, if no XML
Schemaisavailable.

Other complete approaches on transforming XML Schema to
OWL ontology are [4, 6, 11, 13]. Their transformations are
developed in XSLT by automatically mapping each definition in
XML Schema to corresponding OWL domain knowledge. They
have more advantages than [4], because if there is no XML
Schema available, their procedures are still able to generate an
OWL ontology. However, they aso stop a describing the
mapping notations from XML Schema to OWL ontology and do
not execute the transforming from XML instances into OWL
individuals. Therefore, they do not recognize the problems
happened when transforming XML data, such as, the next element
in XML documents is the same with the previous one, or the
values of the next element are same with the current one.

Also focusing on OWL target, but authors of [5, 7, 10, 12] intend
to define a set of mapping rules from each schema to OWL
ontology. These methods add more semantics for existing XML
Schema but these rules are too complicated. They are produced by
authors. Therefore, this set of rules may be different to each other
even though they describe for a same schema. Moreover, it is
impractical to define a set of mapping rules for each schema
available on the internet, especially when it has large size.

In our previous work [8, 9], we concentrate on transforming XML
document into RDF based on mapping DTD and XML Schemato
RDF Schema. However, we extract classes and subclasses from
the given schema based on the definitions and our adjustments.
Therefore, human intervention is required during the first
mapping step. On the contrary, our current approach considers
subclasses as object properties of their parent class and executes
the mapping and transforming steps automatically.

Generally, existing schema mappings and XML transforming
solutions dtill expose severa limitations. Most of them try to
narrow the gap between the XML Schema and OWL but do not
solve the problems when same elements in an XML document
appear. For these problems, it is essentially to propose a solution
that solves more comprehensively and effectively schema
mapping and XML transforming. In this paper, we design such a
solution to map DTD to OWL domain knowledge and
automatically transforming XML documents into existing OWL
ontology which can be loaded immediately by OWL editors and
other Semantic Web applications.

3. MAPPING AND XML TRANSFORMING
3.1 DTD20WL Framework

The genera architecture of DTD20OWL is shown in Figure 1. First
consideration of this architecture is XML document. If it does not
go with aschema, in thiscaseis DTD schema, we generate aDTD
corresponding to this XML document by using the available tool
recommended by HiTSoftware on the internet™.

When having DTD as an input, a mapping process executes the
converting al of DTD components to OWL ontology which
captures the semantics and maintains the structure, element’s
names and data types of DTD. Moreover, the OWL ontology
enriches the DTD by adding definitions to describe the meaning
and relationship between elements in DTD. During this stage, our
mapping mechanism aso checks and solves the problem whether
the next element has the same name with the previous one, if it
does, these elements are renamed.

Schema level

Schema transforming

DTD2OWL
ontology

Semantic level

OowL
ontology
S

_Generate DTD if
't available

itis

XML
instances

Source

owL
instances

Data transforming Target

Fig. 1. XML Transforming framework into OWL data

Once these mappings are created, DTD20OWL system moves to
the next step. The input of this step is an XML document together
with an OWL ontology. Our procedure traverses from the root
element in the XML document and ends when it meets a close-tag
of the root element. If an element in XML data is matched with a
node in OWL ontology, DTD20OWL system will execute the XML
transformation instructions and generate an OWL document
corresponding to XML data.

The details of mapping and transforming steps are presented in
following sections.

3.2 Mapping DTD to OWL Ontology

In this section, we present a set of notations for the direct
mapping of the DTD constructs to existing OWL concepts. Our
mapping approach tends to convert every DTD nodes and
attributes to a class or object property in the target ontology. The
result of this mapping is an OWL ontology that maintains the
structure and captures the semantics of the DTD constructs. The
operation of DTD mapping is presented as following:

Root element. Element defined by <!DOCTYPE> in DTD is
mapped to the root-class of OWL ontology, which isthefirst class
declared by owl : cl ass.

Classes (ow : cl ass). For element definition <!ELEMENT
element-name (element-content)>, if the element-content contains

L http://www.hitsw.com/xml_utilites/

127

sequences of children, our procedure considers this element as
OWL class, because it has common feature with OWL class in
representing a set of individuals with the same chracteristics. Each
ow : cl ass isrepresented by a unique identifier, r df : | D, and
digoints with other classes. As an example, consider the complex
classin Fig.2, it is mapped to a class shown in Fig.3.

