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ABSTRACT

Tracking techniques for unwelcome objects in wireless sen-
sor networks (WSNs) for outdoor setting are based mainly
on acoustic signals. However, the research on multi-object
acoustic positioning so far has not been much developed in
WSNs. The reasons are the communication and computa-
tion cost to solve the problems of recorded convolved mix-
ture signals for the time delay difference from each object
to each sensor. To overcome those problems, we introduce a
new method for acoustic multi-object tracking in which the
time delay difference is not paid attention but the relative
information of magnitudes recorded at different sensors is.
The sensors do pre-processing on the sensed data to get the
most important information before compressing and sending
it to the base. At the base, the data is uncompressed and an-
alyzed with an independent component analysis (ICA) to get
the relative information of magnitudes. Then an optimiza-
tion method is used to infer the locations of these objects.
Analysis and simulation results lead to the conclusion that
our method gives good accuracy with a distributed comput-
ing manner and does not need much communication.
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1. INTRODUCTION

There are many previous works which use the data collected
from arrays of acoustic sensors as input. The methods of
this kind are mainly based on finding the relative angles
between the sound sources and the receiving sensor arrays,
called angles of arrival (AOAs). However, the number of
methods for multiple object tracking is limited with this
scheme of AOA information, not to mention the one with
the scheme of non-array microphone sensors. For techniques
that use AOA scheme, most of acoustic approaches so far can
only give solutions to one tracked object [7],[8],[11] and just
few are for multi-object tracking [5]. For techniques solv-
ing multi-object tracking with non-array sensors, the idea
of using independent component analysis (ICA) comes nat-
urally. The reasons are: the recorded data is the mixtures
of sources and ICA is a powerful algorithm to separate and
restore the original source data as long as these sources are
statistically independent. Unfortunately, the standard ICA
works only when the observations are instantaneous linear
mixtures of the sources [2] or no delay time in the mixtures.
In practice, an acoustic signal takes different time delays to
reach the sensors, generating the observed convolved mix-
ture data. Some methods have been developed to deal with
this problem in time domain [1] and in frequency domain
[6]. The ones for time domain are limited and the compu-
tation cost is too high [11],[9],[4]. Meanwhile, the methods
for frequency domain are still complicated where the finite
impulse response (FIR) Linear algebra is used and the stan-
dard ICA is applied on the complex domain [3]. In addition,
all the related techniques so far generally need a centralized
computer at the base, to solve the problem. Therefore the
communication load is too big that it is hard, if not impos-
sible, to apply to wireless sensor networks (WSNs) when all
the recorded data is sent to this base.

In this paper, we describe a method solving the problem
of location tracking for multiple objects that emit acoustic
signals. The data this approach deals with is the convolved
mixture data where sensor arrays are not used or the AOA
information is not available. We do not extract the infor-
mation of time-delay differences out of the mixtures but the
information of received signal strength (RSS) ratios of each



object to different sensors. We emphasize that there is no
previous work solving the problem by extracting the infor-
mation of RSS ratios for multi-object tracking from the delay
mixture data. Our method also has many advantages that
make the implementation into WSNs more practical when
the whole computation load is shared on the sensors and the
communication cost of collecting data for ICA computing is
low.

2. PROBLEM STATEMENT

Assume that there are M objects emitting continuous acous-
tic signals. These signals can be considered as the compo-
nents s;(t),7 = 1,.., M of the source vector s(t) and are
propagated to N different sensors, M < N. Then at each
sensor 4, the received data set is denoted as a column vec-
tor x;(t), which is also considered as the i-th component of
the observed vector x(t). Assume that the distances from
objects to sensors are not very far and sources’ velocities
are low, then different frequency components have the same
attenuation property over distance and Doppler effect can
be ignored. We do not need the sophisticated model data
having the FIR combinations like in [1],[8],[9],[10]. The data
received at each sensor is the actual signal with continuous
values of delay, similar to the model in [7]:

M
xi(t):Zaijsj(t—Tij), ’L'Zl,..,N (1)
j=1

where a;; is a scalar presenting the magnitude of the signal
from source j measured at sensor ¢ and 7;; is the propa-
gation time of this signal. It should be noted that in this
paper, any 1-dimensional vector with respect to ¢ or w is
denoted as a column vector. Without any prior knowledge
about the sources except for the information that any de-
layed version of one source is statistically independent of any
delayed version of another, we have to detect the locations
of all sources.

