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ABSTRACT
The fundamental problem of the existing Activity Recogni-
tion (AR) systems is that these require real-world activity
data to train the underneath activity classifier. It signifi-
cantly reduces the applicability and scalability of the sys-
tem. An AR system trained in an environment would only
be applicable to that environment and would not be able to
recognize new activities of interest. To overcome such dif-
ficulties, in this paper we propose a simple and ubiquitous
sensor based AR system that uses web activity data to train
its classifier. It would work to almost any environment and
would be scalable by its very design. Given a set of activities
to monitor, object names with embedded sensors and their
corresponding locations, the ARHMAM first mines activity
data from web, and uses these to build a Hidden Markov
Model (HMM). In comparison with the existing web data
based AR systems, it has the following advantages: (1) it
uses more strong activity model, (2) it reduces the mining
time significantly. It is observed that the class accuracy of
activity recognition of our system for a real-world dataset
is more than 64%, which is 20% more in comparison with
its counterpart. Additionally, the mining time complexity is
far better than its counterpart.

Categories and Subject Descriptors
H.4 [Ubiquitous Systems Applications]: Miscellaneous

Keywords
Activity recognition, web, Activity model, and HMM

1. INTRODUCTION
The purpose of an Activity Recognition (AR) system is to

observe, understand, and act on day-to-day physical activi-
ties (e.g. sleeping, and cooking) of one or more individuals
[5, 6, 7, 11, 14, 15]. Such computing systems have profound
conceptual and practical implications. These systems have
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long been a goal of researchers due to its strength in provid-
ing personalized support for many diverse applications such
as medicine and health-care.

The fundamental problem of the existing AR systems is
that these require real-world activity data to train the un-
derneath activity classifier. The system that would work to a
particular environment, needs to acquire data for a prespec-
ified period of time with the help of one or more individuals
(to label their own activities). It limits the acceptability and
scalability of the system. Given a large number of activities,
and the fact that individuals are lay persons, it would be dif-
ficult to obtain much labeled data [16]. Additionally, an AR
system trained in an environment would not be applicable
to other environment. Moreover, such system needs exten-
sive interaction with the domain experts during the training
phase.

To overcome the above limitations, we need an alternate
source of activity data such that an AR system can use such
source to train the classifier. Advancement of Internet and
WWW encourages millions of users to promote billions of
web pages of varieties of contents [3]. A fraction of these
pages describe in details how to perform daily activities.
They do not only state the activity but also depict where
to perform this activity, what objects to use and in what
sequence. These pages can be regarded as the textual repre-
sentations of real-world activities. An AR system would be
broadly applicable and scalable by its very design if it can
use such pages to train the classifier.

A few efforts have been made to train the activity classifier
from web data (we call it, Train From web (TFW)) rather
than from the real-world data (we call it, Train From Envi-
ronment (TFE)) [12, 16]. In [12], Perkowitz et al. proposed
a TFW based system, which is packaged with thousands of
activity models for different domains. It significantly limits
the applicability of the system because they fail to capture
the idiosyncrasies of the environment to which it will be
deployed [16]. Although the proposed system in [16] has
focused on a particular environment, the mining method is
extremely time-consuming. It might take hours to mine a
single activity data.

Additionally, the classification accuracy of the above ap-
proaches is not up to satisfactory level. This is mainly
because their activity models are only Object-usage Based
Models (OBMs). The problem of using only OBM is that
in any environment there could be tens of objects, many
of these could be used for may activities. For example, re-
frigerator can be used for cooking or it could be used for
bathing. It would be hard for an AR system to discriminate



such activities using only OBMs.
To overcome the aforementioned limitations, in this paper,

we propose a Location-and-Object-usage Based observation
Model (LOBM) which can be used by a HMM to classify
activities. We then develop a novel and a straightforward
algorithm to mine activity data for that model. The algo-
rithm uses a set of advance operators of a search engine to
mine object-usage and location-usage knowledge for the ac-
tivities. It not only reduces the mining time dramatically,
but also makes the system easy to use and configure and
highly scalable. We performed three experiments to validate
our systems performance and we proved that our proposed
mechanism achieved higher recognition accuracy in compar-
ison with its counterpart.

