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Abstract 
�

Fault tolerance is an important aspect of real-time 
computer systems, since timing constraints must not be 
violated. For real-time single processor environment, 
Ghosh proposed two queue-based scheduling techniques: 
an FSP (Feasible Shortest Path) algorithm and LTH(Linear 
Time Heuristics). Even though the FSP algorithm can 
produce optimal fault-tolerant schedules, it is not practical 
due to its time complexity. The LTH algorithm is a greedy 
heuristics that closely approximates the optimal. However, 
since Ghosh’s algorithm assumes that there is at most one 
fault within time interval ∆f and does not consider inter-
fault time it can deteriorate real-time scheduling 
performance due to unnecessary backup scheduling. In this 
paper, we have proposed an improved FSP algorithm on the 
more realistic assumption that there is no additional fault 
during minimum inter-fault time ∆F after one fault occurs. 
The proposed algorithm can improve system performance 
by including more primary tasks in a fault-tolerant 
schedule and also reduce time complexity in generating 
backup schedules. 
 
 
1. Introduction 
 
In hard real-time applications, a guarantee is required that 
tasks will meet their deadlines despite the presence of faults, 
because it causes critical situations if tasks cannot finish 
within the user specified deadlines. Avoiding faults is not 
always possible, since the system designer does not know 
when a fault will occur or what the faults will be. Thus, 
fault-tolerant real-time scheduling has been widely studied 
for a long time. Such studies have been performed in two 
different environments, viz., single processor environments 

[1, 2] and multiprocessor environments [3, 4, 5, 6, 7]. 
Generally, fault-tolerant scheduling cannot solve the 
permanent faults occurring in a single processor system. 
Thus, most research in this environment tries to solve the 
problems with the assumption that a fault is intermittent 
and transient in a task or a processor. The basic approach 
for fault-tolerant scheduling is to efficiently provide backup 
period where the faulted task is re-executed when a fault 
occurs in a task. Such an approach also assumes that a fault 
does not occur continuously during the re-execution of the 
faulted task. 
     Ghosh and Mossé [1] suggest a queue-based fault-
tolerant scheduling scheme that overcomes larger latency 
and fault masking problems in the previous 
Primary/Backup scheme [2]. Their scheme is based on 
reserving sufficient slack in a schedule such that a task can 
be re-executed before its deadline without compromising 
guarantees given to other tasks. Only enough slack is 
reserved in the schedule to guarantee fault tolerance if at 
most one fault occurs within a time interval. Ghosh 
provides two algorithms to solve the problem of adding 
fault tolerance to a queue of real-time tasks. The first is a 
dynamic programming optimal solution called FSP 
(Feasible Shortest Path). The FSP algorithm can generate a 
fault-tolerant schedule that satisfies deadlines of all tasks if 
at most one fault occurs within a given time interval, ∆f .  
An optimal fault-tolerant schedule is made by mapping a 
non-fault-tolerant schedule of real-time tasks to a fault-
tolerant schedule by way of queue mapping. The second 
Ghosh algorithm is LTH (Linear Time Heuristics). It 
guarantees that all tasks in a queue can be completed within 
their deadlines if at most one fault occurs within time 
interval ∆f ≥ Cmax (Cmax is the maximum execution time of 
tasks). The goal of this heuristics is to maximize the 
number of backups scheduled, after guaranteeing the 
maximum number of primaries in the schedule. 
     However, in Ghosh’s algorithms, since the 
assumption that there is at most one fault within time 
interval ∆f does not reflect real fault occurring situations, it 
can degrade scheduling efficiency due to unnecessary 
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backup scheduling. In this paper, in order to remove such 
inefficiencies we propose an improved FSP real-time fault-
tolerant scheduling algorithm while assuming more realistic 
fault occurring conditions in which a new fault does not 
occur within time interval ∆F (inter-fault time) after the 
fault occurs in a task. Such a realistic assumption makes it 
possible to schedule more primary tasks within same time 
interval because it does not need to provide a backup 
schedule during time interval ∆F after a fault occurs. Figure 
1 shows that inter-fault time can be much smaller than time 
interval ∆f according to Ghosh’s assumption. On the Ghosh 
assumption, two faults can happen close to each other as in 
Figure 1. In that case, for the backup schedule of fault 1 and 
2, primary real-time tasks cannot be scheduled during the 
next time interval ∆f. This causes real-time performance 
degradation. By contrast, Figure 2 shows an example of our 
assumption that the next fault (fault 2) occurs only after 
inter-fault time ∆F since fault 1 occurred. This is very 
similar to the minimum inter-arrival time of sporadic tasks 
that have the characteristics of hard and non-periodic real-
time tasks. Thus, our real-time fault-tolerant scheduling 
algorithm can be efficiently applied to sporadic task 
scheduling. 
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Figure 1. Example of Ghosh’s fault occurring 
assumption 
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Figure 2. Example of minimum inter-fault time ∆F 
 
