
�

�

An Improved Feasible Shortest Path Real-Time
Fault-Tolerant Scheduling Algorithm

Hyungil Kim, Sungyoung Lee and Byeong-Soo Jeong

School of Electronics and Information, Kyung Hee University
Kyungki-Do, Youngin-City, Kiheung-Eup, Seocheon-Ri 1

E-mail : { hikim, sylee }@oslab.kyunghee.ac.kr

Abstract
�

Fault tolerance is an important aspect of real-time
computer systems, since timing constraints must not be
violated. For real-time single processor environment,
Ghosh proposed two queue-based scheduling techniques:
an FSP (Feasible Shortest Path) algorithm and LTH(Linear
Time Heuristics). Even though the FSP algorithm can
produce optimal fault-tolerant schedules, it is not practical
due to its time complexity. The LTH algorithm is a greedy
heuristics that closely approximates the optimal. However,
since Ghosh’s algorithm assumes that there is at most one
fault within time interval ∆f and does not consider inter-
fault time it can deteriorate real-time scheduling
performance due to unnecessary backup scheduling. In this
paper, we have proposed an improved FSP algorithm on the
more realistic assumption that there is no additional fault
during minimum inter-fault time ∆F after one fault occurs.
The proposed algorithm can improve system performance
by including more primary tasks in a fault-tolerant
schedule and also reduce time complexity in generating
backup schedules.

1. Introduction

In hard real-time applications, a guarantee is required that
tasks will meet their deadlines despite the presence of faults,
because it causes critical situations if tasks cannot finish
within the user specified deadlines. Avoiding faults is not
always possible, since the system designer does not know
when a fault will occur or what the faults will be. Thus,
fault-tolerant real-time scheduling has been widely studied
for a long time. Such studies have been performed in two
different environments, viz., single processor environments

[1, 2] and multiprocessor environments [3, 4, 5, 6, 7].
Generally, fault-tolerant scheduling cannot solve the
permanent faults occurring in a single processor system.
Thus, most research in this environment tries to solve the
problems with the assumption that a fault is intermittent
and transient in a task or a processor. The basic approach
for fault-tolerant scheduling is to efficiently provide backup
period where the faulted task is re-executed when a fault
occurs in a task. Such an approach also assumes that a fault
does not occur continuously during the re-execution of the
faulted task.
 Ghosh and Mossé [1] suggest a queue-based fault-
tolerant scheduling scheme that overcomes larger latency
and fault masking problems in the previous
Primary/Backup scheme [2]. Their scheme is based on
reserving sufficient slack in a schedule such that a task can
be re-executed before its deadline without compromising
guarantees given to other tasks. Only enough slack is
reserved in the schedule to guarantee fault tolerance if at
most one fault occurs within a time interval. Ghosh
provides two algorithms to solve the problem of adding
fault tolerance to a queue of real-time tasks. The first is a
dynamic programming optimal solution called FSP
(Feasible Shortest Path). The FSP algorithm can generate a
fault-tolerant schedule that satisfies deadlines of all tasks if
at most one fault occurs within a given time interval, ∆f .
An optimal fault-tolerant schedule is made by mapping a
non-fault-tolerant schedule of real-time tasks to a fault-
tolerant schedule by way of queue mapping. The second
Ghosh algorithm is LTH (Linear Time Heuristics). It
guarantees that all tasks in a queue can be completed within
their deadlines if at most one fault occurs within time
interval ∆f ≥ Cmax (Cmax is the maximum execution time of
tasks). The goal of this heuristics is to maximize the
number of backups scheduled, after guaranteeing the
maximum number of primaries in the schedule.
 However, in Ghosh’s algorithms, since the
assumption that there is at most one fault within time
interval ∆f does not reflect real fault occurring situations, it
can degrade scheduling efficiency due to unnecessary