The rest of the paper is organized as follows. In Section 2,
we presented the reviews of previous works related to AR.
In Section 3, we described the proposed activity recognition
system. In Section 4, we presented our experimental results
to support our claims. In Section 5, we concluded our paper
with a direction of future work.

2. RELATED WORK
A variety of simple and ubiquitous sensors based AR sys-

tems have been proposed. For example, Tapia et al. [14]
first employed such sensors for activity recognition. The au-
thors provided the ESM in a PDA to the user to annotate
their daily activities. Näıve Bayes classifier was used to rec-
ognize activities. They have showed an excellent promise,
even though their mechanism suffers from low recognition
accuracy. Kasteren et al. [15] used the similar settings, ex-
cept their annotation technique was quite innovative. They
employed predefined set of voice commands to start and end
points of an activity through a bluetooth enabled headset
combined with speech recognition software. The problem of
this annotation technique is that, it can not be guaranteed
that the start and end points of an activity will always be
marked properly by the participants. They did not even
alert the participants to label the start and end points.

Perkowitz et al. [12] introduced the notion of mining the
generic activity models from web. They have shown that it
is possible to convert the natural-language recipes into ac-
tivity models. And these models can be used in conjunction
with RFID tags to detect activity. Their model consists of a
sequence of states and is based on a particle filter implemen-
tation of Bayesian reasoning. Their model extractor works
as follows:

∙ Select a set of websites like, http://www.ehow.com/,
http://www.epicurious.com/ that describes activities,
and understands the HTML structure of such website,

∙ search for a page that describes an activity and extract
the activity direction from this page,

∙ set the title of the direction as the label of the activity,

∙ parse and extract the object phrases from the direc-
tion,

∙ remove the phrases that do not have noun sense,

∙ calculate the object-usage probability using the Google
Conditional Probability (GCP),

GCP (oi) =
ℎitcount(object activity)

ℎitcount(activity)

where hitcount(x y) is the number of pages Google
returns if we search with x and y.

∙ finally filter the tagged object (object with embedded
RFID tags) from the phrases.

They use a Sequential Monte Carlo (SMC) approximation
to infer activities probabilistically. They borrowed the in-
ference engine from [11]. Despite their good performance
in classifying hand-segmented object-use data, they suffered
from low accuracy and limited applicability. In addition to
this, they used specific web sites whose formats were known
before mining the activity models [16].

Wyatt et al. [16] proposed an Unsupervised Activity Recog-
nition System (UARS) using mined model from web. They
first developed two algorithms: First one is the document
genre classifier that would identify the pages describing an
activity. Second one is the object identification algorithm
that would extract objects from a page and calculate the
object’s weights within the page.
Their proposed algorithm of mining for an activity works as
follows:

∙ It first queries the Google with the activity name along
with“how to”as the discriminating phrase. The Google
would return the number of pages it has indexed in its
server for the query.

∙ The algorithm then retrieves P pages as the top z
pages within the total pages returned by Google. In
their paper they did not define the optimal value of
z. The efficiency of mining is clearly related to z, the
larger the value of z is the more efficient the mining
would be.

∙ It then determines P̃ , a subset of P , as the activity
pages using the genre classifier.

∙ For each page p in P̃ , it extracts the objects mentioned
in the page and calculates their weights, ŵ using object
identification algorithm.

∙ Finally, the algorithm calculates the objects usage prob-
abilities for that activity using following formula:

p(object∣activity) = 1

∣P̃ ∣
∑

p wobject,p

They assemble an HMM, M , from the mined information.
It has the traditional 3 parameters: 1) prior probabilities
for each state ¼ were uniformly distributed, 2) the transition
probability matrix T , which is set to a constant probabilities,
3) and the observation probability matrix B, where Bji =
p(objecti∣activityj).

Our work is closely related to above two works. We de-
veloped an AR system using simple and ubiquitous sensors
that would be broadly applicable, and easy-to-use. Our sys-
tem also mine activity data from web to train its classifier.
Despite these similarities, we have several differences which
are summarized below:

∙ We use both object and location in the same model.