     Our proposed algorithm goes through three phases to 
produce a final backup schedule. In the first phase, it 
generates an optimal backup schedule for at least one task 
set (Hi). In the second phase, corresponding backup 
schedules are generated while assuming that the fault 
occurs in a task other than the first task in Hi. Among these 
backup schedules, we select the longest one and remove the 
tasks that could not meet their deadlines in that schedule. 
After that, the procedure is repeated again from the first 
phase. If all tasks in a schedule can meet their deadlines, 
the backup schedule for a task set (Hi) is determined. In the 
third phase, the above steps are applied to remaining tasks 
excluding task set (Hi) and finally the global backup 
schedule is determined. In contrast with Ghosh’s 
assumption that there can be only one fault during the time 
interval ∆f without regard to the time of the fault, we 

consider the more realistic assumption that there is no 
additional fault during the minimum inter-fault time ∆F 
after one fault occurs (This assumption is more meaningful 
in view of the fault-tolerant recovery of sporadic real-time 
tasks). The proposed algorithm not only improves system 
performance by including more primary tasks in fault-
tolerant schedules but also reduces scheduling cost so that it 
may be well applied to dynamic environments. 
     The remainder of the paper is organized as follows. 
In Section 2 we briefly describe Ghosh’s algorithms and 
mention their drawbacks. In Section 3 we propose an 
improved FSP algorithm that can overcome the problems of 
Ghosh’s algorithm. Simulation results are represented in 
Section 4. In Section 5 we discuss future work and provide 
some concluding remarks. 
 
2. Overview of FSP and LTH Algorithms 
 
In our fault-tolerant real-time system model, we consider 
only transient and intermittent faults which are short-lived 
malfunctions in a hardware component, affecting at most 
one task executing on that hardware component. We 
assume that all input occurs at the beginning of task 
execution, and outputs are generated only at the end of 
tasks, so that the whole task can be re-executed if it has to 
be aborted due to a fault. Any task with input or output in 
the middle of its execution can be broken into smaller tasks 
to satisfy this condition. Given a set of tasks and scheduling 
policy which is based either on the timing constraints of the 
tasks (e.g., Earliest Deadline First), or on their priorities 
(derived from their importance), that policy imposes a total 
ordering of tasks. We assume that this total ordering of 
tasks is implemented in the form of a queue. FSP and LTH 
algorithms are devised to efficiently insert backups into that 
queue so that a fault-tolerant schedule is possible. 
     The FSP algorithm is based on an analytical model 
that will now be described. In this model, a task is 
represented by a tuple Ti = <ai, di, ci>, where ai is task 
arrival time (and its earliest start time), di is its deadline, 
and ci is its worst case execution time. The maximum 
possible value of ci for any task is denoted by Cmax. Let Qt 
be a queue of n tasks to be scheduled for execution starting 
at the current time, t0. In the absence of any fault, each task 
Ti in Qt, will meet its deadline if t0 + ΣCj < di. In the 
presence of faults, however, some tasks may need to be re-
executed and the time needed to complete the n tasks may 
be larger than Σ Cj. If ti is the time at which the first i tasks 
in Qt will complete execution in the presence of faults, then 
Ti will meet its deadline if ti < di.  

If any two faults are separated by an interval ∆f, the 
execution time ti of task Ti in a task queue Qt can be 

described by formula (1):     ti = t0 + ∑
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(1)  where β1,… βb are the lengths of some slots B1,…,Bb 
reserved for backup execution. Specifically, if the tasks 



T1,…,Ti are divided into subsets  ß1,…, ßb  such that ß1 = 
{T1,…,Tj1}, ß2 = {Tj1+1,…,Tj2},…, ßb = {Tjb-1,…,Ti}, and, for 
k = 1,…,b,      

 
ß k + ∑

∈BkTu
cu  ≤ ∆f     (2) 

ß k ≥ max {cu | Tu∈Bk}     (3) 
 

then t1 given by (1) is the maximum time needed to execute 
T1,…,Ti in the presence of faults. Each set ßk specifies 
consecutive tasks that are assigned to a backup slot βk for 
re-execution. If a fault occurs during the execution of a task 
in ßk, then this task will re-execute. Condition (2) specifies 
that at most one task from ßk will need to re-execute, and 
condition (3) specifies that the re-execution of any task in 
ßk will not require more time than βk, which is accounted 
for in the computation of t1 in (1). The above description 
can be summarized by the following proposition, and the 
FSP algorithm is based on this proposition. 
[Proposition 1] Let Qt be a queue containing n tasks at 
time t0, that is, Qt = {T1,T2,…,Tn}. Assume that if a fault is 
detected during the execution of a task, the task is re-
executed. If ti i = 1,…,n, computed from (1), (2) and (3) 
satisfy ti < di, and at most one fault occurs in any time 
interval of length ∆f  (∆f >= 2Cmax), then all tasks in Qt 
will meet their deadlines. 