This work was partly supported by the Ministry of
Information and Communication of Korea (AB-97-
G-0655)�

backup scheduling. In this paper, in order to remove such
inefficiencies we propose an improved FSP real-time fault-
tolerant scheduling algorithm while assuming more realistic
fault occurring conditions in which a new fault does not
occur within time interval ∆F (inter-fault time) after the
fault occurs in a task. Such a realistic assumption makes it
possible to schedule more primary tasks within same time
interval because it does not need to provide a backup
schedule during time interval ∆F after a fault occurs. Figure
1 shows that inter-fault time can be much smaller than time
interval ∆f according to Ghosh’s assumption. On the Ghosh
assumption, two faults can happen close to each other as in
Figure 1. In that case, for the backup schedule of fault 1 and
2, primary real-time tasks cannot be scheduled during the
next time interval ∆f. This causes real-time performance
degradation. By contrast, Figure 2 shows an example of our
assumption that the next fault (fault 2) occurs only after
inter-fault time ∆F since fault 1 occurred. This is very
similar to the minimum inter-arrival time of sporadic tasks
that have the characteristics of hard and non-periodic real-
time tasks. Thus, our real-time fault-tolerant scheduling
algorithm can be efficiently applied to sporadic task
scheduling.

f∆<
f∆ f∆

������ ������

Figure 1. Example of Ghosh’s fault occurring
assumption

F∆������ ������

Figure 2. Example of minimum inter-fault time ∆F

 Our proposed algorithm goes through three phases to
produce a final backup schedule. In the first phase, it
generates an optimal backup schedule for at least one task
set (Hi). In the second phase, corresponding backup
schedules are generated while assuming that the fault
occurs in a task other than the first task in Hi. Among these
backup schedules, we select the longest one and remove the
tasks that could not meet their deadlines in that schedule.
After that, the procedure is repeated again from the first
phase. If all tasks in a schedule can meet their deadlines,
the backup schedule for a task set (Hi) is determined. In the
third phase, the above steps are applied to remaining tasks
excluding task set (Hi) and finally the global backup
schedule is determined. In contrast with Ghosh’s
assumption that there can be only one fault during the time
interval ∆f without regard to the time of the fault, we

consider the more realistic assumption that there is no
additional fault during the minimum inter-fault time ∆F
after one fault occurs (This assumption is more meaningful
in view of the fault-tolerant recovery of sporadic real-time
tasks). The proposed algorithm not only improves system
performance by including more primary tasks in fault-
tolerant schedules but also reduces scheduling cost so that it
may be well applied to dynamic environments.
 The remainder of the paper is organized as follows.
In Section 2 we briefly describe Ghosh’s algorithms and
mention their drawbacks. In Section 3 we propose an
improved FSP algorithm that can overcome the problems of
Ghosh’s algorithm. Simulation results are represented in
Section 4. In Section 5 we discuss future work and provide
some concluding remarks.

2. Overview of FSP and LTH Algorithms

In our fault-tolerant real-time system model, we consider
only transient and intermittent faults which are short-lived
malfunctions in a hardware component, affecting at most
one task executing on that hardware component. We
assume that all input occurs at the beginning of task
execution, and outputs are generated only at the end of
tasks, so that the whole task can be re-executed if it has to
be aborted due to a fault. Any task with input or output in
the middle of its execution can be broken into smaller tasks
to satisfy this condition. Given a set of tasks and scheduling
policy which is based either on the timing constraints of the
tasks (e.g., Earliest Deadline First), or on their priorities
(derived from their importance), that policy imposes a total
ordering of tasks. We assume that this total ordering of
tasks is implemented in the form of a queue. FSP and LTH
algorithms are devised to efficiently insert backups into that
queue so that a fault-tolerant schedule is possible.
 The FSP algorithm is based on an analytical model
that will now be described. In this model, a task is
represented by a tuple Ti = <ai, di, ci>, where ai is task
arrival time (and its earliest start time), di is its deadline,
and ci is its worst case execution time. The maximum
possible value of ci for any task is denoted by Cmax. Let Qt
be a queue of n tasks to be scheduled for execution starting
at the current time, t0. In the absence of any fault, each task
Ti in Qt, will meet its deadline if t0 + ΣCj < di. In the
presence of faults, however, some tasks may need to be re-
executed and the time needed to complete the n tasks may
be larger than Σ Cj. If ti is the time at which the first i tasks
in Qt will complete execution in the presence of faults, then
Ti will meet its deadline if ti < di.