As mentioned above, previous works for object tracking fo-
cus on either the discrepancies between different 7;; or the
angles of arrival (AOA). These features are actually the di-
rect measurements for location estimating and generally can
give good results. However, 7;; is hard to be extracted and
need a big load of communication to send all the data to
the base where the algorithm is computed. For AOA infor-
mation, the deployed sensors must be in arrays, and still, it
is hard to indicate the angles when there are multiple ob-
jects. In this work, we mainly concern about the relative
information between different magnitudes of a source signal
at different sensors.

3. PROPOSED METHOD FOR MULTI OB-
JECT POSITIONING

3.1 Distance information

Note that if there is only one active source and the others are
inactive or emitting no sound, applying Short Time Fourier
Transformation (STFT) to the signal at this source and to
the signal received at each sensor, we get the same magni-
tude spectrum image. The difference is the scalar coefficient
and the phase spectrum image. Obviously, the time-delay

7;; only affects the phase spectrum image:

M
Xi(w) = ai;S;(w)e >, i=1,.,N, (2)
j=1
M
1 Xi(w)| =Y lai]1S;(w)], i =1,.., N. (3)
j=1

where X;(w) and S;j(w) are the STFT transformation results
of z;(t) and s;(t) alternatively. Evidently, the magnitude
spectrum data has the form of instantaneous mixtures. In
addition, the sources’ independence property leads to the
fact that the magnitude spectra of different |S;(w)| are sta-
tistically independent of each other. In other words, every
|Sj(w)] is independent of | Sk (w)| , 7 # k. As aresult, |\S;(w)]
in (3) or the image of magnitude spectrum of s;(t) can be
restored by a standard ICA. It should be noted that ICA
cannot restore the magnitudes of the original independent
components (ICs). Instead of giving exact |as;||S;(w)l, it
gives the result b; |Sj(w)|, b; € R. However, we can infer
the mutual information of energy of each IC observed by
the sensors because every |X;;| is composed of independent
components which are considered as the orthogonal vectors.
Thus the inner product of each IC vector |bj||S;(w)| and
each magnitude spectrum image |X;(w)| contains the infor-
mation of energy of this IC observed by sensor i.
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Therefore, for each IC j, for each pair of magnitude spectrum
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where E;; is the energy sent by source j and received by sen-
sor 4. Due to the inverse square law, if sound propagation
distance is not very far, then the absorption of gas molecules
is insignificant and the energy of sound decreases propor-
tional to the inverse square of distance. In other words,

5 (1/dij) i
=7 (8)
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From (6), (7) and (8), we have the relations of all pairs of
distances from any tracked object j to sensors:
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Figure 1: The proposed system with the Sensor’s architecture and the Base’s architecture.

Based on these relations, the locations of all of the sources
will be inferred.

3.2 Multi-object tracking system architecture
Our proposed system for the method is depicted in Figure
1 according to the key idea that has been described in the
previous Subsection on distance information. The upper is
the Acoustic Sensor’ work flow and the lower is the Central
Base computer’s work flow of the method. The more details
of the method are mentioned in followings.

Let us consider a sound signal which is recorded by sensor ¢
in segments of time. Since we can not infer the continuous
parametric form for the results of STFT, we use the popular
Fast Fourier Transformation (FFT) for these segments. The
output of FFT block of Sensor ¢ is the magnitude spectrum
image in discrete form | X; (k)| instead of | X;(w)|. The input
data from the recorders always includes additional Gaussian
noise which has the spectra spreading over the frequency do-
main. We can detect this level and eliminate out the Gaus-
sian noise. The data of one segment after being filtered is
Ra®)
eral dominant values presenting the frequency components
of the received data. Most of the rest values can be re-
placed by zeros if they are not greater than the noise level.
Note that we may only need one frequency component for
positioning a source. Therefore, compressing data is consid-
erably efficient because missing dominant frequency compo-
nents can be permitted and only few in stead of thousands
values are sent to the Base for each time segment. Moreover,
only half of the magnitude spectrum image length is needed
due to the symmetric property of the magnitude spectrum
image (recorded data is real). This is one of the key ideas
of the method in order for the communication cost to be
significantly reduced. That makes the system practical to
be implemented in WSNs.

