
Integrated Streaming Service Architecture: A Streaming
Framework Compatible with Global Multimedia Databases*

Sungyoung Lee1, Byungsoo Jeong1

1 Dept. of Computer Engineering, Kyung Hee University, Seoul, Korea
{sylee@oslab.kyunghee.ac.kr, jeong@khu.ac.kr}

Abstract This paper describes a design for an integrated streaming framework that can
provide an environment to develop multimedia streaming applications under
heterogeneous distributed systems. Our streaming framework was designed to extend
the limits of existing streaming systems while offering easy interaction with other
streaming systems, to support diverse media formats and networks, and to provide high
level programming environment for streaming application developers. The framework is
also compatible with global real-time multimedia DBMS (BeeHive) so that streaming
media is efficiently retrieved, stored, and serviced using database systems.

Keywords: streaming, multimedia, audiovisual, real-time, database

1. Introduction
Streaming is a technology for multimedia communications that makes it possible to deliver and display
multimedia (such as audio and video) data in real-time. By using streaming technology, users can access
multimedia contents immediately upon demand without waiting for the whole file to be downloaded. It
is well suited to the transmission of video data with real-time characteristics and high bandwidth
communication requirements. It might be the only practical solution possible for live video streams.(It
makes the transmission of video date with real-time characteristics and higher bandwidth
communication requirements suitable.)

Numerous streaming systems existing, most systems do not consider important issues such as
interoperating ability with other streaming systems, supporting diverse media formats and network
interfaces. Thus they lack flexibility, extendibility, and network transparency. The increasing number of
coding and compression standards has led to a situation where heterogeneity is a growing problem. If a
server uses many different coding formats, clients must be able to decode these formats. In order to
relieve streaming applications from interoperability and heterogeneity concerns, there should be a
streaming framework which provides diverse audio and video CODEC and network interfaces.

Meanwhile, current streaming systems, either, simply provide users with multimedia files stored in
hard disks of the streaming server, or store the information of the multimedia data in a relational
database so that users can query on the information. Upon streaming, such a streaming system, which
interconnects with the relational database, transmits multimedia data stored in the file system of the
server. In other words, in such a system, the multimedia data is managed separately from its information
or meta-data. Therefore, multimedia services such as retrieval and join operations during streaming can
not be provided, since it still has the service constraints which file systems have.

In order to overcome the constraint, we also propose a Database Connector as an interconnection
scheme between multimedia database, so called BeeHive under development in the University of
Virginia, and ISSA(Integrated Streaming Service Architecture). Much research has been done in the area
of multimedia database systems. To our knowledge, however, there is no commercial multimedia
database that can be interconnected with any commercial streaming systems. So, as an interconnecting
target database system, we selected BeeHive, a global real-time multimedia database system, whose
source codes are accessible. BeeHive offers features such as real-time, fault tolerance, quality of service
for audio and video, and security dimensions. ISSA, on the other hand, is a streaming system framework
which is easy-to-extend, able to run adaptively on different operating systems and networks, and
supporting diverse audio/video media formats.

Through the interconnection between the streaming system and multimedia database, the
information related to the media under play can be retrieved in various formats as users require while
streaming. The users can also retrieve, join and stream the multimedia data according to their
requirements. Diverse multimedia services can be provided through the interconnection because not
only the information about the multimedia data but also the multimedia data itself are under the
management of the database system. For this purpose, in the Database Connector proposed in this paper,
transactions that can be processed in the multimedia database were defined, and interfaces for the
transaction processing were defined and implemented. A movie database was chosen as an application
area for the implementation, and Read, Write, Find and Play were defined as transaction primitives to
store and manage Movie Objects.