We define a feasible schedule to be a fault-tolerant 
schedule that meets all the conditions of Proposition 1 and 
satisfies all the task deadlines. To illustrate how backups 
can be inserted into a queue conforming to Proposition 1, 
let’s consider an example: tasks in a queue are lengths 2, 3, 
3, and 1, their deadlines are 4, 10, 14, and 14.5 respectively, 
and the EDF scheduling policy is used. If ∆f is 10, the tasks 
can be divided into subsets, ß1 ={T1} and ß2={T2, T3, T4}, 
and backup slot βi and β2 will be 2 and 3 respectively. By 
using formula (1), the execution time t2 of task T2 is 
calculated in formula (4), and we know that t2 can meet its 
deadline d2.  

 

t2 = t0 + ∑
=

2

1j
jc  + ∑

=

2

1j
kβ  = 0 + c1 + c2 + βi + β2 

 = 2 + 3 + 2 + 3 = 10  ≤  d2                           (4) 
 
The execution time of other tasks can be calculated by the 
same formula and all tasks can meet their deadlines. Figure 
3 shows how a fault-tolerant schedule can be obtained in 
each case of task fault. 

As can be seen in Figure 3, every task can complete 
within time 12, no matter which task a fault occurs in. At 
this point, if we assume that deadline of task T4 is 12, the 
execution sequence of tasks will be T1, T2, T3, T4 since the 
arrival time of T4 is the latest among the tasks even though 
the deadline of T4 is earlier than T3. Here, according to 
formula (1), the execution time of T4 can be calculated as 

follows: 
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Figure 3. Example of Fault-Tolerant Schedule 
 

 

t4 = t0 + ∑
=

2

1j
jc +∑

=

2

1k
kβ  = 0 + c1 + c2 + c3 + c4 + βi + β2 

= 2 + 3 + 3 + 1 + 2 + 3 = 14 > d4                           (5) 
 

Therefore, even though a feasible (fault-tolerant) schedule 
(as in Figure 3) can be possible in the case where T4’s 
deadline is 12, the FSP algorithm does not produce a 
feasible schedule since the conditions in Proposition 1 are 
not satisfied as can be seen in formula (5). The reason is 
that the FSP algorithm does not consider the realistic 
situations that a fault does not occur within time interval ∆f 
after a first fault occurs. In order to overcome such 
problems, we propose an improved FSP algorithm while 
considering a more realistic assumption about fault 
occurrence. 
 
3. Improved FSP algorithm 
 
The basic approach of our proposed algorithm can be 
described as follows. The whole procedure of the algorithm 
consists of three phase. In the first phases, with the 
assumption that a fault occurs in any one task, a backup 
schedule is determined. At this time, a backup schedule of 
other tasks that can be completed within inter-fault time ∆F 
does not need to be considered because we assume that 
there are no additional faults during the minimum inter-
fault time ∆F after one fault occurs. By doing this, we can 
get an optimal backup schedule for at least one task set. In 
the second phase, with the assumption that a fault occurs in 
the next task to that assumed in the first phase, we generate 



a backup schedule. In this case, we can also apply the same 
assumption. That is, since there is no additional fault within 
the minimum inter-fault time ∆F, we don’t need to consider 
any backup schedule for tasks that arrive within ∆F time 
before a fault occurs in a task. In the second phase, by 
selecting the longest backup schedule among them, we can 
get an optimal fault-tolerant schedule for one task set that 
can be completed within inter-fault time ∆F. In the third 
phase, we apply the above procedures to the remaining 
tasks while dividing tasks into subsets that have the same 
time interval ∆F. Finally, we can get a global fault-tolerant 
real-time schedule that can reduce rejected tasks as much as 
possible. 
     We now turn to describing our algorithm in more 
detail with a concrete system assumption and explanation 
about the notation used in the algorithm. First, we assume a 
system environment as follows: 
A1) The system is a hard real-time fault-tolerant system 
with a single processor. 
A2) Tasks are non-periodic and scheduled in non-
preemptive manner when they arrive. 
A3) Every task is independent of every other. In the case 

where a precedence relation exists between tasks, the 
task is divided into independent tasks that have 
preparation time and closing time. 