, which is the magnitude spectrum image with sev-

At the Central Base, the flow is straightforward and consis-
tent with what we analyzed in the previous Subsection. The
iteration fastICA that maximizes the nongaussianity [2] is
used to obtain all the ICs. After that, at the “Quadratic

Optimize” stage, all the ratios of different pairs of distances
from a source to different sensors are available. Each ratio
defines a constraint or a curve that this source belongs to.
Usually, the curves are circles; except for the case ry; = 1,
when the curve becomes the line orthogonal to the line seg-
ment connecting sensor ¢ and sensor 7 at the segment’s cen-
tral point. Because of the fact that additional noise always
exists in the recorded data and cannot be completely filtered,
the errors in the constraints are not avoidable. Moreover,
when a source is very close to one sensor and far from the
others, its signal can be dominated by noise at the faraway
sensors and then ICA would give high errors of separation.
Therefore, we need a solution for the location of source j, a
vector p;, p; € R?, that compromises these constraints.

We propose an object function in quadratic form so that
the function is convex and the gradient descent method can
be used to guarantee the convergence. Negative gradient
technique is used here to achieve the final estimations of
source locations via iterations.

N N-1
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(10)

and the solution for source j will be

p; = argmin Fj
Pj

(11)

One remarkable note is that since the method uses the mu-
tual information between every pair of active sensors, when
the sensor number is greater than 3, the constraint number
becomes much larger than the sensor number. For exam-
ple, if the sensor number is 5, then the constraint number is
10. The more constraints we get, the more accurate are the
results.

4. EXPERIMENT RESULTS

We conduct one main simulation set by building up the de-
ployed setting area within ([0m,6m]x[0m,6m]). Based on
characteristics of the real sound sources, we generate four
simulated sources that imitate the sounds of vehicles and
motors for this simulation set. These continuous sources
have equivalent power levels. Four sensors are deployed
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Figure 2: The original spectra images of four
sources.

around the corners while the sources are set randomly within
the deployed area (see Figure 6). The energies of the sources
decrease with the inverse square law to the sensors and with
the sound speed of ¢ = 343m/s. The sampling frequency
is F's = 16.384 K Hz and the time segment length is 0.3 sec-
onds. We consider the noise to be caused by the background
setting and the characteristics of the microphones. Thus the
noise level is the same at all sensors. In order to analyze the
system’s performance, we increase the magnitude of addi-
tional Gaussian noise linearly and choose two parameters of
signal over noise ratios for monitoring:

P’min

SNR, = P (12)
and
Pmean
SNRy; = P (13)

where P,,in is the minimum power among the individual
source power values received at the sensors and Ppeqn is
the mean value of the combination power received at sensors.
The reason we use these two values is that ICA algorithm
depends on the linear combinations, so it is sensitive to noise
which makes the linear combinations become nonlinear com-
binations. These parameters are the relations between RSS
and the noise level and they can emphasize how well the
system works with high noise level.

Figure 2 includes the spectrum images of individual sources
while Figure 3 shows a typical set of linear combinations
with the highest level noise in the simulation set (SNR; =
0.07 and SNR = 0.97). The result of de-noise task on the
frequency domain is illustrated in Figure 4. This result is
actually obtained when the de-noise task is performed twice.
At the sensors, the Gaussian noise level is determined and
then is eliminated for the first time. The data then is cut
half due to symmetry and compressed. At the Base, after
being decompressed, these images are checked again and all
the components on the frequency domain that do not appear
in all four images are also eliminated for the second time.
Figure 5 shows the result where all four sources are sepa-
rated “successfully”. In fact, we can never reconstruct the
original spectrum images if the noise exists. Therefore, the
separation is considered to be “successful” if an individual
spectrum image can hold 75% energy likelihood in compari-
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Figure 3: The spectra of received signals at four
sensors where there exists the highest noise level in
the simulation set, SNR; = 0.07.
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Figure 4: The spectra of received signals at four
sensors where noise, with the highest level in the
simulation set or SNR; = 0.07, is eliminated before
ICA is used.
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Figure 5: The result after using ICA on the mag-
nitude of the frequency images or the independent
components (ICs), in the case SNR; = 0.07.