∙ The proposed mining algorithm not only dramatically
reduces the mining time, but also makes the system
easy to use and configure.
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Figure 1: The Graphical model of a Hidden Markov
Model.

∙ Our proposed system is highly scalable. We can add
new activity or new object by simply giving activity
name or the object (with embedded sensor) name.

In summary, the proposed system uses more sophisticated
activity model to improve the accuracy of activity classifi-
cation. It uses straightforward algorithm to mine activity
data from web and dramatically reduces the mining time.

3. ACTIVITY RECOGNITION SYSTEM
Given a set of activities to monitor, object names (with

embedded sensors) and their corresponding locations, the
goal of the AR system is to recognize subject’s activity from
a series of activated objects (as the subject interacts with
the objects) at any given time.

Let A = {a1, a2, ..., am} be the set of activities to
monitor, O = {o1, o2 ..., ot} be the set of objects and
L = {l1, l2, ..., lq} be the set of locations in the environ-
ment. Where, m, t, and q are the total number of activities,
objects, and locations respectively. Let Θ = {µ1, µ2, ..., µn}
∈ O be the activated objects (or set of object-usage se-
quence) at any given time and lµ1 , lµ2 , ..., lµn ∈ L be the
corresponding locations. Where, n is the total number of
activated objects. The goal is to map the observation se-
quence (i.e. activated objects, Θ) into predefined activity
labels.

We utilize the Hidden Markov Model (HMM) to capture
this mapping, which requires us to do the followings:
-learn the HMM parameters from web,
-infer the activity labels for the observation sequence.

3.1 The Hidden Markov Model for AR
The Hidden Markov Model (HMM) is a sequential proba-

bilistic model in which the system being modeled is assumed
to be a Markov process with hidden states. The transitions
among the hidden states are governed by a set of probabil-
ities called transition probabilities. In a particular state an
observation can be generated, according to the associated
probability distribution. The graphical model of an HMM
is shown in Figure 1. It consists of a Hidden state (e.g.
activity) at at time t and the observation (e.g. activated ob-
jects) Θt on each state. Hidden state at time t depends on
the previous state at time t− 1. And the observed variable
at time t depends on the state at time t. The goal is to find
the joint probability distribution,

P (a,Θ) =

T∏
t=1

P (at∣at−1)P (Θt∣at) (1)

Where, P (at−1∣at) is the the transition probability from
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Figure 2: An example: Location specific activities.

state at−1 to at and P (Θt∣at) is the probability of observing
Θt in state at.

If we train an AR system from environment, we count
the number of occurrences of transitions, observations and
states to find the probabilities that maximize the joint prob-
ability [15, 13]. However, as we consider web data to train
the classifier, there is no way we can count the transitions
because the these are highly subject dependent. Therefore,
the transition probability matrix T is set to a constant prob-
abilities (similar to [16]). We can only count the number of
occurrences of observations.

We have n number of distinct observation symbols per
state (i.e. the activated objects Θt). The observation sym-
bols correspond to the physical output of the system being
modeled. For our case we consider activated objects and
their corresponding locations as the observations symbols
per state. We describe more in details in the following sub
subsection.

During inference, the Viterbi algorithm is used to find the
the most likely labels for the new observation sequences [15].
This algorithm has been successfully applied with HMM to
solve many activity recognition problems.

3.1.1 Location and Object together as the observa-
tions

Most of the AR systems [15, 12, 16, 8] utilize the object
as the only observation. The downside of such systems is
that the number of distinguishing objects between activities
decreases if the number of activities to monitor grows. Such
systems would produce more confusion between activities
because there will be many overlapping objects.

Location of a person’s provides important context infor-
mation which is extremely helpful to make the classification
decision [4, 10]. It is common to observe a specific location
for an activity. For example, the kitchen can be observed
for cooking and the bathroom for bathing. The group of
activities are limited for a given location as shown in Fig-
ure 2. Combining both location and object as observations
would increase the separation between activities, in compar-
ison with the object only observation model.

3.1.2 Observation probability distribution in a state
Recall that in our case we consider activated object (object-

usage) and their corresponding location (location-usage) as
the observation symbols per state. We now formally define
the distribution model.