<! DOCTYPE
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT

cat al og[

catal og (product) >
product (catalog_item-) >
catal og_item (item nunber,
size (color_swatch+) >
col or_swatch (#PCDATA) >
<! ATTLI ST color_swatch imge (black_cardigan.jpg |
bur gundy_car di gan. j pg | navy_car di gan. j pg |
red_cardigan.jpg) #REQU RED > ...

price, size+) >

Fig. 2. Definition of complex classesin DTD

In Fig.2, the symbol “+" &fter “catalog_item” means that this
element appears one or more times inside the class “product”. It
happens similar to the class “size” and “ color_swatch”.

<owl : Cl ass rdf:1D="catal og">
<ow : di sjointWth>
<ow : Cl ass rdf: | D="product"/>
</ ow : di sjoint Wth>
<ow : disjointWth>
<ow : Cl ass rdf:1D="col or_swatch"/>
</ ow : di sjoi nt Wth>
<ow : di sjointWth>
<ow : Class rdf:ID="size"/>
</ ow : di sjoint Wth>
<ow : di sjointWth>
<owl : Class rdf:ID="catal og_itent/>
</ ow : di sjoint Wth>
</ow : Cl ass>

Fig. 3. OWL declaration of the element definition in Fig.2

The definition ow : Cl ass rdf: | D="cat al og" means that
class axiom “rdf:ID” declares the URI reference #cat al og to be
the name of an OWL class.

Object property. For nested elements, we do not use the
rdf s: subCd assOF, which is available in OWL syntaxes. The
reason is because some nested elements in DTD are not actualy
the sub-class of their parent element. Furthermore, we would like
to map al elements in DTD to OWL concepts automatically, so
that we choose a middle course: We add a new object property
described by ow : CbjectProperty to establish the
relationship between child node and parent node. The object
property’s name is derived from “has’ concatenating the
underscore symbol “ " with the child's node name. The
specification of parent node and child node are represented by
rdf s: domai n and r df s: range respectively. By using this
method, our transformation still express the nesting structure and
can aso provide more semantics for XML data.

For example, the relationships of three classes “cat al og”,
“product”, and “cat al og_i tent in Fig.2 are described as
OWL concepts shown in Fig.4.

<owl : Obj ect Property rdf:|D="has_product">
<rdfs: domai n rdf:resource="#catal og"/>
<rdfs:range rdf:resource="#product"/>

</ owl : Obj ect Property>

<owl : Obj ect Property rdf:|D="has_catal og_i tent>
<rdf s: domai n rdf:resource="#product"/>
<rdfs:range rdf:resource="#catal og_itent/>

</ owl : Obj ect Property>

Fig. 4. OWL declaration of the element definition in Fig.2

In our procedure, nesting class is described by using
owl:ObjectProperty. The class “catalog” containing class
“product” is portrayed by adding new element “has_product”.
Similarly, “has_catalog_item” is used to define the parent-child
relationship between “product” and “catalog_item”.

Datatype property. For the case an element in DTD is described
by <lELEMENT> tag but it only contains datatype (#PCDATA or
#CDATA), it is mapped to an OWL property, defined as ow :
Dat at ypePr operty. The property’s domain is the parent class
of this property, and its range is the data type of this property. On
the other hand, because #PCDATA and #CDATA declare for
character datain XML, we map them to “St ri ng” data type in
OWL. Note that, in the Fig.2, element “col or _swat ch” hasa
data type. Usually, it is recognized as a property, but since it
contains child element (an attribute “i mage”), it is ill
recognized as a class. For instance, two simple elements in Fig.5
are mapped to OWL conceptsin Fig.6.