The interoperable interface model between ISSA and BeeHive consists of Transaction Interface and
Streaming Interface. The Transaction Interface deals with a series of functions through which ISSA

* Supported in part by contract IJRP-9803-6 from the Ministry of Information and Communication of Korea

clients request for transactions of BeeHive. The Streaming Interface provides a mechanism to stream
media between an ISSA client and the server. An IPC(Inter-Process Communication) based message
queue and a shared memory scheme are used for the message exchange between ISSA and BeeHive. In
this paper, we present an approach to designing an integrated streaming framework which can overcome
the limitations of existing streaming systems while providing diverse audio and video CODEC and the
ability to run adaptively on different operating systems and networks.

This paper proceeds as follows. Section 2 provides an overview of existing streaming frameworks
that are similar to our system. We describe the system architecture of our integrated streaming
framework in Section 3. We introduce the data base connector as a streaming framework compatible
with multimedia databases in Section 4. We show the performance result of the database connector as a
result of compatible with global real-time multimedia database (BeeHive) and ISSA in section 5 and
finally states our conclusion in Section 6.

2. Related Work
This section briefly describes existing streaming systems that are related with our work. Most of the
systems mentioned below are the programming environments that can efficiently manipulate real-time
multimedia streams like audio and video. CMT(Continuous Media Toolkit) is a multimedia
programming toolkit developed at MIT, which provides a programming environment for rapid
development of continuous media applications [1]. However, CMT is hard to be easily extended, since
its internal structure is very complicated and flat; furthermore, it does not follow the object-oriented
programming paradigm. VuSystem is a programming environment developed at MIT, which facilitates
the development of compute-intensive multimedia applications, combining intelligent media processing
with traditional capture and display [2]. However, VuSystem does not provide RTP and Multicast, and
its user interface has very limited functionalities. Furthermore, since VuSystem does not support media
compression, it cannot guarantee QoS in the environment of heterogeneous networks with different
bandwidths. KISS (Communication Infrastructure for Streaming Services) is a communication
infrastructure for streaming services that allows the transparent integration of network service
applications, and also adapts real-time content streams to network conditions and/or individual client
requirements [3]. Although KISS provides network transparency for streaming application developers, it
has the drawback of supporting only audio streams such as PCM and MPEG-1 audio layer 3, and it
suffers from the performance overhead of NAP.

To facilitate the development of standard-based distributed multimedia streaming applications, the
OMG (Object Management Group) has defined a CORBA-based specification for the control and
management of A/V streams [7], based on the CORBA reference model [5]. OMG A/V streaming
architecture is represented as a flow between two flow data endpoints. One endpoint acts as a source of
the data and the other endpoint acts as a sink. In the OMG streaming architecture, the control and
signaling operations pass through the GIOP/IIOP-path of the ORB, demarcated by the dashed box. By
contrast, the data stream uses out-of-band streams, which can be implemented using protocols that are
more suitable for multimedia streaming than IIOP. Washington University has developed the first freely
available implementation of the OMG A/V streaming model using TAO [6], which is a real-time
CORBA ORB that has been ported to most OS platforms [4]. However, the CORBA A/V streaming
service based on TAO does not implement the OMG specification completely. It implements a simple
MPEG video player that has session control functions only. Thus, it cannot be used as a streaming
framework.

3. Integrated Streaming Framework
This section explains the basic architecture and functions of ISSA, the streaming system proposed in
this paper, and the BeeHive multimedia database system. As shown in Figure 1, the ISSA framework
model consists of the Streaming Application, MOA(Media Object Architecture)[9] which is the
interface between ISSA and the Streaming Application, Database Connector, Gateway Module, and
ISSA. MOA further consists of the Application Interface and the Application Wrapper. The Application
Interface is divided into two parts, AMS(Agent for Multimedia Service) and Streaming Server. The
AMS integrates and distributes the information of the contents or sessions scattered in each streaming
server. The Streaming Server serves as a media transmission function through the integration of
RTSP(Real-Time Streaming Protocol)[10] modules, and plays the role of informing the AMS of the
contents it has or informing existing sessions. The Application Wrapper is composed of Directshow
Source Filter and Winamp plug-ins. The Directshow Source Filter is used for interconnection with MS
Windows Media Player, and Winamp plug-ins are used for the MP3 streaming services. The Database
Connector has the BeeHive Connector for the interconnection with the BeeHive real-time multimedia
database, and the Gateway Module consists of the CORBA Gateway for interconnection with
CORBA[11][12][13].

