
Multi-Tenant, Secure, Load Disseminated SaaS
Architecture

Zeeshan Pervez, Sungyoung Lee
Department of Computer Engineering, Kyung Hee University, South Korea

{zeeshan, sylee}@oslab.khu.ac.kr

Abstract – The availability of high speed internet has diversified
the way we used to intermingle with each other. The emergence
of social networks and interactive web applications has left a
dent in existing software and service delivery models. Software
vendors now not only focus on functionality but also have to
cater delivery model of their software. On-demand and
ubiquitous accessibility has become an inimitable selling point
for software vendors. In the last few years we have witnessed a
term “Cloud computing” thronging blogs and search engines.
Cloud computing is on-demand service delivery; services
ranging from Infrastructure, Platform and Software. With the
materialization of Amazon Cloud Computing Service we have
seen exponential increase in interest of business as well as
research community in Cloud computing Orchestra. Now
technological oracles are offering their software in Cloud as
Software as a Service (SaaS). Every service provider is laying on
line to gain competitive advantage over each other, there is need
to delineate development guideline for SaaS. Without any doubt
security is one of the main concerns for Cloud computing
environment but unfortunately in the mist of security issues
general recommendations for efficient Cloud has faded away. In
this paper we have proposed a Cloud computing architecture
focusing SaaS, which provides general specifications for SaaS
design and for services implemented in it.

1. INTRODUCTION:
Over the time we have seen some dramatic changes in

software delivery model; from stand alone applications to
client server architecture, from distributed to service oriented
architecture (SOA). All of these transformations were
intended to improve ease of use and to make business process
execution efficient. New software delivery model emerges
due to the fact that either the earlier delivery model were not
supporting the business need or technological advanced has
broken some barriers which were considered to be inevitable
in the previous ones. Exponential increase in processing
power of enterprise servers, adoption of virtualization, service
oriented architecture and availability of high band width to
the masses has introduced new type of software delivery
model known as Software as a Service (SaaS). SaaS is a
software delivery model, which provides customers access to
business functionality remotely (usually over the internet) as a
service [1]. SaaS addresses issues like service abstraction,
reliability, data accessibility and interoperability.

Leading companies in information technology industry are
gradually moving their applications and related data over the
internet and delivering them through SaaS [2]. Google has
used SaaS platform to offer web applications for
communication and collaboration [3], gradually replacing
recourse exhaustive desktop applications. Similarly Microsoft
is offering their development and database services though
SaaS platform codename Microsoft Azure [4]. SaaS is
preached by the companies like SalesForce.com, 3Tera,
Microsoft, Zoho and Amazon, as a result of which business
specific services can be consumed in ubiquitous environment.

2. MULTI-TENANT ARCHITECTURE:
SaaS not only has altered the software delivery model, but

it also had amended the way in which software is developed.
SaaS introduces the concept of Multi-Tenant, in which same
software is used by multiple users or even by the different
enterprises at the same quantum of time.

SaaS can be categorized into four levels of maturity [5].
First level services are Ad Hoc/Custom which dictates that
separate instance of a service is deployed for each tenant. At
second level services are Configurable; it is similar to the
previous level, except that each service is configured
according to the tenant business need; apart from that the core
functionality provided by every service remains the same.
Third level is Configurable, Multi-Tenant-Efficient; the
previous two levels did not support multi tenant, but at this
level services are designed to be accessed by multiple service
consumer at a same time, without compromising the data of
each tenant. At the fourth level services are Scalable,
Configurable, Multi-Tenant-Efficient. This level is same as
previous level, but additionally support multi tenant and
services are configurable with the business need. This level
focuses on the quality of service, and Service Level
Agreement (SLA) which is signed between service provider
and service consumer.

All of the above mentioned levels categories fall under the
category of SaaS. The difference is how these services are
provisioned to be consumed by the service consumer.
Undoubtedly last level is the more preferable from service
provider because of its maintainability and scalability point of
view.

mailto:zeeshan,%20sylee%7d@oslab.khu.ac.kr�

3. SAAS AND PROPOSED CLOUD COMPUTING
ARCHITECTURES:

Cloud computing is broader term which included
Infrastructure as a Service, Platform as a Service and
Software as a Service [6]. It has become a unique selling point
for products which are in their development phases and even
to the new versions of existing products. Recently Microsoft
has release their office suite in cloud computing environment
[7]. Service consumer can consumer MS Office, thus
leveraging their applications with SaaS. Service providers are
talking about moving data center and commutation intensive
applications to cloud.