Definition 1. The Location-and-Object-usage Based obser-
vation Model (LOBM) is a mixture model which involves a
linear interpolation of location-usage and object-usage, us-
ing an Influential Coefficient (IC), 0 < ® < 1 to control the
influence of each.

P (Θt∣at) =

∣Θ∣∏

k=1

(¸P (ltµk ∣at) + (1− ¸)P (µtk∣at)) (2)

where, ltµk is the location of the object µtk, P (ltµk ∣at) and

P (µtk∣at) are the probabilities of location and an object usage
respectively for a given an activity, at, at time t.

A large value of ® means more emphasis on location and a
small value of ®means more emphasis on object. The IC can
be set to a value that maximizes the average performance of
the classifier.

3.2 Activity mining
In this subsection we first define the goals of activity min-

ing and then we describe the mining algorithms to accom-
plish these goals.

We can see from Equation (2) that during training we
need to estimate the following probability distribution:
P (lµi ∣at), P (µi∣at)
The goal of mining is therefore to provide sufficient activity
data such that these can be used to estimate the distribution.
By the term activity data we mean the knowledge associated
with the object-usage and location-usage for an activity.

To ease the understanding of the mining algorithm, we
need to know the types of activity pages that are available
in web.

3.2.1 Types of activity pages in web
There are two types of pages in WWW which are re-

lated to human activities: The Explicit Activity Catalog
Page (EACP) and the Implicit Activity Catalog Page (IACP).

Definition 2. Explicit Activity Catalog Page (EACP): A
web page is an Explicit Activity Catalog Page (EACP) if it
provides instructions in detail, how to perform an activity.
Such a page has a title, which in most cases contains the
activity name. It also has a body, which provides detail de-
scriptions of how to perform the activity and may also specify
the object-usage and location-usage for that activity.

For example, the web page1 shown in Figure 3 is an EACP
that contains the activity name (i.e. “bathing”) in its title.
In description section, it describes how to perform that ac-
tivity and what object(s) (e.g. door, lights) to use and their
usage sequence.

Definition 3. Implicit Activity Catalog Page (IACP): A
web page is an Implicit Activity Catalog Page (IACP) if it
does not directly defines how to perform the activity but in-
stead provides the instructions that would influence the ac-
tivity. It has the similar features (e.g. object-usage) as an
EACP.

For example, the web page2 shown in Figure 4 is an IACP
that describes the list of steps required to make bathing safe

1http://www.healthguidance.org/entry/7400/1/
Bathing-in-Style---The-Art-of-Bathing-Well.html
2http://ezinearticles.com/?id=2148355

Bathing in Style - The Art of Bathing Well
...

The perfect length of a bath is 10-15 minutes. After that your skin 

starts to wrinkle and your water gets cold. It is always good to have a 

bottle of water available since a warm or hot bath can be dehydrating. 

Be sure to sip water if you feel the need. Some people prefer a glass 

of red wine, champagne or port to help relax. Or you can have a cup 

of green tea or even chamomile tea to help you relax. Lock your 

door, turn the lights off and light as many candles as you can 
(candles are essential as they affect your mood). Support your head 

with a bath pillow or a folded up towel. Pick a nice relaxing CD, 
close your eyes and enjoy your peace and quiet.

...

Figure 3: An explicit activity catalog page that pro-
vides information related to object usage for an ac-
tivity.

Table 1: Google Query Modifiers and Operators.
Name Description

“” We use the quotes to force Google to search
for the exact phrase. For example, the query
[“Preparing dinner”] would find the pages con-
taining the exact phrase “Preparing dinner”.

intitle If we include [intitle:] in our query, Google
would return all the web pages containing the
word in their title. For instance, the query
[intitle:“Preparing dinner”] would find all web
pages that have “Preparing dinner” in their ti-
tle.

+ We can force Google to include the word(s)
in search result. For instance, the query
[intitle:“Preparing dinner” +“Butler pantry”
would find all the pages containing the phrase
“Preparing dinner” in their title and contain-
ing the phrase “Butler pantry” in their text.

for independent seniors. In detail description section of this
page, it mentioned the terms like, “bathroom”, “bathtub”,
and“doorway”. It does not directly reflect the steps required
for bathing but it provides information that is related to
bathing.