The basic architecture of ISSA, the core of the framework, is composed of Session, Transport,
Media and Resource Manager. The Session Manager is in charge of the session control of the RTSP-
based multimedia streaming service, and is configured to support unicasting and multicasting. It also
supports the interface for database transaction requests, and SCP(Session Control Protocol) for the
distribution and sharing of the content informations. SCP is defined for the communication between
AMS and the Streaming Server, and is used when the Streaming Server needs an update to add new
contents, or when the server needs to transmit its contents to the AMS as it is newly operated. The
Transport Manager is in charge of transmitting multimedia data using TCP, UDP and RTP(Real-time
Transport Protocol) [8]/UDP protocols, and also monitors the network status using the RTCP(Real-Time

Control protocol) protocol. The Media Manager is in charge of the media encoding/decoding, and it
supports MPEG-1, MPEG-2, ASF and MP3. The Resource Manager provides specification of QoS,
mapping, monitoring and controlling functions in the streaming system, and performs memory buffer
management and thread scheduling.

IS S A B a s ic A r c h i t e c t u r e

S e s s io n
M a n a g e r

T r a n s p o r t
M a n a g e r

R e s o u r c e
M a n a g e r

M e d ia
M a n a g e r

A p p l ic a t io n W r a p p e r
W in A m p
p lu g - in

D ir e c t s h o w
S o u r c e F i l t e r

D a t a b a s e C o n n e c t o r
B e e H iv e

C o n n e c t o r

S t r e a m in g A p p l ic a t io n

M O A (M e d ia O b je c t A r c h i t e c tu r e)

A p p l ic a t io n In t e r f a c e
S t r e a m in g

S e r v e r
A g e n t f o r

M u lt im e d ia
S e r v ic e

G a t e w a y M o d u le
C O R B A

G a t e w a y

[Figure 1] Architecture of the Integrated Streaming Service Framework

The BeeHive is a real-time multimedia database system which supports diverse multimedia

functions on the SHORE file system, developed in University of Wisconsin. It furnishes real-time
support, QoS for audio/video, fault-tolerance and security, and it is also adequate to apply the
interconnection method, proposed in this paper, because it is an open system. It is composed of the
Native BeeHive Sites, connection ports for the outside systems, and the interface for the interconnection
between the BeeHive and the outside systems.

4. Database Connector
In this section, we describe about developing the Database Connector as an interconnection method
between multimedia database, and the streaming framework. It is possible to support diverse and mature
multimedia database services such as retrieval and join operation during the streaming if an
interconnection method is provided in between streaming system and multimedia databases. The
currently available interconnection schemes, however, have mainly used the file systems or the
relational databases that are implemented with separated form of meta data, which deals with
information of multimedia contents, and streaming data which deals with multimedia data itself.
Consequently, existing interconnection mechanisms could not come up with many virtues of multimedia
database services during the streaming operation. In order to resolve these drawbacks, we propose a
novel scheme for an interconnection between streaming framework and multimedia database, called the
Inter-Process Communication based Database connector, under the assumption that two systems are
located in a same host. We define four transaction primitives; Read, Write, Find, Play, as well as
(define) the interface for transactions that are implemented based on the plug-in, which, in consequence,
can extend to other multimedia databases that will come for some later years.

There are two interfaces. One is the Transaction Interface which processes transactions needed for
the interconnection between the streaming system and the multimedia database, and the other is the
Streaming Interface which transmits the requested multimedia data. Four transaction primitives, Read,
Write, Find, Play, are defined in the Transaction Interface, where each transaction requests from users
are transformed into the transaction used in the multimedia database system. The Streaming Interface
sends the resulting multimedia data to the user. The Database Connector interconnects the Streaming
Server to the multimedia database. The IPC message queue is used to transactions, and the IPC shared
memory is used to exchange meta-data or multimedia data.