<! ELEMENT item nunber (#PCDATA) >
<! ELEMENT price (#PCDATA) >

Fig. 5. Definition of complex classesin DTD

<ow : Dat at ypeProperty rdf: I D="item nunber">
<rdfs:donmin rdf:resource="#catal og_itent/>
<rdfs:range rdf:resource=
"http://ww.w3. or g/ 2001/ XM_Schena#stri ng"/ >
</ ow : Dat at ypePr operty>
<ow : Dat at ypeProperty rdf: I D="price">
<rdfs:range rdf:resource=
"http://ww. w3. or g/ 2001/ XM_Schena#stri ng"/ >
<rdfs:donmin rdf:resource="#catal og_itent/>
</ ow : Dat at ypePr operty>

Fig. 6. OWL declaration of the element definition in Fig.2

Moreover, DTD attributes normally contain other constraints. For
instance, “#FIXED” means that the value of this attribute is stuck
as defined. The declaration of “ENTITY” expresses that the name
of thisentity is aready stored its value. “REQUIRED” means that
the value must be appeared. On the contrary, value of an attribute
with “IMPLIED” connotes that it is not demanded. And
“NOTATION" means that attribute’s value is a comment. Their
mappings to OWL concepts are presented in table 1.

Table 1. The mapping of DTD constraintsto OWL concepts

DTD OWL
#FIXED value owl:hasValue
<IENTITY entity-name "entity-value'>
#REQUIRED owl:minCardinadity (=1)
#IMPLIED owl:Cardinality (=0)
NOTATION rdfs.comment
+ owl:minCardinadity (=1)
? owl:minCardinaity (=0)
* owl:minCardinality (=0)
owl:maxCardinality
(=unbounded)

There is another notice that XML syntax alows elements with the
same name in a document, but OWL does not. OWL requires each
element has a unique identifier. Therefore, when generating OWL
individuas from XML instances, if the current XML element has
the same name with the previous element, our procedure renames
it by adding parent node's name concatenating with the symbol
“ " before this element’ s name.

128

For example, there are two “description” attributes in Fig.7, one
belongs to “product” class and another to “size” class. Because
“description” of size is defined after that of “product”, it is
renamed to “size_description” asin Fig.8.

<! ATTLI ST product descripti on CDATA #REQUI RED >
<! ATTLI ST si ze description CDATA #REQUI RED >

Fig. 7. Definition of complex classesin DTD

<owl : O ass rdf: about ="#si ze">
<rdfs: subd assCf >
<ow : Restriction>
<ow : onProperty>
<ow : Dat at ypePr operty
rdf : | D="si ze_description"/>
</ ow : onProperty>
<ow : m nCardinality rdf:datatype=
" htt p: // www. w3. or g/ 2001/ XM_Schema#i nt " >1
</ow : m nCardinality>
</ow : Restriction>
</ rdfs: subd assCf >

Fig. 8. OWL declaration of the element definition in Fig.2

These changes are also updated in XML document for the nest
step of transformation into OWL individuals.

3.3 XML Instances Transformation into

OWL Individuals

The input of this step is the OWL model generated from
previous step and the given XML instance. Our illustrated
example is a kind of complex data represented in XML
document?. “ComplexData.xml” contains the information about a
product of a catalog. We choose this document because it has
common characteristics of XML data on the Webh.Only some of
eements of XML document have unique identifiers. Moreover,
there are many-to-many relationships in XML document. For
instance, each catalog_item has different sizes and each size is
specialized for many catalog_item elements.

This document describes a product of the catalog. Product
contains many catalog-item elements, each of them includes
information about clothe types. A part of that fileis as below:

<?xm version="1.0"?>
<cat al og>
<product description="Cardi gan Sweater"
product _i mage="cardi gan. j pg" >
<catal og_i t em gender =" Men' s" >
<i tem _nunber >QAZ5671</ i t em nunber >
<price>39.95</price>
<si ze descri ption="Medi uni>
<col or _swat ch
i nege="r ed_cardi gan. j pg" >Red</ col or _swat ch>
<col or _swat ch
i nege=""bur gundy_car di gan. j pg" >Bur gundy
</ col or _swat ch> </si ze>
<si ze description="Large">
<col or _swat ch
i nege="red_cardi gan. j pg" >Red</ col or _swat ch>
<col or _swat ch
i nege=""bur gundy_car di gan. j pg" >Bur gundy
</ col or _swat ch> </si ze>
</catalog_itenr ...
</ cat al og>

Fig. 9. A first part of XML document

2 http://www.service-architecture.com/object-oriented-

databases/articles/xml_file for complex data.html

http://www.service-architecture.com/object-oriented-databases/articles/xml_file_for_complex_data.html�
http://www.service-architecture.com/object-oriented-databases/articles/xml_file_for_complex_data.html�

The first importance of this transformation step is to specify
the namespace for OWL document. In our approach, we use
namespace “http://www.w3.0rg/2002/07/owl” for supporting
OWL syntaxes and “http://www.w3.0rg/1999/02/22-rdf-syntax-
ns’ for providing RDF syntaxes. The next importance thing is to
make sure that every source in OWL has unique identifier.
Because XML document allows duplicate elements, when
transforming these elements into OWL individuals, we need to
give them the unique name to distinguish with others. Since our
procedure starts traversing from the beginning of XML document,
the first node matched with OWL ontology is added an ID. By
default, the ID of the first instance node is created by adding the
number 1 after the instance’s name and the underscore symbol
“ . Similarity, the next duplicate instance node is added the
number 2, and so on. Furthermore, because this step is inherited
from the previous step, the mapping step, some changes in the
element names are kept. For instance, “size_description” replaces
for “description” of element “size”.

For example, the “catalog”, “product”, and “catalog_item”
instance nodes in Fig.8 are added a unique identifier as in Fig.9.
Because the “catalog_item” has two “size’ instances, they are
added the “size 1" and “size_2" identifiers respectively.

<?xm version="1.0"?>

<r df : RDF
xm ns:rdf ="http://ww. w3. or g/ 1999/ 02/ 22- r df - synt ax- s#"
xm ns: owl ="http://ww. w3. or g/ 2002/ 07/ oW #"
xm ns: rdf s="http://ww. w3. or g/ 2000/ 01/ r df - schena#" >

<catal og rdf:|D="catal og_1">
<has_product > <product rdf:|D="product_1">
<description rdf:datatype=
"http://ww. w3. org/ 2001/ XM_Schenma#st ri ng" >
Car di gan Sweat er </ descri ption>
<product _i mage rdf: datatype="http://ww. w3. org/
2001/ XM_Schema#st ri ng"> cardi gan. j pg

</ product _i mage> <has_catal og_i t en>
<catalog_itemrdf:|1D="catalog_item1">
<gender rdf:datatype="http://ww. w3. org/
2001/ XM_Schema#st ri ng" >Men' s</ gender >
<i t em_nunber
rdf : dat at ype="http://ww. w3. or g/ 2001/
XM_.Schema#tst ri ng" >QAZ5671</ i t em nunber >
<price rdf:datatype="http://ww. w3. org/ 2001/
XM_.Schema#st ri ng" >39. 95</ pri ce>
<has_si ze><si ze rdf: | D="size_1">
<si ze_description rdf:datatype="http://ww. w3. org/
2001/ XM_.Schema#st ri ng" >Medi unx/ si ze_descri pti on>
<has_col or_swat ch rdf:resource="#col or_swatch_1"/>
</ si ze> </ has_si ze><has_si ze>
<size rdf: | D="size_2"> <has_col or_swat ch>
<col or_swatch rdf: | D="col or_swatch_1">
<contai n_i mage rdf:datatype="http://ww. w3. org/
2001/ XM_.Schema#st ri ng" >Bur gundy</ cont ai n_i mage>
<cont ai n_i mage rdf: datatype="http://ww.w3. org/
2001/ XM_LSchema#st ri ng" >Red</ cont ai n_i mage>
<i mage rdf:datatype="http://ww. w3. org/ 2001/
XM_.Schema#st ri ng" >bur gundy_car di gan. j pg</i mage>
<i mage rdf:datatype="http://ww. w3. org/ 2001/
XM_.Schemaf#tst ri ng" >r ed_car di gan. j pg</ i mage>
</ col or _swat ch></ has_col or _swat ch>
<si ze_description rdf:datatype="http://ww. w3. org/
2001/ XM_Schema#st ri ng" >Lar ge</ si ze_descri pti on>
</ size> </ has_si ze></catal og_iten>
</ has_cat al og_i t en></ pr oduct ></ has_pr oduct >
</ catal og> ...
</ r df : RDF>

Fig. 10. A first part of XML document

The unique ID aso has a good advantage in inheritance. For
example, the instance “color_swatch”, which contains pictures of

Swester, can be recalled by “size”. In large XML documents, we
can save alarge amount of memory with this mechanism.