Search engine around the world receive enormous number
requests about cloud computing. Figure 1 shows the result of
Goolge Trend showing the popularity of Cloud Computing in
year 2009.

Figure 1 Google Trend for Cloud Computing

Whenever new technology or technique is introduced it not

only works as a remedy for the existing problems; but it also
brings in new threats and challenges. Same is the case with
SaaS. CIO and CTO are rolling their sleeves up to adopt
Cloud computing, and are offering their software over the
wire as a service. On the other side service consumers are
adopting Cloud computing in their application, to empower
their applications with enterprise services at very cheap rates.

A large number of research material has been published
discussing Cloud computing and it potential usage in current
business scenario. Ample effort has been made by Cloud
computing evangelists to clearly draw a line between IaaS,
PaaS and SaaS. [1], [8] and [9] presents their Cloud
computing model which address different issues ranging from
over all orchestra of Cloud computing, to security and
performance issues in it. Most of the research is focused on
what and what should not be delivered as s service, and talk
about mainly IaaS and PaaS. Unfortunately none of them
discusses how different components in Cloud computing
architecture interact with other form SaaS point of view.

SaaS could be one of the stepping stone towards the
adoption of Cloud computing. There is a need to propose a
Cloud computing architecture focusing on SaaS; which
identifies what are the necessary components and how would
they interact. As a result introducing robustness, reliability,
performance to Cloud computing and bring peace of mind to
service consumer from security of view. There is lack of end
to end solution for SaaS based applications which provides
guideline for service consumers and service providers; how
has step forward to embrace Cloud computing for their
applications.

4. MULTI-TENANT, SECURE, LOAD DISSEMINATED SAAS
ARCHITECTURE

Here is this paper we present a cloud computing
architecture especially focusing on Software as a Service
(SaaS). Our proposed architecture is developed considering
security and load balancing requirement in cloud computing
environment. Apart from that one of the main factor which
was considered during the designing phase of this proposed
architecture was Multi-Tenant nature of Cloud computing.
Multi-tenant is essence of Cloud computing, but injecting
multi-tenant support in software poses some challenges not
only to service provider but to service developer as well. With
the help of proposed architecture; which we called Multi-
Tenant, Secure, Load Disseminated SaaS Architecture
(MSLD), we have made software development and
provisioning tranquil for both stake holders. Figure 2 shows
the proposed architecture.

Core focus of MSLD is to make realized service as light as
possible in terms of service delivery. With MSLD, realized
services in cloud computing environment no longer have to
deal with security aspect in multi-tenant delivery model.
Apart from security concerns MSLD take off unnecessary
execution from the realized services and disseminate them to
the appropriate services which are distinctively designed for
this exclusive purpose.

MSLD is divided into five following services depending
upon their functionality in Cloud computing orchestra.

• Responder Service
• Routing Service
• Security Service
• Logging Service
• Service Realization

The purpose of these services is to make the MSLD
architecture loosely coupled in order to achieve seamless
integration and service up gradation. Apart coupling and
cohesion, these services are also aligned with the general
requirement of Cloud computing, that is on-demand resource
provisioning and service virtualization.

A - Responder Service:
It works as an entry point in MSLD. The core functionality

of this service is to entertain request originating from diverse
type of service consumers. Due to nature of heterogeneous
environment of cloud computing this service is designed to
handle different type of request, ranging from Personal Digital
Assistance (PDA) to personal computers to services hosted in
Cloud by other enterprise (public and private cloud).

Consider a case in which MSLD hosts NASDAQ Core
Service (NCS) [12]; these types of services provide
functionality to diverse consumers. As NCS will be offered as
SaaS; there is a need to categorize (mobile, desktop and
enterprise request) request generating from different service
consumer mentioned earlier. All of these service consumers
have their benefits and limitations, because functionality
offered on PDA application will be limited as compared to
personal computer, on the other side the requirement of cloud
is far greater than of personal computer.

To handle diverse type of request we have introduced
Response Generation Component, which generates response
according to the requester capabilities. By adding this
component to Responder Service we have added an extra
layer for abstraction for service developer. Now there is no
need to write code for handling different types of service
consumers at service level.

By virtue of Responder Service, service developer can
focus on business process instead of wasting their efforts on
communication layer, and writing separate components for
each category of service consumer. One of the benefits of this
type of categorization; service provider can apply different
type of Service Level Agreements (SLA) on different
categories.