If any two faults are separated by an interval ∆f, the
execution time ti of task Ti in a task queue Qt can be

described by formula (1): ti = t0 + ∑
=

i

j
jc

1

 + ∑
=

b

k
k

1
β

(1) where β1,… βb are the lengths of some slots B1,…,Bb
reserved for backup execution. Specifically, if the tasks

T1,…,Ti are divided into subsets ß1,…, ßb such that ß1 =
{T1,…,Tj1}, ß2 = {Tj1+1,…,Tj2},…, ßb = {Tjb-1,…,Ti}, and, for
k = 1,…,b,

ß k + ∑

∈BkTu
cu ≤ ∆f (2)

ß k ≥ max {cu | Tu∈Bk} (3)

then t1 given by (1) is the maximum time needed to execute
T1,…,Ti in the presence of faults. Each set ßk specifies
consecutive tasks that are assigned to a backup slot βk for
re-execution. If a fault occurs during the execution of a task
in ßk, then this task will re-execute. Condition (2) specifies
that at most one task from ßk will need to re-execute, and
condition (3) specifies that the re-execution of any task in
ßk will not require more time than βk, which is accounted
for in the computation of t1 in (1). The above description
can be summarized by the following proposition, and the
FSP algorithm is based on this proposition.
[Proposition 1] Let Qt be a queue containing n tasks at
time t0, that is, Qt = {T1,T2,…,Tn}. Assume that if a fault is
detected during the execution of a task, the task is re-
executed. If ti i = 1,…,n, computed from (1), (2) and (3)
satisfy ti < di, and at most one fault occurs in any time
interval of length ∆f (∆f >= 2Cmax), then all tasks in Qt
will meet their deadlines.

We define a feasible schedule to be a fault-tolerant
schedule that meets all the conditions of Proposition 1 and
satisfies all the task deadlines. To illustrate how backups
can be inserted into a queue conforming to Proposition 1,
let’s consider an example: tasks in a queue are lengths 2, 3,
3, and 1, their deadlines are 4, 10, 14, and 14.5 respectively,
and the EDF scheduling policy is used. If ∆f is 10, the tasks
can be divided into subsets, ß1 ={T1} and ß2={T2, T3, T4},
and backup slot βi and β2 will be 2 and 3 respectively. By
using formula (1), the execution time t2 of task T2 is
calculated in formula (4), and we know that t2 can meet its
deadline d2.

t2 = t0 + ∑
=

2

1j
jc + ∑

=

2

1j
kβ = 0 + c1 + c2 + βi + β2

 = 2 + 3 + 2 + 3 = 10 ≤ d2 (4)

The execution time of other tasks can be calculated by the
same formula and all tasks can meet their deadlines. Figure
3 shows how a fault-tolerant schedule can be obtained in
each case of task fault.

As can be seen in Figure 3, every task can complete
within time 12, no matter which task a fault occurs in. At
this point, if we assume that deadline of task T4 is 12, the
execution sequence of tasks will be T1, T2, T3, T4 since the
arrival time of T4 is the latest among the tasks even though
the deadline of T4 is earlier than T3. Here, according to
formula (1), the execution time of T4 can be calculated as

follows:

0 2 4 6 8 10 12 14

task 1 task 2 task 3 task 4backup 1
����������	

d1 d2 d3

d4

0 2 4 6 8 10 12 14

task 1 task 2 task 3 task 4backup 2

d1 d2 d3

d4

0 2 4 6 8 10 12 14

task 1 task 2 task 3 task 4backup 2

d1 d2 d3

d4

0 2 4 6 8 10 12 14

task 1 task 2 task 3 task 4 backup 2

d1 d2 d3

d4

��������������	
�����
���

��������������	
�����
���

��������������	
�����
���

��������������	
�����
���

backup 2

����������	

����������	

����������	

����������	

∆f

∆f

∆f

∆f

Figure 3. Example of Fault-Tolerant Schedule

t4 = t0 + ∑
=

2

1j
jc +∑

=

2

1k
kβ = 0 + c1 + c2 + c3 + c4 + βi + β2

= 2 + 3 + 3 + 1 + 2 + 3 = 14 > d4 (5)

Therefore, even though a feasible (fault-tolerant) schedule
(as in Figure 3) can be possible in the case where T4’s
deadline is 12, the FSP algorithm does not produce a
feasible schedule since the conditions in Proposition 1 are
not satisfied as can be seen in formula (5). The reason is
that the FSP algorithm does not consider the realistic
situations that a fault does not occur within time interval ∆f
after a first fault occurs. In order to overcome such
problems, we propose an improved FSP algorithm while
considering a more realistic assumption about fault
occurrence.