3.2.2 Mining of activity data from web
The mining algorithm uses Google to search the number

of pages that describe an activity. Searching on Google is
simple, choosing the appropriate search terms is the key to
find the required information [1]. Google supports a bunch
of advanced operators, which are query words and have spe-
cial meaning for Google. We can modify our search in some
way, or even instruct Google for a different search [2]. For
instance, “intitle:” is a special operator, and the query [in-
title:Bathing] does not do a normal search, instead finds all
the web pages that have Bathing in their title. Table 1 shows
the modifiers and operators we used to mine activity data.

Figure 5(a) shows the schematic diagram for mining. The
corresponding algorithm is shown in Algorithm 1. For each



How to Make Bathing Safe For Independent 

Seniors
...

The simplest and most inexpensive remedy is to have a bath seat

installed. This way, the user can have a seat in the bathtub for 

stability. The seat would be too high to take a bath, so the best way to 

bathe in this manner would be to use a hand-held shower head. Keep 

in mind the drawbacks for this method: The user still must step over 

the side of the tub to get in and out, and they will have to manually 

clean themselves with the shower head. If the user's mobility is not 

terribly restricted, just a little slow or unsteady, this method could 

easily work.

A bath lift would work better than a bath seat for someone with 

limited mobility. These mobility aids allow a user to sit comfortably 

before lowering them down into the bath. Once they are ready, the 

device lifts them back up to a sitting position. Often, they will feature 

a transfer bench so that the user can "slide" over the edge of the tub 

to get in or out. Bath lifts are more expensive than bath seats, but can 

restore privacy and independence even for seniors with moderately 

severe mobility restrictions.

Installing a tall walk-in bathtub in a separate area of the bathroom
is probably the best way to guarantee safety for a senior with limited 

mobility. Walk-in bathtubs feature a doorway so that the user 

doesn't have to step over the side. While some walk-in bathtubs are 

meant to replace an ordinary bathtub as a permanent installation, I 

don't recommend those because they don't offer an easy way for the 

user to sit/stand and they will bring down the resale value of a house. 

Instead, opt for a tall walk-in bathtub with a bench. This type of 

walk-in tub can be removed from the bathroom when it's no longer 

needed. This way, the user can take a bath while sitting upright, 

similar to sitting in a hot tub. There's no need to lower the body to 

ground level, and getting in and out is easy. Walk-in bathtubs are 

gaining in popularity for residential use as more and more people 

decide that they are worth the cost to maintain their privacy and 

independence.

...

Figure 4: An implicit activity catalog page that pro-
vides information related to location and object us-
age for an activity.

activity ai ∈ A, the algorithm would first search the num-
ber of potential pages that describe ai, using the query
intitle :“ai”. Let the set of activity pages indexed (API)
by Google be Ω for the given query. The cardinality of
Ω is denoted by ∣n∣ = ∣Ω∣. Next step is to determine the
number of pages indexed by Google for the location (or
location pages indexed (LPI)) lj ∈ L within the activity
pages. The algorithm uses the query, intitle :“ai” + “lj”
to return the number of pages containing the lj in their
text for a given activity pages. Let Google returns m ⊆ Ω
pages that contain an occurrence of lj . Similarly, let p ⊆ Ω
be the pages return by Google (OPI), if it searches with
the query, intitle :“ai”+“ok”. The algorithm finally saves
API(ai) = ∣n∣, LPI(lj ∣ai) = ∣m∣ and OPI(ok∣ai) = ∣p∣
into repository such that the observation probabilities can
be estimated.

3.2.3 Number of queries require for mining
Given a set of activities A, objects O and their correspond-

ing locations L, the total number of queries, r, required by

for each ai in A

search Google with the query,
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Figure 5: Activity Mining.

Algorithm 1: Mining(A, O, L). Activity information
mining.