Figure 2 - Multi-Tenant Secure Load Disseminated
Software as a Service Architecture

B - Routing Service:
This is one of the main component is MSLD, it indexes

every service hosted by MSLD, besides this it validates the
request in order to reduce the execution over head on the
service next to it. Routing Service is composed of three
components Service Manager, Request Parser and Validation
Rule Component. Each of these components inter
communicate with each other to rout incoming request to
realized services. Routing Service takes on the responsibility
of request validation as well.

Service Manage (SM) works like an indexer for every
service and it keeps record of functionality offered by them.
Functionality depends on the service implementation; service
targeted to business process mostly exposes more than one
interfaces. Request Parser (RP) parses the incoming request to
check whether it conforms to the defined XML schema. XML
schema is maintained for every realized service which
contains at least one subschema for the functionality provided

by the realized service. This type of validation helps in
identifying the missing fields in incoming request earlier then
it is actually executed. Validation Rule Component (VRC) is a
repository which is used to validate incoming request but at
the higher level of degree as compared to RP. VRC describes
business rules for the service like valid range of values and
valid data types. Table 1 shows the example of service
validation file.

Considering the same example discussed in previous
section in which MSLD hosts NASDAQ Core Service, which
itself composes of multiple services like Audio Webcasting,
Dynamic Annual Reports, Insurance Benchmarking, Press
Release Distribution and Board Management Solutions. All of
these services could be replicated in the virtual environment
depending on their demand curve. So there is need to keep
track of each service and to identify which request should be
transferred to which instance. There are some cases in which
variant services offer different request with same name, as
they are developed independently. Suppose that Dynamic

Annual Reports and Insure Benchmarking offer different
functionality with same name like GetStockStatistics. To
manage this duplication SM, RP and VRC interact with each
other and decide request belongs to which service. In this
decision making process request is parsed to check it
compliance with which service.

Table 1-Service Schema File

<ServiceName>

 <GetStockStatistics>
 <Input_Parameters>
 <Parameter_1 Name =‘StockId’

Value=’DT_0019’ Type=’NString’/>
 <Parameter_2 Name =‘Date’ Value=’5/7/2009’

Type=’Date’/>
 .
 .
 .
 </Input_Parameters>
 </GetStockStatistics>

 <Functionality_Name>
 <Input_Parameters>
 <Parameter_1 Name =‘’ Value=’’ Type=’’/>
 <Parameter_2 Name =‘’ Value=’’ Type=’’/>
 .
 .
 .
 </Input_Parameters>
 </Functionality_Name>

</ServiceName>

C - Security Service:
Security has been the concern of information technology

industry. Every new technology has to brawl with it to make it
adaptive within the society. Same is the case with Cloud
computing. When switching to the Cloud computing platform;
irrespective of it nature (Infrastructure as a Service, Platform
as a Service or even Software as a Service), service
consumers always ask about their data security and
confidentiality.

In MSLD design Security Service is dedicated for security
purpose which controls authentication and authorization
process. Every incoming request has to pass through the
Security Service. Other services like Responder service and
Routing Service depends on its response. In short Security
Service validates that whether coming request is from
legitimate user. In addition to this it also confirm that whether
the requester posses the rights to consume the service.

MSLD introduces two level of security Level-I and Level-
II. First one deals with sessions which have been active for a
while; and later the newly generated sessions. The purpose of
introducing two level of security is to hike up system
performance and to increase user experience and certainly to
establish more reliable security measures.

Responder Service on receiving request form service
consumer delegates to Security Service, which checks it for
Level-I security. If it qualifies it then begins the authorization
process to check whether the service consumer has privileges

to access requested service. During this process if any of the
qualifying tests is not passed by the request it is send back to
Responder Service which then propagate error message to the
service consumer.

The Level-II security deals with newly created session,
when user login to the system first time to create a valid
session it is routed to Level-II security which authenticate the
requester from valid customer repository, and then grants the
permission to consume the service.

MSLD does not impose any restriction on how
authentication or authorization should be implemented. For
authentication any Single Sign On (SSO) protocol can be
implemented. SSO is preferred, as software is being offered as
a service, so multiple requests could be send to the realized
service in order to complete single business transaction, in
this scenario SSO is an ideal authentication process. For the
authorization process MSLD does not restrict service
implementer to any specific authorization model. Any
authorization model can be implemented like Mandatory
Access Control, Discretionary Access Control.