3. Improved FSP algorithm

The basic approach of our proposed algorithm can be
described as follows. The whole procedure of the algorithm
consists of three phase. In the first phases, with the
assumption that a fault occurs in any one task, a backup
schedule is determined. At this time, a backup schedule of
other tasks that can be completed within inter-fault time ∆F
does not need to be considered because we assume that
there are no additional faults during the minimum inter-
fault time ∆F after one fault occurs. By doing this, we can
get an optimal backup schedule for at least one task set. In
the second phase, with the assumption that a fault occurs in
the next task to that assumed in the first phase, we generate

a backup schedule. In this case, we can also apply the same
assumption. That is, since there is no additional fault within
the minimum inter-fault time ∆F, we don’t need to consider
any backup schedule for tasks that arrive within ∆F time
before a fault occurs in a task. In the second phase, by
selecting the longest backup schedule among them, we can
get an optimal fault-tolerant schedule for one task set that
can be completed within inter-fault time ∆F. In the third
phase, we apply the above procedures to the remaining
tasks while dividing tasks into subsets that have the same
time interval ∆F. Finally, we can get a global fault-tolerant
real-time schedule that can reduce rejected tasks as much as
possible.
 We now turn to describing our algorithm in more
detail with a concrete system assumption and explanation
about the notation used in the algorithm. First, we assume a
system environment as follows:
A1) The system is a hard real-time fault-tolerant system
with a single processor.
A2) Tasks are non-periodic and scheduled in non-
preemptive manner when they arrive.
A3) Every task is independent of every other. In the case

where a precedence relation exists between tasks, the
task is divided into independent tasks that have
preparation time and closing time.

A4) The execution time of a backup task is the same as that
of the primary task.
A5) There is no restriction on system resources.
A6) There is a mechanism to promptly detect fault in a task.
 In the next improved FSP algorithm, the following
notations are used:
. A : A set of tasks that can be scheduled.
. Hi: A set of tasks that are included in the ith

scheduling period, which means a set of tasks that do
not need backup scheduling after a fault occurs in the
first task in Hi.

. Wi,j: The scheduling time when a fault occurs in the jth
task in the ith scheduling period.

. Wi: The longest schedule in the ith scheduling period.

. Ci,j: The execution time of task j in the ith scheduling
period.

. TaccK: The Boolean value to indicate whether the kth
task is accepted or not (rejected).

. dj : Deadline of task j

The improved FSP algorithm, by using the assumption that
the minimum inter-fault time is always larger than ∆F,
determines a set of tasks (Hi) that do not need backup after
the first fault occurs (line 3~4). In line 6, with the
assumption that the other task in Hi has a fault, it calculates
scheduling time continuously. Among these schedules, it
selects a schedule that has the longest scheduling time as a
final schedule of the first scheduling period (line 10). At
this time, if there are tasks that cannot meet their deadlines,
they are removed from a task set A (line 7~9). As can be

seen in the algorithm, the time complexity of our proposed
algorithm is O(n) because it executes a For Loop in line 2.
It is comparable to the FSP algorithm whose time
complexity is O(n2).

1 A = ∅∅∅∅ ; i=1 ; j=1 ; f_flag =False ;
 n = number of task ; (7)
2 For k=1,…,n Do {
3 determine Hk ;
4 Wk – Wk-1 ;
5 For j = min(Hk),…,max(Hk) Do {
6 Wk,j = Wk-1 + 2cj +

∑
≠≠=

)max(

,,1

Hk

falseTacceptjll
c

7 If (Wk,j >>>> dj) Then
8 Tacck = False ;
9 Else A ←←←← Tj
10 Wk = max(Wk + Wk,j) ;
11 }
12 }
13 Return (A);

Figure 4. Improved FSP algorithm

1 1 2 3

1 2 32

1 2 3 3

1
2

31
2

3

2

3
3

1 2 3 43 4

4 4
1H

2H

1t

2t

3t

4t

1W 2W

1t 2t3t

4t

F∆

Figure 5. Example of scheduling with the

improved FSP algorithm

 In order to describe our algorithm more clearly, we
will explain by simple example (Figure 5). Let’s suppose
that there are four tasks, T1, T2, T3, and T4. Their time
values (arrival time, execution time, deadlines) are
T1(0,2,4), T2(1,3,9), T3(4,3,14), and T4(9,1,13.5)
respectively. We assume that ∆F is 10. First of all, we
decide Hi that can be scheduled within ∆F with the
assumption that a fault occurs in T1. Hi will be {T1, T2, T3}.
After this, with the assumption that a fault occurs in T2 or
T3, we calculate the corresponding scheduling time and
select the longest one (W1). In this example, the length of
W1 will be 11. In the next step, after a set of tasks H2 is

