
Service Level Semantic Interoperability

Asad Masood Khattak, Zeeshan Pervez, A. M. Jehad Sarkar, Young-Koo Lee
Department of Computer Engineering, Kyung Hee University, Korea
{asad.masood, zeeshan, jehad}@oslab.khu.ac.kr, yklee@khu.ac.kr

Abstract— Interoperability is a collaborative and multifaceted task
to overcome the problems of incompatibilities among organizations,
structures, data, architecture, services, and business rules. To
achieve interoperability, the aspect for interoperability and
requirements for applications and services must be known. SC3
provides Ubiquitous Life Care (u-Life care) for robust healthcare
services, service suggestions, and change in system behaviour for
better care with low cost. Focus of this paper is on service level
semantic interoperability for u-life care to overcome the limitations
of publishing the service schema, expose all the service level
interfaces, and hardcode data interpretation and manipulation by
extending the standards of HL7 protocol for domain specific
services. Service level semantic and process level interoperability
framework architecture is proposed to achieve proper
communication of clients and third party services with SC3. By
incorporating semantic interoperability with the use of ontology, we
reduced the interoperability stack to three levels. This helped in
reducing its complexity and helped in intelligent processing of
request and redirection of request to appropriate hosts.

I. INTRODUCTION
Interoperability is the ability of any two or more entities to

communicate and exchange information meaningfully even
with the differences among them [1]. Achieving
interoperability among applications and services is a
challenging task that involves lot of technological aspects to
be resolved [2]. Technically, message should properly be
transported to the destination. Semantically, message contents
should be understandable for the receiver as it is for sender [3].
The technical interoperability is mostly achieved using
CORBA, SOA, and Web Services, while semantic
interoperability still remains the gray area and needs to be
unfolded. For message contents well known techniques of
tightly coupled model for interaction were used [1]. These
worked well, were cost-effective, and easy to deploy, but the
main issue was service evolution due to new changes.

To maintain quality and availability level of life care
services with powerful, flexible, and cost-effective
infrastructure for life care services that can fulfil the vision of
ubiquitous life care (u-life care) is required [4]. For this, we
have developed a platform architecture, called Secured
Wireless Sensor Network (WSN) - integrated Cloud
Computing for u-Life Care (SC3) [5] that supports a number
of proprietary services with two aims. Firstly, the services are
internalized but perhaps having significant storage and
computing time requirements in which case these services are
available for distributed application on multiple SC3-mounted

platforms. Secondly, the services are externalized so that
subscribed users may connect with and use these for their own
purposes. Examples of supportable services include real-time
home care and safety monitoring services, information sharing,
emergency connection services, and patient monitoring and
care services [4]. The security and privacy of user health data
is maintained by SC3 having internal security firewall.

Services in distributed instances of SC3 as well as third
party services communicate together. For their proper
communication even with their autonomous and
heterogeneous nature, the proposed Service Level Semantic
Interoperability (SLSI) makes them communicate properly.
An ontology for message composition and interpretation that
facilitates in achieving semantic interoperability is developed.
It is used to understand the inner contents of message. The
service interoperability stack has been modified from five
levels to three levels by incorporating ontology to handle most
of the heterogeneity issues. This provides low cost, simple,
more flexible, service on demand, less communication
overhead, and smarter processing of user request. SLSI
demonstrate the process of less communication overhead, no
schema publishing, and no interface exposition to the outer
applications. Using SLSI, SC3 share and access services from
other service providers in more real-time manner.

This paper is arranged as follows: In Section II we
demonstrate our modifications in service interoperability stack.
Section III is about the proposed semantic service level
interoperability framework architecture. In Section IV the
advantage of SLSI for less communication overhead is
discussed. In Section V we conclude our findings.

II. INTEROPERABILITY STACK
To achieve interoperability among services, application

developer need to know open requirements that cause
problems during service interaction. A set of five level aspects
with their requirements specifications are identified in [3] that
needs to work out for the purpose of achieving interoperability.
The author in [3] developed an ontology for end to end
communication as well as the interaction among services.