129

4. EXPERIMENTSAND DISCUSSIONS

4.1 Experiments
We carry out our experiment on AMD Turion 64x2, 2.00 GHz
CPU 2GB memory with Visual C++ windows X P machine.

The whole DTD20OWL framework combines of two sub projects:
mapping DTD to OWL ontology and transforming XML
document into OWL instances. In the first mapping step, if our
procedure finds the duplicate elements, it will rename that element
(section 3.2). In this case, we also update the changes in XML
document. Therefore, an intermediate procedure is also produced
to modify these namesin XML document.

We have implemented three procedures in XML stylesheet
language transformations so that they can be easily integrated with
other programming languages. These stylesheets are based on the
XSLT stylesheetsin [9], but we have extended and adjusted them
to adapt to our framework. In [9], authors mainly extract XML
Schema from given XML document which differs from our
purposes, we derive DTD from XML document and use it to
support the XML transformation. Moreover, we create a new
procedure to update the name changes in XML file. Especialy,
our main stylesheet is totally different from [9], because our
algorithm is different. We utilize the object oriented
characteristics that each instance is given an ID expression so that
it can be inherited from other instances.

4.2 Discussions
Our method amost satisfies the transformation requirements in
section 2.1.

—
catalog

/‘7
product

Fig. 11. A sampleof DTD tree

In Fig.12, except for the added “owl:thing” element and changes
element name “description” of “size”, the OWL tree has the same
structure with DTD tree. Since every OWL document usually
contains “owl:thing” as the root class, our results only change the
duplicate names. Hence our approach satisfies the 3" requirement.
On the other hand, our procedure provides more semantics for
existing data by adding more vocabularies to describe the
relationship among classes and between class and its properties so
it meets the 5" rule. Further, with the detail descriptionsin section
2.2 and 2.3, our approach obliges the 1%, 2™ and 4™ requirements.
Finally, because our procedure replies on the similar definitions
between DTD and OWL to perform the mapping step, it does not
need any user’'s interference to accomplish the whole transforming
framework. Thus, the last requirement is also satisfied.

http://www.w3.org/2002/07/owl�
http://www.w3.org/1999/02/22-rdf-syntax-ns�
http://www.w3.org/1999/02/22-rdf-syntax-ns�

owl:thing
has_product

: has_catalog_item
: has_size

: has_color_swatch
: DatatypeProperty

catalog

product
(5)

> catalog_i
tem

ﬁducl_
image

description

Fig. 12. Theresult OWL tree

In compare with other related works, our approach appears more
advantages. First, we exploit DTD document of a given XML file,
instead of XML Schema document in other works. Except for
Bernd et a.[13], they also start at DTD file, but they create a
mapping rule for each element in DTD. This method is said to
provide more details for original data, but it isimpractical because
with a large amount of XML documents on the web, we cannot
manually define the rules for each element. Therefore, to the best
of our knowledge, our approach is a new method in mapping
DTD to OWL ontology. Moreover, most of related work stops at
the mapping process, except for Toni et a. [5]. However, Toni's
method considers instances of XML document as a node, so to
differentiate the duplicate data, it attaches the specified prefix to
each datum. This method results in very large OWL instances and
does not solve the repeated element names. For example, for the
imitated “description” described in section 3.2, they have no
solution. Our technique not only gives the answer for imitated
element names but also reduces the consumed memory by
inheriting the previous objects.

5. CONCLUSIONS

The DTD20OWL framework presented in this paper alows the
automatic mapping DTD to OWL domain knowledge and
transforming XML instances into OWL individuas. Our
procedure outperforms the existing methods due to the following
five reasons. Firstly, while transforming al the elements of an
XML document into OWL, our agorithm retains the original
structure and captures the implicit semantics expressed in the
XML document. Secondly, componentsin DTD are considered as
classes or properties or data types based on their definitions and
detail descriptions, this makes the result be independent from
users opinions. Thirdly, languages used in our procedure do their
jobs as their origina functions. DTD is used for defining XML
structure, XML for describing data, OWL for providing
definitions and relationships between data. Fourthly, our approach
provides new method for transforming XML instances into
existing OWL individuals without any user intervention. That
method makes many XML documents to be converted to the
OWL formats. Finally, during the transformation process, our
procedure not only solves the duplicate element problems but also
provides the inheritance mechanisms which help reducing the
consumed memory. We hope that our research has created a
bridge to narrow the gap between the XML data and OWL
ontology. If this procedure is executed, a large amount of the
XML data on the current Web will be interpreted into OWL
ontology which is useful for the Semantic Web applications.