Data: List of activities A, List of objects O, List of
locations L

Result: Activity Pages Indexed (API), Location Pages
Indexed (LPI) and Object Pages Indexed
(OPI)

for i Ã 1 to lengtℎ(A) do1

APIi = this ÃSG(“intitle :“ai””); /* SG (Search2

Google) would return the number of pages

indexed by Google for the given query */;
for j Ã 1 to lengtℎ(L) do3

LPIij = this ÃSG(“intitle :“ai”+“lj””);4

end5

for k Ã 1 to lengtℎ(O) do6

OPIik = this ÃSG(“intitle :“ai”+“ok””);7

end8

end9

the mining algorithm to mine activity data from WWW is:

r = m+m(q + t); (3)

Where, m, t, and q are the total number of activities, ob-
jects, and locations respectively. As we can see in Algorithm
1, for m activities, it requires m queries to mine APIs, for
q locations and m activities, it requires mq queries to mine
LPIs, and for t objects and m activities, it requires mt
queries to mine OPIs.

For example, if we consider an environment where 20 ob-
jects are embedded with sensors in 5 different locations and
there are 10 activities to monitor. To mine the model pa-
rameters the mining algorithm would need 260 queries in
total.

3.3 Estimation of the observation symbol prob-
ability distribution

In this sub section we describe how the system transforms
the mined activity data into probability distribution. It uses
the following formulas (Equation (4), (5)) to calculate the



distribution:

P (lµi ∣at) =
LPI(lµi ∣at)∑
lj∈L LPI(lj ∣at)

(4)

P (µi∣at) =
OPI(µi∣at)∑

oc∈O OPI(oc∣at)
(5)

It is to be noted that to estimate the conditional probabil-
ity, the system uses

∑
lj∈L LPI(lj ∣at) or

∑
oc∈O OPI(oc∣at)

instead of API(at) as the denominators. For example, let
“Preparing Breakfast”, “Preparing dinner” be two activities,
and “Fridge”, “Oven” be two objects. After mining the ac-
tivity data for this scenario, we have,
API(Preparingbreakfast) = 53,
API(Preparingdinner) = 119,
OPI(Fridge∣Preparing breakfast) = 3,
OPI(Oven∣Preparing breakfast) = 4,
OPI(Fridge∣Preparing dinner) = 3 and
OPI(Oven∣Preparing dinner) = 5.
The system estimates the distribution as,
P (Oven∣Preparing breakfast = 4/(4 + 3) = 0.571,
instead of 4/53 = 0.075.
It means that we only consider the activity pages containing
the specified objects or locations to reduce the mining noise.
The mining noise is the noise associated with the number of
activity pages returned by Google (APIs). As we can see
in Algorithm 1, we use the query, intitle :“ai” to mine the
number of pages described an activity. It does not always
guarantee that the Google would return only the pages that
describe the activity ai. Therefore, to reduce such noise, PE
uses only the pages containing given objects or locations.

4. EVALUATION

4.1 Objectives
Our objective is to validate the performance of the AR

system. We performed three experiments to test our system:
First, we evaluate the classifier’s performance in classifying
activities. Second, we analyze the impact of the coefficients
® in classification. Finally, we compare different classifiers
in terms of their classification accuracy and mining time.

4.2 Experimental Setup

4.2.1 Setup for mining
The ARHMAM uses the site “http://ajax.googleapis.

com/” (developed by Google for applications to retrieve data
from the Google server asynchronously) to mine activity
data instead of the site “http://www.google.com/”. For ex-
ample, to search the API for “Cooking”, the mining algo-
rithm sends an HTTP request, “http://ajax.googleapis.
com/ajax/services/search/web?v=1.0&q=Cooking”. In re-
sponse, Google would return the formatted results like, esti-
matedResultCount (i.e. API), URLs of few the result pages
(usually 4), link of more results, etc. Searching with the
Ajax’s site would retrieve a bit old data with respect to
the original “http://www.google.com”. It is to be noted
here that it is not possible to search Google using “http:
//www.google.com” because it would not allow automated
search.

4.2.2 Setup for evaluating system’s performance
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Figure 6: The accuracies per activity (® = 0.5).