The requirements levels to achieve interoperability are
formalized by incorporating ontology. The division in levels is
based on entities involved in these levels. The base level is the
Technology Level (see Fig 1) where technical interoperability
is achieved for the purpose of agreeing on or accepting
particular encoding scheme for requests and response,
selection of communication protocol, selection of possible

2010 10th Annual International Symposium on Applications and the Internet

978-0-7695-4107-5/10 $26.00 © 2010 IEEE

DOI 10.1109/SAINT.2010.54

299

2010 10th Annual International Symposium on Applications and the Internet

978-0-7695-4107-5/10 $26.00 © 2010 IEEE

DOI 10.1109/SAINT.2010.54

348

2010 10th Annual International Symposium on Applications and the Internet

978-0-7695-4107-5/10 $26.00 © 2010 IEEE

DOI 10.1109/SAINT.2010.54

368

2010 10th Annual International Symposium on Applications and the Internet

978-0-7695-4107-5/10 $26.00 © 2010 IEEE

DOI 10.1109/SAINT.2010.54

368

2010 10th Annual International Symposium on Applications and the Internet

978-0-7695-4107-5/10 $26.00 © 2010 IEEE

DOI 10.1109/SAINT.2010.54

368

2010 10th Annual International Symposium on Applications and the Internet

978-0-7695-4107-5/10 $26.00 © 2010 IEEE

DOI 10.1109/SAINT.2010.54

368

2010 10th Annual International Symposium on Applications and the Internet

978-0-7695-4107-5/10 $26.00 © 2010 IEEE

DOI 10.1109/SAINT.2010.54

367

2010 10th Annual International Symposium on Applications and the Internet

978-0-7695-4107-5/10 $26.00 © 2010 IEEE

DOI 10.1109/SAINT.2010.54

375

2010 10th Annual International Symposium on Applications and the Internet

978-0-7695-4107-5/10 $26.00 © 2010 IEEE

DOI 10.1109/SAINT.2010.54

387

Fig. 1. Optimized Interoperability Stack

middleware, language, and the platform for working
environment. The encoding and connectivity requires the
specification of language, adaptors, middleware, and
organization service environment. At Business Level different
business strategies are imposed on the services, regulations on
the services, and mode of use. Business organizations have
different business strategies depending on their location and
scope of business and to work on these they define and
regularly refine their rules. This level is quite variable in
nature but is less effective on overall interoperability process.

The Semantic Level is the level that we merged (a) Service,
(b) Community, and (c) Organization Levels of stack designed
in [3]. Their focus is more on functions calls and response for
consumers request rather than dealing with the inner details of
request by incorporating semantics in the message contents.
Our extensions in ontology incorporate the explicit semantics
in message contents. These semantics are used in recognition
of requester intentions by interpreting the message contents.
The ontology will be used by all the service providers and will
compose their request and response messages in accordance to
that ontology. For this, we have extended the standard
vocabulary of Health Level Seven (HL7) [6] that is used as a
protocol for message composition and transportation and the
ontology presented in [3]. From message contents using
ontology, the service can interpret the requesting application
or service requirements and in response show the appropriate
behavior. Here, the incompatibility (syntactic and semantic) is
detected first and then appropriate conversion procedure is
followed to convert these messages to a compatible form. For
response the message is converted back to its original form.
Conversion is possible on both ends of request or response as
this stack is used on both sides. It also helps in loose coupling
among services and their functionality for implementation.

This service level semantic interoperability stack eliminates
some of the communication overhead. It only needs to send
the request and wait for response rather than sending request
for available interface(s) and the schema(s) separately for the
service to both UDDI (i.e., Universal Description, Discovery
and Integration) as well as the service providers. It is more
cost effective and flexible for dynamic environments where
requester and responder are not concerned with the schema on
the other sides.