decided (here, H2 = {T4}), the same procedure is repeated.

4. Performance Evaluation

In order to show the improvement offered by our
scheduling algorithm, we did some simple experimentation
with analytical analysis. In the experiment, we randomly
generated 500 tasks having the average computation time
(40) and the average deadline (120). We also generated
faulted tasks with the fault rate (0.2) so that they had the
minimum inter-fault time ∆F (200). Figure 6 shows the
simulation results that estimate the number of rejected tasks
between Ghosh’s LTH algorithm and our EFSP (Extended
FSP). We found that the number of rejected tasks is greatly
affected by the ∆F value. In our experimentation,
approximately half of tasks were rejected in case of LTH.
On the contrary, many fewer tasks are rejected in our EFSP
algorithm.

� � � � � � � � 	 �

��

�

�

��

�

��

�

���������������������

Number of Rejected Tasks

���

����

�

Figure 6. Simulation Results

5. Conclusion

Ghosh proposed two fault-tolerant scheduling algorithms
for a real-time single processor environment: FSP (Feasible
Shortest Path) algorithm and LTH (Linear Time Heuristics).
Even though Ghosh devised a formal model for fault-
tolerant real-time scheduling and developed scheduling
algorithms based on that model, there is a drawback, since
Ghosh’s algorithm assumes that there is at most one fault
within time interval ∆f and does not consider inter-fault
time. In this paper, we have proposed an improved FSP
algorithm on the more realistic assumption that there is no
additional fault during the minimum inter-fault time ∆F
after one fault occurs. The proposed algorithm can improve
system performance by including more primary tasks in a
fault-tolerant schedule and is also more applicable to
sporadic real-time task scheduling due to its similarity of
task arrival pattern. The next step in our work is to clarify
and improve our algorithm through careful quantitative
analysis.

6. Reference
�

[1] S. Ghosh, R. Melhem, and D. Mosse. "Enhancing Real-

Time Schedules to Tolerate Transient Faults," Proceedings of
Real-Time Systems Symposium, pp. 120-129, Dec 1995.

[2] A. L. Liestman and R. H, Campbell, "A Fault-Tolerant
Scheduling Problem", IEEE Transactions on Software
Engineering, SE-12(11):1089-1095, Nov. 1986.

[3] T. Tsuchiya, Y. Kakuda, and T. Kikuno, "A New Fault-
Tolerant Scheduling Technique for Real-Time Multiprocessor
Systems," Proc. '95 Real-Time Conference System
Application, pp. 197-202, 1995.

[4] D. Mosse, R. Melhem, and S. Ghosh, "Analysis of a
Fault-Tolerant Multiprocessor Scheduling Algorithm," Proc.
24th International Symposium on Fault-Tolerant Computing,
pp. 16-25, 1994.

[5] S. Ghosh, R. Melhem, and D. Moss�, "Fault-Tolerant
Scheduling on a Hard Real-Time Multiprocessor System,"
Proc. 8th International Parallel Processing Symposium, pp.
775-782, 1994.

[6] C.M. Krishna and K.G. Shin, "On Scheduling Tasks with a
Quick Recovery from Failure," IEEE Trans. on Computers,
Vol. 35, no. 5, pp. 448-455, May 1986

[7] Y. Oh and S. Son, "Multiprocessor Support for Real-Time
Fault Tolerant Scheduling," Proc. Workshop Architectural
Aspects of Real-Time Systems, pp. 76-80 San Antonio, Tex.,
Dec. 1991

[8] Y. Oh and S. Son, "Fault-Tolerant Real-Time Multiprocessor
Scheduling," Technical Report TR-92-09, University of
Virginia, April 1992