The overall structure for the interconnection between ISSA and BeeHive is as in Figure 2. The
ISSA module is composed of the BeeHive Connector, Media Manager and Transport Manager. The
BeeHive module consists of the BeeHive Server and a Movie Client which manages the movie database.
The IPC semaphores, same number as the number of memory blocks, is used in order to resolve the
synchronization problem which may occur when two systems use the IPC shared memory blocks.

Shared Memory
#1

Shared Memory
#2

BeeHive
Server

DataBase Connector

Transport
Manager

IPC Message Queue

Media Manager

mmMediaIOBeeHive

bcBeeHiveConnector

inDataBaseIPC

BeeHive
MovieClient

rmIPC

SendMsg()RecvMsg()

Media Data Block

Media Data Block

Request
Movie

Data
Streaming

BeeHive ISSA

[Figure 2] System Architecture for the Interconnection between ISSA and BeeHive

Figure 2 shows the proposed IPC-based interconnection model. Once the Database Connector

module receives a movie request from a client, BeeHive interconnecting module, bcBeeHiveConnector,
requests the media stored in the message queue. Then, BeeHive Movie Client sends the contents of the
message queue to the BeeHive Server, which, in turn, extracts the stored media and loads it into the
shared memory using the inDataBaseIPC, the plugin module for the shared memory access. Once the
media data is loaded in the shared memory, mmMediaIOBeeHive module in the Media Manager sends
the data to the Transport Manager, which, in turn, transmits the data to the client.

As shown in Figure 2, in the ISSA side, the classes implemented in order to interconnect two
systems are bcBeeHiveConnector, IPC shared memory, message queue, rmIPC for semaphores. In the
BeeHive side, IPC shared memory, message queue and inDataBaseIPC class, which accesses to
semaphores and database to fetch media data, were implemented. The bcBeeHiveConnector class
initializes the Database Connector and generates and removes sessions with BeeHive. The
mmMediaIOBeeHive class, inherited from the mmMediaIO class which selects and reads media source,
is used to open and read the media data stored in BeeHive upon interconnection. The rmIPC class
generates and controls the IPC shared memory and semaphores, and contains a method which sends
messages to BeeHive. The inDataBaseIPC class is in charge of all the database operations when
BeeHive interconnects with the streaming system. It accesses to the IPC shared memory from the
database side and extracts media blocks from the database.

Figure 3 shows a pseudocode which describes how the modules of ISSA and BeeHive interoperate
when multimedia data streaming is requested from the ISSA client. Messages delivered using the
message queue are classified into 6 types according to the contents of the Command field. Message r
generates a session, assigns a session ID, and fetches the information about the requested media. The
session ID acquired from the message r is used to generate an ID and an address for the IPC shared
memory and an ID for the IPC semaphore of which the object, in charge of ISSA's database IO,
generates. Once a message r is transmitted to the database, the information about the multimedia data
corresponding to the database ID, for example, the meta-data such as the title of the movie, name of the
director and actors in case of movie database, can be acquired. Message p requests the media block
stored in database for streaming. Once a message p is generated, the media block with the requested
Database ID is extracted from the database and copied into the shared memory. This process continues
until a message q is generated. Message q stops transmission of multimedia data. Once a message q is
generated, the database system stops copying the media block into the shared memory. Message l shows
the list of media currently stored in database. Message s stores multimedia data into database. Using the
message s, a unique database ID is assigned to the media to be stored. Message d deletes the
multimedia data from the database.