Each time service in registered to Routing Service it also
provides the authorization rules to Security Service. Table 2
shows the example of authorization information. Whenever
new service consumer is registered to a service, it is recorded
in Security Service. By isolating this type of functionality
form realized services we can reduce execution load on them
and hence can improve quality of service.

Table 2 Service Authorization Information

<ServiceName>
 <GetStockStats>
 <Subscribers>
 <Name = ‘Company A’ Access_Rights=’R’>
 <Name = ‘Enterprise XYZ’

Access_Rights=’RWE’>
 .
 .
 .
 </Subscribers>
 </GetStockStats>

 <Functionality_Name>
 <Subscribers>
 <Name = ‘’ Access_Rights=’’>
 <Name = ‘’ Access_Rights=’’>
 .
 .
 .
 </Subscribers>
 </Functionality_Name>
</ServiceName>

D - Logging Component:
The logging component is multifaceted component is

MSLD. Firstly it serves as an auditing component in case of
service failure. This helps in identify the source and reason of
service failure which ultimately helps in meeting SLA and to
improve quality of service. Secondly the solution offered in
Cloud follows the business model of pay-as-you-go; you pay
only what you have used. In this situation logging component

proved to be utilitarian, it logs every request entertained by
the architecture, which in the end facilitates in charging the
client for what they have used instead of subscription based.

This is one case in which service consumer is charged on
per request basis; additionally one could come up with a new
pricing model in which data generated by the service
(response) could be used to charge the service consumer. It
depends on the service provider how it uses this factor, more
data more cost or more data less cost. By introducing such
pricing model service provider can gain competitive as well
strategic advantage on traditional software vendor. This could
be one of the driving forces to encourage service consumer to
migrate their application or data to cloud computing
environment.

E - Service Realization:
Service Realization hosts the implemented services which

will be exposed to the service consumer. This service is
implemented keeping in view the Multi-tenant nature of
Cloud computing (SaaS). As described earlier MSLD unties
functionalities which could cause hindrance in adoption of
Multi-tenant from the actual service implementation. We have
shown how security and load balancing has been disseminated
around the architecture instead of implementing it in the
service itself. Any type of service can be hosted in Cloud
ranging from simple tax calculation service to complex
enterprise services like procurement, accounts, and billing
service. It exposes an interface to the Routing Service, on
receiving the incoming request; it routs it to the appropriate
service.

At the very initial level MSLD delegates the functionality
of handling the incoming request to Responder Service. By
separating this logic from actual service we have leverage the
service developer to focus only on service implementation
and not on making service interoperable to diverse service
consumers.

In multi-tenant environment access control is one of the
concerns, service developers’ deals with; by stripping off the
access control logic from service implementation we have
reduced the complexity of access control from actual service.
Now service developers only describes the access control
rules in the security component during registration process;
and in the actual execution security component automatically
validates them on behalf of service realization. Untying
access control logic from service implementation also helps in
registering new tenant to the service, now there is no need to
code extra access control checks each time new tenant is
registered.

5. REQUEST PROPAGATION IN MSLD
MSLD architecture is based in SOA; each service exposes

an interface to communicate with other service. Figure 3
shows how services in MSLD architecture interact with each
other to provide services to consumer whilst addressing
security concerns of service provider and service developer.

Figure 3 Interaction between difference services of MSLD

Service consumer requests for a service by interacting with

 responder service. On receiving the request form service cons
umer, it checks whether the request is generated from the legit
imate customer and has valid session. To validate the request
Responder Service routs the request to Security Service, whic
h confirms the requester authenticity. First it will check whet
her user has the valid Session Id and has the privileges to exec
ute the requested service. If session id is not valid or does not
exists in the local cache then it will ask its credentials, on succ
essfully proving it identity newly created Session Id is stored i
n local cache for upcoming request to boost up the processing
time.

Once the request passes the security it is being logged by th
e Logging Service with all of its details like service consumer
info, requested service, time of request and request parameters.
 Then it is being forward to Routing Service, to avoid unneces
sary service execution on invalid request, incoming request is
validated against the request schema file which list all of the n
ecessary parameters along with their data types and valid rage
 of values (business rule).

On successfully conforming to the defined rules request is
passed on the Realization Service which checks the request an
d pass it to the appropriate service. Once the execution proces
s is completed response is send back to the responder service.
On receiving the response from the realized service it check th
e type of service consumer; to transform the response accordi
ng. This ensures the response is generated according to the ca
pabilities of requester. This feature MSLD ensure that single i
nstance of a service is used to serve different type of service c
onsumer. Besides this it also facilitate the service developer to
 focus on service implementation instead of trying to achieve i
nteroperability.