III. SERVICE INTEROPERABILITY FRAMEWORK
SC3 services, due to its cloud-based environment, may be

accessed via standard web service approach i.e., sending and
receiving SOAP (i.e., Simple Object Access Protocol)
messages while using service information from UDDI.
However, because of the two ways in which the SC3 services
can be deployed, service discovery and service availability
communications can be optimized for service consumption.
For this we propose Service Level Semantic Interoperability
(SLSI) Framework that works to achieve semantic
interoperability and eliminate the tight coupling among
services. In this case applications only need the information
about the services provided by a particular web service. Then
a message is composed using a standard messaging protocol,
communicated among web services and application for
consuming the services. The tight integration of all the
components makes the semantic interoperability possible (see
Fig 2). In general, this architecture is applicable in all
available web services, but in our case we have used semantic
interoperability in our SC3 system to provide and avail
different services on subscription bases. Working detail of
these components is as given:

A. Request and Response
Responsibility of this module is to actively listen all

incoming as well as outgoing requests and responses from/to
outer world web services and applications. Its second
responsibility is to properly navigate the request and response
to appropriate modules within the service. For this matter
Request and Response module coordinate with its adjacent
modules.

B. Interaction
A complete track of interaction taking place for service

requests made by another service or application is maintained
in this module. The service or application request may be
partially or fully completed by a service on the local platform;
if partially, the remaining parts of the service request are
intelligently sent to other services or SC3 platforms that can
fulfil the needs of requester. So in this case all the indirections
followed for the completion will be maintained in this
interaction. This interaction is also used to answer back the
consumer in an efficient manner and also maintain a complete
history (of only subscribed consumers) of every interaction
with details for future reference in case required. It initiates a
thread for each request and response. Maintain information
about all the indirections for part of a message as well as for a
complete message. Different roles are assigned during
interaction that are useful for maintain the history properly.

InitiatorRole: is responsible for maintaining the history of
interaction initiator. SenderRole: Each interaction has a sender
role as there will be a sender of request for the interaction or
this service might be the requester. FulfillerRole: is designated
to fulfil the request of requesting service or application.
ReceiverRole: for request of this service fulfilled by another
service, the ReceiverRole receives the responder information.

300349369369369369368376388

Fig. 2, Service Level Semantic Interoperability (SLSI) Framework Architecture

C. Message Content Ontology (MCO)
It is a semantic structure, containing all the information

regarding Interactions, Message Types, organization rules,
and Trigger Events (see Fig 3). It is designed to provide a
standard structure for composing a generic message that can
be communicated and interpreted on any service. The HL7 [6]
document is used as a baseline for the development of
Message Content Ontology (MCO). It is required to address
any query about interaction or checking the message status
that the message is a request or response of a particular
request. MCO contains all the process artifacts, broker
information, message composition and decomposition,
interaction information, business rules, and trigger events see
Fig 2. It describes how they are associated with each other and
helps in automation as well as smart interpretation of message
contents. After finding out from the message contents suitable
service request, an appropriate service is activated.

MCO is also used to restructure partial messages to be sent
to other service providers while maintaining the semantics of
the existing message. When the messages are received on the
other side then MCO is used again to interpret the contents of
message and direct the message for appropriate service on that
particular platform.

D. Message Processing
Message Processing is one of the most important

components to achieve semantic interoperability. When
message is transferred from Request and Response module to
Message Processing module then it is intelligently parsed for
its intended service. The message type for request and
response is recognized in this module using MCO. In this
component we use Pellet (an inference engine) to infer the
intention of message. If the requested service is available then
the Trigger Event module is activated that initiates a thread of

that service, else it is directed to Service Broker that identifies
appropriate service for the request.

E. Trigger Event
Once the intent of message is identified then the required

service is activated with the help of Service Activator in
Trigger Event. It maintains complete session information for
the service execution till the job is completed and then the
results are returned to message processing module. If there are
some more results for the consumer then all these are
combined together and a response message is composed
which is then returned.

F. Service Broker
This module stores information of all domain relevant

services made available by particular service provider. In case
if some particular service demanded by consumer is not
available then the service broker is used to direct the
consumer request to its intended service. Information about
consumer’s intention is detected in Message Processing
module. So, consumer is not required to contact UDDI again
for the required service search. This eliminates the
communication overload for service discovery using UDDI.

IV. MESSAGE REDIRECTION
One of the most important features provided by Service

Level Semantic Interoperability (SLSI) is that the
communication load is reduced for service discovery at client
side using semantic interpretation of the message contents.
When any service of SC3 or any other service using SLSI
receives a request from an application or another service for a
job, then the job is completed on that service provider’s server,
but in case the required service is not available then this
current service will redirect the request to another service
provider rather than the requester searching again for service.

301350370370370370369377389

Fig. 3, Class view of Message Content Ontology.

The actual service search and consumption as well as the

modified one with the help of SLSI are shown in Fig 4.
Suppose, an application need to consume two services and
both services are not provided by a single provider then the
consumer will request twice for service discovery from UDDI
as shown in Fig 4 (black lines). While in SLSI, it only need to
search for one service and all related (domain specific)
services are indexed in service broker. So in message
processing module, SLSI will detect that the consumer also
need to consume another service that is not available here so it
will direct its second service request to the service broker and
that will direct the request to appropriate service provider (see
Fig 4, blue lines).

The results of requests are returned in two ways, (1) if the
request is a part for previous request then it is returned to
redirection node and the end results are combined together
and returned to consumer. (2) For a simple and single request
redirection, the results are simply returned to the consumer
rather than the redirection node. To achieve the facility of
redirection, a complete list of available related (domain
specific) services needs to be maintained. To detect the
message requirement proper interpretation of message
contents is important. This model also reduces the cost for
availing the services.

Fig. 4. Service discovery and consumption comparison for

communication overhead between traditional technique and SLSI.

V. CONCLUSIONS
Service Level Semantic Interoperability (SLSI) framework

has been proposed in this paper. To provide the semantic
interoperability, we have worked on service interoperability
stack. The proposed SLSI architecture is smart enough to
process message and understand the contents of message and
then respond accordingly. With the help of SLSI, we have
reduced the communication overhead among UDDI, service
consumers, and service providers. Currently we are working
on refinement of message content ontology as well as the
implementation of proposed system. The future intentions are
to work more precisely on service broker for efficient and
accurate communication for request and response. In future
we are also focusing on issues like service communication
from diverse domains. Considering different parameters like,
service updates and service migration are also in the pipeline.

VI. ACKNOWLEDGEMENT
This research was supported by the MKE (Ministry of

Knowledge Economy), Korea, under the ITRC (Information
Technology Research Center) support program supervised by
the NIPA (National IT Industry Promotion Agency)" (NIPA-
2009-(C1090-0902-0002)). This work was supported by the
IT R&D program of MKE/KEIT. [2009-S-033-01,
Development of SaaS Platform for S/W Service of Small and
Medium sized Enterprises].

REFERENCES
[1] D. Konstantas. Object oriented interoperability. In ECOOP ’93 - Object-

Oriented Programming: 7th European Conference, volume 707 of LNCS,
pages 80–102. Springer-Verlag GmbH, 1993.

[2] A. Bracciali, A. Brogi, and C. Canal. Dynamically Adapting the
Behaviour of Software Components. In F. Arhab and C. Talcott, editors,
COORDINATION 2002, volume 2315 of LNCS, pages 88–95.
Springer-Verlag Heidelberg, 2002.

[3] T. Ruoklainen, and L. Kutvonen, “Interoperability in Service-Based
Communities”. In Business Process Management Workshops: BPM
2005, C. Bussler and A. Haller, Eds., vol. 3812 of Lecture Notes in
Computer Science, Springer-Verlag, pp. 317–328, Nancy, France, 2005.

[4] A. M. Khattak, P. T. H. Truc, L. X. Hung, L. T. Vinh, V. H. Dang, D.
Guan, Z. Pervez, M. Han, S. Y. Lee, and Y. K. Lee, “Context-aware
Human Activity Recognition and Decision Making”, 12th IEEE
International Conference on e-Health, Networking, and Application and
Services, France, July 2010 (Accepted for Publication)

[5] L. X. Hung, P. T. H. Truc, L. T. Vinh, A. M. Khattak, M. Han, D. V.
Hung, M. M. Hassan, S. Y. Lee, Y. K. Lee, E. N. Huh, “Secured WSN-
integrated Cloud Computing for u-Life Care”, 7th IEEE Consumer
Communications and Networking Conference (CCNC), USA, 2010.

[6] Health Level Seven (HL7 V3), Meta-Model Version 1.14,
http://www.hl7.org/library/data-model/met/C114/met0114l.pdf

302351371371371371370378390