Line 1: ISSA Server receives the Multimedia Streaming Request from the ISSA Clients
Line 2: Initialize the BeeHive Connector and Get the Message Queue address from the BeeHive MoiveClient
Line 3: Create mmMediaIOBeeHive Object
Line 4: Send r Message to the BeeHive MovieClient // r message Creates session and requests the Media
 Information for the Multimedia Streaming //
Line 5: Create Shared Memory and Semaphore
Line 6: Get Shared Memory address and Semaphore key Value
Line 7: Send p Message to the BeeHive MovieClient // p message requests the invocation of streaming Start //
Line 8: While(Requested Media Block != End of Media Block)
Line 9: BeeHive Server copies Media Block to Shared Memory
Line 10: ISSA Server streams Media Block from Shared Memory
Line 11: Send q Message to the BeeHive MovieClient // q message requests streaming stop //

[Figure 3] Pseudocode showing operations between ISSA and BeeHive

The procedures down to Line 7 are self-explanatory. After the streaming start is requested, the
BeeHive Server extracts the media data through the inDataBaseIPC object, and copies the first media
data to the shared memory block, and then passes the control of the shared memory block to the
mmMediaIOBeeHive. The mmMediaIOBeeHive starts streaming the media block from the shared
memory. While the first media block is being streamed, the BeeHive Server copies the next media block
to stream to the other shared memory block. When there is no more data for streaming in the shared
memory block, the mmMediaIOBeeHive takes over the control of the next shared memory block to
continue streaming. The process between the BeeHive Server and the mmMediaIOBeeHive object
continues until the last media block is extracted by the BeeHive Server and streamed(Line 8,9,10). Once
all the blocks of the selected media is transmitted to the client, the mmMediaIOBeeHive object creates
the q message requesting the streaming to stop(Line 11).

5. Performance Evaluation of Database Connector
We executed performance evaluation under the intranet/internet environment with 10 Mbps bandwidth.
BeeHive and the ISSA server were operated on a SUN workstation with SunOS 5.5.1. The media data
was stored splitted into blocks in 512 Kbyte size in order to reduce the system load and minimize the
affect on the streaming service quality. The client was implemented using MicroSoft Windows Media
Player 6.4 with the RTP source filter developed in ISSA. We evaluated the performance in two ways.
First, we compared the RPC-based interconnection method with the proposed IPC-based
interconnection method, and tested which method is more efficient for streaming multimedia data.
Secondly, we compared streaming multimedia data stored in a file system with streaming media data
stored in a multimedia database with IPC-based interconnection method, and tested data transmission
rates (in seconds) in both methods to tell the differences.

We compared the performance of two cases, streaming media stored in file system and multimedia
database, by testing the data transmission rate. This experiment was performed under both intranet and
internet environments. We established a virtual experimental environment for more accurate comparison
with other streaming systems. We also operated the streaming servers for both file system and database
system on the same host at the same time, considering the fact that the network bandwidth changes in
time. The MPEG-1 media encoded in 1392640 bits/sec was used for the experiment. Figures 4 and 5
show the data transmission rate(BytePerSecond) of the streaming server under the intranet
environment(Experiment 1) and internet environment(Experiment 2), respectively.

 [Figure 4] Experiment 1: the Average Transmission

Rates of the Streaming Server for both File System and
Multimedia Database under Intranet Environment

 [Figure 5] Experiment 2: the Average Transmission
Rates of the Streaming Server for both File System and

Multimedia Database under Internet Environment

Through Experiments 1 and 2, we found that, in the case of streaming media stored in a file system,
the streaming server supplies regular amount of data regardless of the lapse of time. In the case of
streaming media stored in the BeeHive database using the IPC-based interconnection method, streaming
did not become stable until few seconds from the beginning of the streaming passed, due to the initial
delay to extract media blocks from the database. As shown in the Figures 12 and 13, in the case of
interconnecting with multimedia database, the graphs change inconstantly. This phenomenon is caused
by the time delay that occurs when the streaming server exchanges memory blocks to fetch media data.
The change in the data transmission rate is not big enough to affect the streaming process. Therefore, we
showed that the proposed streaming method using multimedia database system can provide multimedia
database services without big loss of performance, compared with the file-based streaming method.