Figure 6: Location estimation results when mini-
mization is used over iterations after a successful
separation. The estimated locations reach closer to
the actual locations. The level of noise in this case is
the highest level used in the simulation, SNR; = 0.07.

son to the original one. In other words, the maximum value
of the cross convolution between normalized original image
and normalized separated image is larger than 0.75.

Finally, Figure 6 presents the process of solving the mini-
mization for an example with SNR; = 0.07, highest noise
level of this simulation set. The triangular positions are of
the sensors, the circle positions marked with numbers are
of the objects, and the strings of blue circle dots represent
the updating processes for finding final estimations. The
negative gradient algorithm is used to find the best position
for each source so that the objective functions Fj; in (10)
are minimized. The initial guess for each source position’s
estimation is the same at the point (3m,3m).

The simulation set is done with 2000 trials for each level
of noise. For each trial, the source locations are generated
uniformly random within the deployed area. Table 1 shows
the percentage of successful separation. Meanwhile, Table
2 shows the root mean square (RMS) errors for 4 cases of
“successful” separation at each level of noise. With higher
noise level, the percentage of ”successfully” separation for
all four sources decreases, but the percentage for other cases
increases especially for the case of separating three sources
“successfully”. As can be seen, although the desired situa-
tion, or when all 4 sources are separated, gives good accu-
racy, it does not have very high percentage of occurrence.
However, we can see that the sum of percentage for success-
fully separating 3 sources and 4 sources has the percentage
from 88% to 91% at most of tested levels of noise. Even
when the SN Ry < 1, this sum is 86%. In reality, when the
new data comes, the separation is performed again and we
can use tracking technique to filter out the wrong detected
locations to improve the accuracy. It can be observed that
the accuracy decreases slowly with respect to the increasing
noise. Obviously, once an IC is restored, if the separation
quality is good enough, then the position of this IC can be
inferred with high accuracy. The accuracy result ranging
from 0.6m to 0.7m for the multiple source location tracking

Table 1: Percentage of successful separation
SN R, 4.97 1.17 | 0.44 | 0.23 | 0.12 | 0.07
SNRy || 64.72 | 15.19 | 5.73 | 2.96 | 1.54 | 0.97

11C 1% 1% [ 2% | 3% | 3% | 3%
2 ICs % 7% 8% | 8% | 9% | 10%
3 ICs 28% | 29% | 30% | 33% | 35% | 36%
4 1Cs 63% | 62% | 60% | 56% | 53% | 50%

Table 2: RMS error after separation

SNR; 4.97 1.17 0.44 0.23 0.12 0.07

SNR, || 64.72 | 15.19 5.73 2.96 1.54 0.97

11C 0.64m | 0.66m | 0.71m | 0.70m | 0.69m | 0.72m

2 ICs 0.68m | 0.71m | 0.70m | 0.69m | 0.69m | 0.71m

3 1Cs 0.69m | 0.71m | 0.70m | 0.71m | 0.70m | 0.71m

4 1Cs 0.60m | 0.65m | 0.71m | 0.71m | 0.72m | 0.73m

is considered to be good.

5. CONCLUSIONS

This paper proposed a system design for acoustic source
localization in which the information for separation is the
ratios of energy values of original sources received at the
sensors. In order to obtain these ratios, ICA technique is
used to separate the magnitude spectra of received signals.
A new quadratic function has been proposed for the task
of inferring the source locations. The result at this prelim-
inary research shows that the method gives high accuracy
and needs a very low communication cost for big spectrum
image data. It is practical for implementation because the
whole computation load is shared and calculated in a dis-
tributed manner. The sensors for this design must have a
powerful ability of computing to perform FFT on a long seg-
ment of data in short time. In other words, the proposed
system is the acoustic source localization design for the fu-
ture generation of WSNs. Our research on improvement of
the accuracy is being in process whose more analysis details
and results will be presented in another paper.
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