130

Further improvement to our work may be focused on the
transforming XML Schema into OWL ontology by giving more
semantics than current approaches. Moreover, in order to prove
the quality of our transformation, we are going to extend our work
to the semantics measurement. The structure and semantic
similarity of XML and OWL documents will be computed and
compared to other methods.

6. ACKNOWLEDGMENTS

This research was supported by the MKE (Ministry of Knowledge
Economy), Korea, under the ITRC(Information Technology
Research Center) support program supervised by the [ITA
(Institute of Information Technology Advancement)" (I1'TA-2009-
(C1090-0902-0002)). This work also, was supported by the Korea
Science & Engineering Foundation(KOSEF) grant funded by the
Korea government(MEST) (No. 2008-1342), and was supported
by Basic Science Research Program through the National
Research Foundation of Korea(NRF) funded by the Ministry of
Education, Science and Technology (2009-0076798)

7. REFERENCES
[1] XML Schema Language Comparison, Wikipedia,
2009 http://en.wikipedia.org/wiki/X ML Schemal anguage

Comparison

Hawke, S.: XML with Relational Semantics: Bridging the

Gap to RDF and the Semantic Web.

W3C, http://www.w3.0rg/2001/05/xmirs (2001)

M. Ferdinand, C. Zirpins, D. Trastour: Lifting XML Schema

to OWL, 4™ International Conference, ICWE 2004, pp. 354--

358. Springer Heidelberg, Germany, 2004

H. Bohring, S. Auer: Mapping XML to OWL Ontologies.

LIT2005, pp. 147-156, Germany. 2005

Toni Rodrigues, Pedro Rosa, Jorge Cardoso: Mapping XML

to Existing OWL Ontologies. International Conference

WWW/Internet 2006, pp. 72-77

Chrisa Tsinaraki, Stavros Christodoulakis: XS20WL: A

Formal Model and a System for Enabling XML Schema

Applications to Interoperate with OWL-DL Domain

Knowledge and SW Tools, DELOS, pp. 137-146 (2007)

C. Cruz, C. Nicolle: Ontology Enrichment and Automatic

Population from XML Data, 4th Int. VLDB Workshop on

Ontology-based Techniques, ODBIS 2008.

P.T.T. Thuy, Young-Koo Lee, Sungyoung Lee, and Byeong-

Soo Jeong, “Transforming Vaid XML Documents into RDF

via RDF Schema’, Internationa Conference on Next

Generation Web Services Practices, |EEE, October 2007.

P.T.T. Thuy, Young-Koo Lee, Sungyoung Lee and Byeong-

Soo Jeong, “Exploiting XML Schema for Interpreting XML

Documents as RDF”, International Conference on Services

Computing 2008, SCC’ 08, |EEE, Hawaii, July 2008.

[10] N. Kobeissy, M. G. Genet and D. Zeghlache, “Mapping
XML to OWL for seamless information retrieval in context-
aware environments’, pp.349-354, |IEEE, 2007.

[11] Chrisa Tsinaraki and Stavros Christodoulakis,
“Interoperability of XML Schema Applications with OWL
Domain Knowledge and Semantic Web Tools’, pp. 850-869,
OTM Conference, Springer-Verlag , 2007.

[12] P. Kunfermann, and C. Drumm, "Lifting XML Schemas to
Ontologies — The concept finder algorithm”, Mediate 2005.

(2]

(3]

(4]
(5]

(6]

(7]

(8]

(9]

http://en.wikipedia.org/wiki/XMLSchemaLanguage%20Comparison�
http://en.wikipedia.org/wiki/XMLSchemaLanguage%20Comparison�
http://en.wikipedia.org/wiki/XMLSchemaLanguage%20Comparison�
http://www.w3.org/2001/05/xmlrs�

[13] Bernd Amann, Catriel Beeri, Irini Fundulaki, Michel Scholl:
Ontology-Based Integration of XML Web Resources. 1st
Int. Semantic Web Conf, pp. 117-131, Springer, 2002.

131