6. Summary
This paper describes an integrated streaming framework that integrates heterogeneous environments and
work easily together with other streaming systems. Our streaming framework gives more robustness,
flexibility, and extendibility than existing streaming systems since it is designed according to an object-
oriented paradigm. It also supports diverse media formats and heterogeneous network environments.
Simplified APIs by MOA provide efficient programming environment for the streaming application
developer. Our streaming framework can also handle large amounts of media data through interworking
with DBMS.

Futhermore, we proposed an IPC-based Database Connector as an interconnection module between
the ISSA streaming system and BeeHive, a real-time multimedia database. The interconnection module
consists of the transaction interface to process multimedia database transactions, and the streaming
interface to stream media data stored in multimedia database. IPC-based message queue, shared
memory and semaphores were implemented in order to deliver messages and data between two systems.
From the results of the performance evaluation, we concluded that streaming method using multimedia
database can provide multimedia services without big loss of QoS, compared to the file-based streaming
method. Since the IPC interface module was implemented as a plugin, the proposed interconnection
method is extensible to the other multimedia databases.

In the future, we plan to implement our system under diverse OS platforms, such as UNIX and MS-
Windows, and to integrate it with BeeHive, a global real-time database system which is under
development at the U. of Virginia. We also plan to reduce the performance overhead of our system as
much as possible since we believe that performance is a major factor to guarantee QoS in multimedia
systems.

7. References

[1] K. Mayer-Patel, and L. A. Rowe, "Design and Performance of the Berkeley Continuous Media Toolkit", in Multimedia Computing and

Networking 1997, in Proc. SPIE 3020, pp 194-206, 1997.
[2] C. J. Lindblad, and D. L. Tennenhouse, "The VuSystem: A Programming System for Compute-Intensive Multimedia", in IEEE Journal

of Selected Areas in Communications, 1996.
[3] K. Jonas, M. Kretschmer, and J. Modeker, "Get a KISS - Communication Infrastructure for Streaming Services in a Heterogeneous

Environment", in Proc. of ACM Multimedia '98, Bristol, UK, pp. 401-410, 1998.
[4] S. Mungee, N. Surendran, and D. C. Schmidt, "The Design and Performance of a CORBA Audio/Video Streaming Service", in Proc.

of the 32st Hawaii International Conference on System Systems(HICSS), Hawaii, January 1999.
[5] Object Management Group, The Common Object Request Broker: Architecture and Specification Revision 2.2, February 1998.
[6] D. Schmidt, D. Levine, and S. Mungee, "The Design and Performance of Real-time Object Request Brokers", Computer

Communications, vol. 21, pp.294-324, April 1998.
[7] Object Management Group, Control and Management of A/V Streams specification, OMG Document telecom/97-05-07 ed., October

1997.
[8] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, RTP: A Transport Protocol for Real-Time Applications, IETF RFC 1889,

January 1996.
[9] H. Schulzrinne, A. Rao, and R. Lanphier, Real-Time Streaming Protocol (RTSP), IETF RFC 2326, April 1998.
[10] C. Aurrecoechea, A. T. Campbell, and L. Hauw, "A Survey of QoS Architectures", ACM/Springer Verlag Multimedia Systems

Journal , Special Issue on QoS Architecture, Vol. 6 No. 3, pp. 138-151, May 1998.
[11] S. N. Bhatti and G. Knight, "Enabling QoS adaptation decisions for Internet applications", Journal of Computer Networks, Vol. 31, No.

7, pp. 669-692, March 1999.
[12] Hyung-Ill Kim and Sungyoung Lee, "Design of Media Object Architecture to Support Multimedia QoS”, In Proc. of Korean

Information Science Society 98, pp. 699-701, April 1998.
[13] J. Stankovic, S. Son and J. Liebeherr, "BeeHive: Global Multimedia Database Support for Dependable, Real-Time Applications", In

Proc. of Second Workshop on Active Real-Time Databases, Lake Como, Italy, September 1997.

6