A4) The execution time of a backup task is the same as that 
of the primary task. 
A5) There is no restriction on system resources. 
A6) There is a mechanism to promptly detect fault in a task. 
     In the next improved FSP algorithm, the following 
notations are used: 
.   A :  A set of tasks that can be scheduled. 
.  Hi:  A set of tasks that are included in the ith 

scheduling period, which means a set of tasks that do 
not need backup scheduling after a fault occurs in the 
first task in Hi. 

.  Wi,j: The scheduling time when a fault occurs in the jth 
task  in the ith scheduling period. 

.  Wi:  The longest schedule in the ith scheduling period. 

.  Ci,j: The execution time of task j in the ith scheduling 
period. 

.  TaccK: The Boolean value to indicate whether the kth 
task is accepted or not (rejected). 

.  dj : Deadline of task j 
 
The improved FSP algorithm, by using the assumption that 
the minimum inter-fault time is always larger than ∆F, 
determines a set of tasks (Hi) that do not need backup after 
the first fault occurs (line 3~4). In line 6, with the 
assumption that the other task in Hi has a fault, it calculates 
scheduling time continuously. Among these schedules, it 
selects a schedule that has the longest scheduling time as a 
final schedule of the first scheduling period (line 10). At 
this time, if there are tasks that cannot meet their deadlines, 
they are removed from a task set A (line 7~9). As can be 

seen in the algorithm, the time complexity of our proposed 
algorithm is O(n) because it executes a For Loop in line 2. 
It is comparable to the FSP algorithm whose time 
complexity is O(n2). 
 

1 A = ∅∅∅∅ ; i=1 ; j=1 ; f_flag =False ; 
     n = number of task ;        (7) 
2 For k=1,…,n Do { 
3   determine Hk ; 
4   Wk – Wk-1 ; 
5     For j = min(Hk),…,max(Hk) Do {
6       Wk,j = Wk-1 + 2cj + 

∑
≠≠=

)max(

,,1

Hk

falseTacceptjll
c  

7       If (Wk,j >>>> dj) Then 
8         Tacck = False ; 
9       Else A ←←←← Tj   
10       Wk = max(Wk + Wk,j) ; 
11       } 
12 } 
13 Return (A); 
 
Figure 4. Improved FSP algorithm 
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Figure 5. Example of scheduling with the 

improved FSP algorithm 
 

     In order to describe our algorithm more clearly, we 
will explain by simple example (Figure 5). Let’s suppose 
that there are four tasks, T1, T2, T3, and T4. Their time 
values (arrival time, execution time, deadlines) are 
T1(0,2,4), T2(1,3,9), T3(4,3,14), and T4(9,1,13.5) 
respectively. We assume that ∆F is 10. First of all, we 
decide Hi that can be scheduled within ∆F with the 
assumption that a fault occurs in T1. Hi will be {T1, T2, T3}. 
After this, with the assumption that a fault occurs in T2 or 
T3, we calculate the corresponding scheduling time and 
select the longest one (W1). In this example, the length of 
W1 will be 11. In the next step, after a set of tasks H2 is 



decided (here, H2 = {T4}), the same procedure is repeated.  
 
4. Performance Evaluation 
 
In order to show the improvement offered by our 
scheduling algorithm, we did some simple experimentation 
with analytical analysis. In the experiment, we randomly 
generated 500 tasks having the average computation time 
(40) and the average deadline (120). We also generated 
faulted tasks with the fault rate (0.2) so that they had the 
minimum inter-fault time ∆F (200). Figure 6 shows the 
simulation results that estimate the number of rejected tasks 
between Ghosh’s LTH algorithm and our EFSP (Extended 
FSP). We found that the number of rejected tasks is greatly 
affected by the ∆F value. In our experimentation, 
approximately half of tasks were rejected in case of LTH. 
On the contrary, many fewer tasks are rejected in our EFSP 
algorithm. 
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Figure 6. Simulation Results 

 
5. Conclusion 
 
Ghosh proposed two fault-tolerant scheduling algorithms 
for a real-time single processor environment: FSP (Feasible 
Shortest Path) algorithm and LTH (Linear Time Heuristics). 
Even though Ghosh devised a formal model for fault-
tolerant real-time scheduling and developed scheduling 
algorithms based on that model, there is a drawback, since 
Ghosh’s algorithm assumes that there is at most one fault 
within time interval ∆f and does not consider inter-fault 
time. In this paper, we have proposed an improved FSP 
algorithm on the more realistic assumption that there is no 
additional fault during the minimum inter-fault time ∆F 
after one fault occurs. The proposed algorithm can improve 
system performance by including more primary tasks in a 
fault-tolerant schedule and is also more applicable to 
sporadic real-time task scheduling due to its similarity of 
task arrival pattern. The next step in our work is to clarify 
and improve our algorithm through careful quantitative 
analysis. 
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