Multi-Tenant Secure Load Disseminated SaaS Architecture

Service Consumer Responder Service Security Service

Authenticate &
Authorize
Request

Security Checks
(Level – I , Level – II)

Security Service
Response

Request for a service

Logging Service

Log the incoming
request

Routing Service

Log the incoming
request

Realization Service

Validate Request

Request to
realized service

Response from
requested service

Response transformation
according to

service consumer type

Transformed response

6. CONCLUSION
MSLD is a SaaS targeted Cloud computing architecture

which focuses on over all service interaction form service
consumer and service provider point of view. MSLD address
the issues of security, performance and load management in
SaaS. MSLD sets general guide lines for service interaction
and does not dictates any type of communication protocol and
security technique, it totally depend on the service provider
how he provision hosted services. Moreover it shows how
request from ubiquitous environment could be efficiently
handle by Cloud computing environment without the need to
alter service implementation. MSLD also highlights the fact
that by extracting authorization, authentication and validation
logic form the realized service and distributing them to the
appropriate layer could greatly improve the performance
which ultimately helps in increasing user experience and
meeting SLA.

7. ACKNOWLEDGEMENT
This research was supported by the MKE (Ministry of

Knowledge Economy), Korea, under the ITRC(Information
Technology Research Center) support program supervised by
the NIPA(National IT Industry Promotion Agency)" (NIPA-
2009-(C1090-0902-0002)). Also, it was supported by the IT
R&D program of MKE/KEIT, [10032105, Development of
Realistic Multiverse Game Engine Technology].

8. REFERENCES
[1] Sun, W., Zhang, K., Chen, S., Zhang, X., and Liang, H. 2007. Software

as a Service: An Integration Perspective. In Proceedings of the 5th
international Conference on Service-Oriented Computing (Vienna,
Austria, September 17 - 20, 2007).

[2] Zhang, L. and Zhou, Q. 2009. CCOA: Cloud Computing Open
Architecture. In Proceedings of the 2009 IEEE international Conference
on Web Services - Volume 00 (July 06 - 10, 2009).

[3] Google Web Applications for Communication and Collaborations.
http://www.google.com/apps

[4] Microsoft Windows Azure Platform.
http://www.microsoft.com/azure/default.mspx

[5] http://msdn.microsoft.com/en-
us/library/aa479069.aspx#docume_topic10

[6] Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., and Brandic, I. 2009.
Cloud computing and emerging IT platforms: Vision, hype, and reality
for delivering computing as the 5th utility. Future Generation Computer
Systems. 25, 6 (Jun. 2009).

[7] http://www.microsoft.com/presspass/features/2009/sep09/09-
17officewebapps.mspx

[8] Hudli, A. V., Shivaradhya, B., and Hudli, R. V. 2009. Level-4 SaaS
applications for healthcare industry. In Proceedings of the 2nd
Bangalore Annual Compute Conference on 2nd Bangalore Annual
Compute Conference (Bangalore, India, January 09 - 10, 2009).
COMPUTE '09

[9] Karabulut, Y. and Nassi, I. 2009. Secure Enterprise Services
Consumption for SaaS Technology Platforms. In Proceedings of the
2009 IEEE international Conference on Data Engineering (March 29 -
April 02, 2009). ICDE. IEEE Computer Society, Washington, DC,
1749-1756.

[10] F. Chong, G. Carraro, R. Wolter. Multi-Tenant Data Architecture. June
2006.

[11] http://msdn.microsoft.com/en-us/library/aa479086.aspx
[12] NASDAQ Core Services.

http://nasdaqomx.com/whatwedo/servicesforcompanies/usmarket/cores
ervices/

http://www.google.com/apps�
http://www.microsoft.com/azure/default.mspx�
http://msdn.microsoft.com/en-us/library/aa479069.aspx#docume_topic10�
http://msdn.microsoft.com/en-us/library/aa479069.aspx#docume_topic10�
http://www.microsoft.com/presspass/features/2009/sep09/09-17officewebapps.mspx�
http://www.microsoft.com/presspass/features/2009/sep09/09-17officewebapps.mspx�
http://nasdaqomx.com/whatwedo/servicesforcompanies/usmarket/coreservices/�
http://nasdaqomx.com/whatwedo/servicesforcompanies/usmarket/coreservices/�

