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Abstract—Monitoring of physical activities is a growing field
with potential applications such as lifecare and healthcare.
Accelerometry shows promise in providing an inexpensive but
effective means of long-term activity monitoring of elderly
patients. However, even for the same physical activity the output
of any body-worn Triaxial Accelerometer (TA) varies at different
positions of a subject’s body, resulting in a high within-class
variance. Thus almost all existing TA-based human activity
recognition systems require firm attachment of TA to a specific
body part, making them impractical for long-term activity
monitoring during unsupervised free living. Therefore, we present
a novel hierarchical recognition model that can recognize human
activities independent of TA’s position along a human body.
The proposed model minimizes the high within-class variance
significantly and allows subjects to carry TA freely in any
pocket without attaching it firmly to a body-part. We validated
our model using six daily physical activities: resting (sit/stand),
walking, walk-upstairs, walk-downstairs, running, and cycling.
Activity data is collected from four most probable body positions
of TA: chest pocket, front trousers pocket, rear trousers pocket,
and inner jacket pocket. The average accuracy of about 95%
illustrates the effectiveness of the proposed method.

Index Terms—Human activity recognition; Autoregressive
Models; Linear Discriminant Analysis; Accelerometer

I. INTRODUCTION

The United Nations predicts that by 2100, 28.1% of the
world population will be aged 65 years or older [1]. With
this aging population comes an increased demand for ongoing
health monitoring and support for the elderly. Quantification of
daily physical activities is a key determinant in the evaluation
of the quality of life of subjects with limited mobility [2].
By analyzing, monitoring, and recognizing human activities,
much useful information about human health condition can be
extracted.

Over the past decade, many systems incorporating the use of
triaxial accelerometers (TA) have been developed to recognize
daily human activities. Some of these investigated the use of
accelerometers to analyze and classify different types of the
same physical activity, e.g., walking (along corridor, upstairs,
downstairs) [3], [4]. Others employed it for recognizing a wide
set of daily activities such as lying, sitting, standing, walking
and running [2], [5]–[15]. Most studies employed multiple TAs

attached at different sites on a subject’s body [2], [3], [8], [9],
[13]–[17]. While others investigated the use of a single TA
mounted at waist or sternum [4]–[7], [10]–[12], [18]–[20].

A large number of features have been explored including
wavelets [2]–[4], Signal Magnitude Area (SMA) and tilt
angle [5], [6], and Spectral Entropy (SE) [13]. As for the
recognition techniques, some studies incorporated the idea of
simple heuristic classifiers. Whereas others employed more
generic and automatic methods from machine learning litera-
ture. Thus, existing literature on physical activity recognition
using accelerometers varies in approach, intention, and out-
come.

In general, the output of any body-worn TA depends on the
position at which it is placed and can vary for the same activity
for different positions along the subject’s body resulting in
high within-class variance. The TA signals for walking, for
example, vary at three different positions as shown in Fig. 1.
Therefore almost all previous works require accelerometers
to be firmly attached to a specific body part such as arm,
wrist, chest, thigh etc, making them impractical for long-term
activity monitoring during unsupervised free living.

In our previous study on human activity recognition using a
TA [21], we proposed Autoregressive (AR) modeling [22] of
TA signals and used the AR-coefficients augmented with SMA
and tilt angle to form an augmented feature vector. A two-
level classification approach was then employed to recognize
eleven activities with an average recognition rate of about
98%. However, it also relied on firm attachment of TA to
subjects’ chests.

In this paper, we present a comprehensive approach to
address the TA’s position-independent activity recognition
problem. We validated our approach using six daily physical
activities. Activity data was recorded from four most probable
body positions of TA. The average accuracy of about 95%
illustrates the effectiveness of the proposed method.

II. METHODS

A. Sensor Device and Data Collection

In this study, we used a 2.4GHz Wireless triaxial Tilt
Sensor from Sparkfun called Witilt v2.5, shown in Fig. 2.
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Fig. 1. Sample acceleration signals for walking from three different positions.

It employs a FreeScale MMA7260Q triple-axis accelerometer
and a class 1 Bluetooth link from BlueRadios and features
a 4-level sensitivity scale (1.5g, 2g, 4g, and 6g). 20 hours
of activity data was collected in a home setting, outside the
laboratory. The sensor, with a sampling frequency of 90 Hz,
was placed on 10 healthy subjects (seven males, three females,
age: Mean = 45, SD = 5 years old) on 4 different positions:
chest pocket, front trousers pocket, rear trousers pocket, and
inner jacket pocket. We collected approximately 34 hours of
activity data. The activity dataset for each subject was then
divided randomly into the training and test sets in a roughly
40-60% split.

The six activities to be recognized were the resting activity
(sit/stand) and five dynamic activities i.e., walking, walk-
upstairs, walk-downstairs, running, and cycling. For realistic
recognition, brief movements such as stretching or changing
posture were allowed during resting. For a natural setting,
walking, walk-upstairs, walk-downstairs, and running were
performed outdoor at various speeds. The cycling activity
was recorded in a gym. Annotations were performed using
a bluetooth headset combined with a speech recognition soft-
ware [23].

B. Signal Processing

The real time data from an accelerometer contains some
noise that needs to be filtered out before using it for activity
recognition. A moving average filter of order 3 was incor-
porated to filter out random noise. Signal features were then
calculated for each second of the data collection i.e., a window

Fig. 2. Witilt triaxial tilt sensor from Sparkfun.

size of 90, with no overlapping between consecutive windows.
A brief description of these features is given below:

1) Spectral Entropy (SE): SE of the acceleration signal for
the frequency band f1 − f2 was calculated as

SN (f1, f2) =
−

f2
∑

fi=f1

P (fi) log(P (fi))

log(N [f1, f2])
(1)

where P (fi) represents the power spectral density (PSD) value
of the frequency fi. The PSD values are normalized so that
their sum in the band [f1−f2] is one. N [f1−f2] is the number
of frequency components in the corresponding band in PSD.
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2) Autoregressive Coefficients: An AR model can be rep-
resented as

y(t) =
p

∑

i=1

α(i)y(t − i) + ε(t) (2)

where α(i) are the AR-coefficients, y(t) the time series under
investigation which in our case is the acceleration signal from
the sensor unit and p the order of the filter which is generally
very much less than the length of the series. The noise term or
the residue ε(t) is assumed to be the Gaussian white noise. In
other words, the order of an AR model refers to the number
of past values of y(t) used to estimate the current value of
y(t).

3) Signal Magnitude Area: SMA has been found to be a
suitable measure for distinguishing between static vs. dynamic
activities using TA signals. It was calculated according to

SMA =
N

∑

i=1

(|x(i)|) + (|y(i)|) + (|z(i)|) (3)

where x(i), y(i), and z(i) indicate the acceleration signal
along x-axis , y-axis, and z-axis respectively.

The feature extraction proceeded by analyzing the behavior
of these features for different body positions for the same
activity. The performance of these features in discriminating
the corresponding activity from other activities for the same
position was also analyzed. This analysis lead to the following
findings:

1) SE differed slightly among different activity classes for
the same position except the resting activity. However,
the acceleration data for all dynamic activities registered
higher frequency components for lower-body positions
of TA i.e., front and rear trousers pocket. Whereas, lower
frequency components were registered for upper-body
positions of TA i.e., chest and inner jacket pocket.

2) AR-coefficients and SMA proved to be good discrim-
inating features for all activity classes. However, they
registered high within-class variance for each activity
class for different body positions of TA.

C. Classification Scheme

Based on the above findings, we devised a two-level
recognition approach. Its architecture is illustrated in Fig. 3.
At the lower level, SE along with an Artificial Neural Net
(ANN) is employed to recognize three classes i.e., the resting
activity, dynamic activity (upper-body), and dynamic activity
(lower-body). Such a devision helped reducing the within-
class variance for a particular dynamic activity resulting from
the upper and lower-body positions of TA. Separate ANNs
are then trained to recognize dynamic activities from these
positions.

If the resting activity is not recognized at the lower level,
then the AR-coefficients and SMA are calculated from the
noise reduced acceleration signal to form an augmented feature
vector. A high within-class variance and low between-class
variance due to different positions: front and rear trousers

Fig. 3. Block diagram of the proposed two-level recognition scheme.

pockets in the case of lower-body; chest and inner jacket
pockets in the case of upper-body, could still exist in this
new augmented feature space. Therefore, Linear Discriminant
Analysis (LDA) [24] is employed to minimize and maximize
these variances respectively. LDA patterns are then used by
the corresponding ANN to recognize the true activity. A brief
description on LDA is given below.

1) Linear Discriminant Analysis: LDA, a second order
statistical approach, is a supervised classification approach that
utilizes the class specific information maximizing the ratio of
the within and between class scatter information. In order to
obtain the maximum discrimination, it projects data onto the
lower dimensional space so that the ratio of the between and
within class distance can be maximized. The within Sw and
between Sb class comparison is done by following equations:

Sb =
c

∑

i=1

Ji(mi − m)(mi − m)T (4)

Sw =
c

∑

i=1

∑

mk∈Ci

(mk − mi)(mk − mi)T (5)

where Ji is the number of vectors in i− th class Ci. c is the
number of classes and in our case it represents the number of
activities. m represents the mean of all vectors, m the mean
of the class Ci and mk the vector of a specific class. The
optimal discrimination projection matrix Dopt is chosen from
the maximization of ratio of the determinant of the between
and within class scatter matrix as

Dopt = arg max
D

∣

∣DT SbD
∣

∣

|DT SwD|
= [d1, d2, ..., dt]T (6)

where Dopt is the set of discriminant vectors of Sw and Sb

corresponding to the c − 1 largest generalized eigenvalues λ
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and can be obtained via solving (7). The size of Dopt is t× r
where t ≤ r and r is the number of elements in a vector.

Sbdi = λiSwdi i = 1, 2, ..., c − 1 (7)

where the rank of Sb is c − 1 or less and hence the upper
bound value of t is c − 1.

2) Classifier: As validated by us in [21], we used ANNs
based on the feed-forward backpropagation algorithm. Dif-
ferent number of layers and neurons were tested in order
to optimize the performance. The training of ANN was also
repeated several times by changing the input order in a random
fashion. The training and the testing datasets were composed
of mixture of activity data collected from four body positions.

III. RESULTS

Performance of the proposed recognition system is then
validated in the following three studies:

A. Single-Level Recognition Without LDA

In this study, features including the AR-coefficients, SMA,
and SE were calculated to form a single feature vector. A 3D-
representation of the feature space is shown in Fig. 4, only four
classes are shown for the sake of visualization. Severe non-
linearity and a high within-class variance could be observed.
These features were used to train an ANN without employing
the proposed two-level recognition scheme and LDA. During
testing, each test activity was modeled in a similar fashion
and the corresponding ANN was used for recognition. Results
are summarized in Table I, showing an average recognition of
only 47.3%.

B. Single-Level Recognition With LDA

In this study, features including the AR-coefficients, SMA,
and SE were calculated. LDA was applied directly on the
feature space without employing the proposed two-level recog-
nition scheme. LDA patterns for four dynamic activities are
shown in Fig. 5. They show improved class separability but a
high within-class variance could still be observed. Results for
this study are also summarized in Table I, showing an average
recognition of only 57.3%.

C. Proposed Two-Level Recognition

In this study, the proposed two-level recognition scheme
was employed to achieve TA’s position independent activity
recognition. LDA patterns for four dynamic activities for
lower-body positions i.e., front and rear trousers pockets,
are shown in Fig. 6. A significant improvement on class
separability and low within-class variance could be observed.
Results for this study are also summarized in Table I with an
average recognition rate of about 95%.
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Fig. 4. 3D-feature plot for four dynamic activities recorded from four
different body positions, showing a high within-class variance.
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Fig. 5. LDA feature space for four dynamic activities, recorded from four
different body positions, after applying the single-level recognition system.

IV. CONCLUSION

Recognizing physical activities without firm attachment of
an accelerometer to a specific body part results in high within-
class variance and low between-class variance in activity
data. In this work, a novel recognition scheme is developed
and evaluated to recognize physical activities independent of
accelerometer’s position along a subject’s body. The proposed
technique is validated using six physical activities recorded via
a triaxial accelerometer from four different body positions.
With our proposed technique, activities could be monitored
throughout a longer period of time during unsupervised free
living as subjects could carry the accelerometer in their pockets
without attaching it firmly to a specific body part.
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TABLE I
AVERAGE RECOGNITION RESULTS(%) FOR THREE STUDIES

Activity Single-Level Recognition Single-Level Recognition with LDA Proposed Two-Level Recognition

Resting (Sit/Stand) 61 69 95

Walk down-stairs 40 51 96

Walk upstairs 44 51 95

Walking 44 52 96

Running 52 71 99

Cycling 43 50 89

Total 47.3 57.3 95
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Fig. 6. LDA feature space for four dynamic activities, from lower-body
i.e., front and rear trousers pockets, after applying the proposed hierarchical
recognition system.
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