To evaluate the performance of the system we used the
data gathered by Kasteren et al. [15]. They deployed 14
digital sensors in a house of a 26-year-old man, attached
these to doors, cupboards, a refrigerator, and a toilet flush,
and they collected data for 28 days. Their activities were
chosen from Katz ADL index [9].

In our experiment, the sensor readings are divided into
units of 60 seconds as it was done in [15]. This time is long
enough for high recognition accuracy [15].

To test the TFE based learning technique, we used leave-
one-day-out cross validation. In this strategy, one day is
used for testing and remaining days are used for training.

As the activity instances were imbalanced between classes,
two types of measurements were used to evaluate the perfor-
mance of our system, similar to [15]. The time slice accuracy

was measured by,
∑N

i=1 detectedi==true

N
, and Class Accuracy

was measured by, 1
C

∑Nc
i=1 detectedi==true

Nc
. Where, N is the

total number of activity instances, C is the number of classes
and Nc the total number of instances for class c.

Even though the time-slice accuracy is a typical way to
evaluate classifier’s performance [15], it is not always true
for AR classifiers because dataset would contain dominant
classes that appear a lot frequently than others. For exam-
ple, the number of instances of “Toileting” is 114 and that
of “Dinner” is 10. If a classifier correctly classifies 110 in-
stances of “Toileting” (accuracy = 96.491%) and 4 instances
of “Dinner” (accuracy = 40%) then the time-slice accuracy
would be ≈ 92%, whereas the class accuracy would be ≈
68%. Therefore, class accuracy should be the primary way
to evaluate classifiers performance. However, in this article
we report both the time-slice and the class accuracy.

4.3 Experiment 1: Activity Recognition Accu-
racy

The purpose of this experiment is to test the classifiers
performance to classify the activities using mined data.

Figure 6 summarizes the results. The rightmost bar shows
the overall accuracy. We achieve an overall class accuracy of
64.31% (timeslice accuracy was 96.17%). Table 2 shows the
corresponding 7 × 7 confusion matrices. The entry in row
i, column j represents the percentage of times an activity



Table 2: The Confusion matrix.
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Going out 96.68 00.89 00.03 01.67 00.00 00.08 00.65
Toileting 08.16 50.00 05.79 28.68 01.58 02.37 03.42
Showering 04.15 78.11 14.34 00.00 03.40 00.00 00.00
Sleeping 00.00 00.30 00.01 99.68 00.00 00.00 00.01
Breakfast 00.00 16.51 08.26 11.93 63.30 00.00 00.00
Dinner 02.30 03.74 00.00 00.00 00.00 75.00 18.97
Drink 03.39 03.39 00.00 01.69 06.78 38.98 45.76
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Figure 7: Activity recognition accuracy using differ-
ent ® settings.

with ground truth label i was recognized as activity j. The
classifier performs worse in recognizing “Showering”. Most
of the time “Showering” is classified as “Toileting”. This is
because these two activities are closely related, same sort of
objects are used to perform these activities. Similar things
happened for “Drink” and “Dinner”.

4.4 Experiment 2: Varying the model coeffi-
cients

The goal of this experiment is to analyze the impact of
the coefficient, ®,in accuracy of activity classification. We
perform the test with ® values: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9 and 1.0. The results (for both timeslice and
class accuracy) are shown in Figure 7.

As expected, the accuracy of activity recognition are sen-
sitive to the ® values. For example, as we can see in Figures
7, for ® = 0.0, the accuracies of activity classification are
relatively low with respect to ® = 0.2. It indicates that
incorporating the location-usage based model significantly
improve the recognition accuracy. But only the location-
usage based model is not sufficient for high recognition. For
example, as shown in Figures 7, the accuracies were rela-
tively low when ® is set to 1.0. The best performance is
seen when ® is set to 0.5. It means that both location and
objects are equally useful to recognize activities.

Table 3: Comparison with other methods (class ac-
curacies are used to compare).

Accuracies of the classifiers (%)
TFW TFE

ARHMAM UARS AARS
64.31 47.21 71.75

4.5 Experiment 3: Comparison with the other
methods

The goal of this experiment is two-fold:

1. Compare the performance of the system in classifying
activities with both TFW and TFE based methods.

2. Compare the time complexity of our proposed mining
technique with the mining technique proposed in [16].

4.5.1 Performance comparison of classifiers
We compare the classifier’s performance with both TFW

and TFE based system. We compare with the TFE based
classifier proposed in [15] by Kasteren et al. (we call their
system as, Accurate Activity Recognition System (AARS)).
We also compare the classifier’s performance with a TFW
based classifier, proposed in [16]. The comparison results
are shown in Table 3.

In [15], Kasteren et al. proposed two probabilistic meth-
ods for activity classification, Hidden Markov Model (HMM)
and Conditional Random Field (CRF). We compare our sys-
tem’s performance with HMM, because in their experiment
class accuracy of HMM was better with respect to CRF.

It is observed that our methods achieved superior results
in comparison with the TFW based methods. With the pro-
posed mining technique, we achieve an accuracy of 64.31%,
whereas with the proposed mining technique of UARS, we
achieve an accuracy of 47.21%. With the AARS, accuracy
goes up to 71.75%.

4.5.2 Mining time comparison
We now compare the mining time of the ARHMAM with

the UARS [16]. The Figure 8, shows the required mining
times for ARHMAM and UARS. As expected, the proposed
system significantly reduces the mining time.

We analyze the total time, t, the ARHMAM and the
UARS would take to mine an activity data. For this pur-
pose, let us consider an environment to which there are 20
objects in 5 different locations, and we are trying to monitor
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Figure 8: Mining time comparison between
ARHMAM and UARS, Mining is performed in the
sequence as shown in the first column of Table 2, i.e.
1. Going out, 2. Going out + Toileting, 3. Going
out + Toileting + Showering, and so on).

1 activity (e.g. “Going out”).
The ARHMAM would take t = 1 + 1(5 + 20) = 26 (us-

ing the Equation (3)) seconds to mine activity information
regarding “Going out”, assuming that Google would take 1
second to provide the search result for each query.

We calculate total time, t, UARS would take to mine the
activity data, using following steps (in section 2, we describe
the mining method):

1. The UARS would first search Google with the query
“How to”“Going out”. Google would return P̂ pages.
Let us assume that ∣P̂ ∣ = 10, 700, 000 and we set t = 1
(assuming that Google would take 1 second for each
query).

2. It then retrieves P ⊂ P̂ pages . Let ∣P ∣ = 10, 700

(0.1% of ∣P̂ ∣).

3. It then determines P̃ ⊂ P , as the activity pages. Let P̃
= 107 (1% of ∣P ∣). To determine P̃ , the URAS needs
to load and check all the pages in P and it would take
2 seconds in average for each page. Therefore, we set
t = 1 + 10700 ∗ 2 = 21401.

4. For each page p ∈ P̃ , it extracts the objects mentioned
in the page and calculate their weights. Let us assume
that UARS would take 2 seconds (on average) per page
to extract and calculate objects weights. So, we set
t = 21615.

Therefore, the UARS would take 21615 seconds (or around 6
hours) to mine a single activity data, whereas the ARHMAM
would only take 26 seconds.

5. CONCLUSION AND FUTURE WORK
In this paper we present an activity recognition system

based on simple and ubiquitous sensors, which is broadly
applicable and easy-to-use. We consider an environment to
which a set of sensors are embedded with daily life objects.

We first address the problems of using real-world activ-
ity data to train an AR classifier and describe how to use
WWW as an alternate source of activity data. We then
address the problems associated with the models and the
mining techniques of the existing web based systems. Fi-
nally, we propose a new model and a novel way to mine
the model parameters from web. We have shown that it
is possible to use the proposed models along with a HMM
to recognize activities. We performed three experiments to
validate our systems performance and we proved that our
proposed mechanism achieved higher recognition accuracy
in comparison with its counterpart.

In this paper we have treated the sequence of object-usage
as independent and identically distributed (i.i.d.). Such a
approach, however, would fail to exploit the sequential pat-
tern of object-usage. To express such effect we need to re-
lax the i.i.d. assumptions. Therefore, in future, we would
propose a new observation model that would capture the
sequential pattern, and a new mining method that would
mine the object-usage sequence for an activity.
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