
Proceedings of the 2nd International Conference on Emerging Databases (EDB2010)

XSD2RDFS and XML2RDF Transformation: a

Semantic Approach

Pham Thi Thu Thuy

Dept. of Computer Engineering,

Kyung Hee University,

Yongin-si, Republic of Korea,

tttpham@oslab.khu.ac.kr

Young-Koo Lee

Dept. of Computer Engineering,

Kyung Hee University,

Yongin-si, Republic of Korea,

yklee@ khu.ac.kr

Sungyoung Lee

Dept. of Computer Engineering,

Kyung Hee University,

Yongin-si, Republic of Korea,

sylee@oslab.khu.ac.kr

Abstract— XML and its schema language are becoming a

primary data exchange format in e-commerce. However, they

mainly focus on the data structure and there is no way to

describe the semantics of the document. In the vision of the

Semantic web, data is not only being structured but also

containing meaning and the relationship among them. Therefore

the need for transforming current XML data into suitable form

for the Semantic Web is very necessary. In this paper, we

propose a set of notations to map XML Schema to RDF Schema

and provide algorithm to interpret XML documents as RDF. The

main advantage of our approach is to ensure the integrity of the

structure and provide more meaning for the original XML

document while automatically transforming them into RDF. This

procedure can be used for any valid XML documents.

Keywords-XSD, XML, RDF Schema; RDF; transformation

I. INTRODUCTION

XML has received a wide acceptance as a standard for

communication on the web. The main success of XML is its

flexibility. Users can define their own tags to describe

elements in the XML document. Moreover, they can also

predefine the structure of XML documents by writing a DTD

(Document Type Definition) or an XML Schema (or called

XSD). Although DTD and XSD provide the structure for

XML document, many developers nowadays use XSD to

create an XML document instead of DTD. XSD supports data

types and namespaces. Therefore, XSD is usually used as a

standard mechanism to interchange information on the web.

For instance, in the electronic commerce, when the associates

are unanimous in a common XSD, they will produce valid

XML documents and carry out their exchange. This provides

us a large number of valid XML documents.

However, XML has disadvantages when coming to the

semantic interoperability. XML mainly focuses on the

grammar but there is no way to describe the semantics of the

document [1]. Moreover, because XML enables users to

define their own tags, an object can be described in different

ways. In the Semantic Web, the operability requires not only

the structured data but also the semantic content [1].

Therefore, current XML data cannot be used directly by the

Semantic Web instead of interpreting them as a standard

format of the Semantic web, particularly as RDF.

Though, the general purpose language for representing

information in the Semantic Web is RDF, it cannot describe

classes and properties in structured documents. Instead, they

are depicted by the RDF Vocabulary Description Language,

RDF schema. It defines a vocabulary for creating class

hierarchies, properties of class, and adding instance data.

Furthermore, the data model for XML is a tree-like [2], while

RDF is a graph-based data model which is a collection of the

subject-predicate-object triples [3]. Hence, we try to exploit

the tree structure of XML by accessing to the XML Schema to

generate corresponding class hierarchy in RDF. Our main

contribution is a set of rules that derive RDF Schema from

XSD and automatically interpret all XML elements as existing

RDF triples which can be used immediately by the Semantic

Web.
The remainder of the paper is organized as follows. In

section 2, we briefly introduce the related work. Section 3
describes the mapping algorithm from XML Schema to RDF
Schema. This will be followed by the XML transforming
algorithm and the corresponding example in section 4. Finally,
section 5 concludes this paper.

II. RELATED WORK

There are s number of approaches exist today to perform
transformation from XML to RDF format, as well as the
mapping from the XML Schema to the RDF Schema.
However, there is no completed approach targeted on
interpreting XML instances as RDF statements by replying on
mapping from XML Schema to RDF Schema.

Melnik [4] assumes that every XML document has an RDF

model and describes a mapping from XML to RDF. However,

the author mainly focuses on how to transform all XML

elements into RDF and does not concern about exploiting

domain's information. Therefore, the issues follow the

structures of XML but bear little meaning and the results do

not fit well into existing RDF model instead of new RDF

syntaxes. Our method aims at drawing the semantic

information from XML Schema by interpreting it as RDF

Schema and using available RDF/RDFS vocabularies.

Therefore the mapping results still remains structure of XML

document and provides more semantics for XML elements.

Another approach is presented in the C-Web project [5].

This method uses XPath to map information in XML

documents to domain specific ontologies. This proposal

exploits more specific meaning and structure of the XML

documents. However, it requires human intervention to define

Proceedings of the 2nd International Conference on Emerging Databases (EDB2010)

the meaning for every element in the DTD. Moreover, beside

reference to XML document and its DTD, it requires referring

to another resource, the specification of rules, which is not a

requirement in our approach.

In another paper, Michel Klein introduces a procedure to

transform XML data into RDF data by annotating the XML

documents via external RDF Schema specifications [6]. This

approach is close to our method. However, it does not

transform all XML elements. Instead it concentrates on

translating some pieces of information in the XML document.

Moreover, elements in XML document are decided to be

classes or properties depending upon user's opinion.

Therefore, the results of this approach could be different

among users' point of view.

In [7], we have proposed a procedure for transforming

valid XML documents into RDF via RDF Schema. This

procedure also derives classes and properties from XSD, then

matches them with elements in XML documents and interprets

all XML data as RDF statements. However, in order to

describe the relationship between parent class and child class,

we defined new RDF vocabulary, rdfx:contain. This definition

is not recognized by the RDF evaluation tools or Semantic

Web applications. Therefore, in this paper, we use existing

RDF vocabularies by using rdfs:Container. Moreover, the

result of this paper is displayed in graph and evaluated by tool

recommended by the W3C.

The authors of [8] propose mappings from XML to RDF

and from XML Schema to OWL ontology. However, the

generated results from XML Schema may not suit to OWL

model. Furthermore, the mapping from XML to RDF just

concentrates on how to translate all XML elements into RDF

and does not focus on meaning of elements. Therefore, this

drawback is the same to [4].

Besides, there are several other approaches creating new

OWL ontology for XML Schema [9, 10]. They produce a new

ontology from an XML Schema and interpret instances of the

XML Schema as instances of the generated ontology. The

authors in [11] propose a mapping notation for every XML

Schema and transform XML documents into existing OWL.

This approach provides more specific mapping but users have

to define relations for every XML element. Our target is not at

OWL but in RDF, which is the foundation language for the

Semantic Web.
This paper proposes a strategy to map XML Schema to the

ontology (with considering the proper functions of classes and
properties) and automatically interpret valid XML data (of that
XML Schema) as RDF statements. Nevertheless, if XML
Schema is absent, we can also create ontology based on XML
document. Hence, we can tackle the problem when XML
Schema is not available.

III. MAPPING FROM XSD TO RDF SCHEMA

The goal of our approach is to provide a set of mapping

rules that allows any XML Schema (XSD) to be converted to

an appropriate RDF Schema. Then, the XML instances are

transformed into a valid RDF document. Our defined rules

ensure the structure of the original XML document, and

provide domain and resource for each XML element.

The role of XML Schema is to provide syntaxes and

structures for XML documents which differentiates from that

of RDF, to model the semantic relationships of a domain.

However, there is an overlap between them. Both have an

object oriented foundation and their purpose is to define a

general vocabularies and structures for exchanging

information on the web. In this stage, we create the collection

of classes and properties from the given XML Schema as an

input. This collection will be used to model data in the next

step. The general idea of this step is as follows:

 The <schema> element is the root element of the XML

Schema. It can contain some attributes. The attribute

xmlns: is interpreted as namespace.

 The first element is declared by element name is the

root-class of document.

 For each XML Schema xs:complexType which is

described using sequence, all and choice, we map to a

rdf:class. Every element or attribute declared within it

is mapped to a contained class or sub-property.

 For each sub-element (elements in brackets or

following the first element), we decide whether they are

subclasses or properties of the class.

 For elements of xs:simpleType, it is mapped to a

rdf:Property.

 Global element and attribute definitions are mapped

similarly to the local ones.

By observing the XSD and its corresponding XML

instances, we recognized that only XSD definitions, such as

xs:element and xs:attribute, appear in the XML document. It

means that XML instances contain two main components, that

are elements and attributes. Therefore, our goal concentrates

on transforming XML constructs that are related to these

components.

We consider five main definitions in an XML Schema:

element name, element ref, attribute name, attribute ref, and

datatype.

An element definition has two following syntaxes:

<xs:element name =”xxx”> or <xs:element ref =”xxx”>,

where xxx is the given name of the element. The prefix xs can

be changed depending on the namespace declaration.

Because <xs:element name> is used to describe elements

of a document and each element can contain children elements

[12], the function of these elements is like a class in a structure

program, therefore, we treat element-name as a name of the

class in our procedure. However, two cases are considered for

<xs:element name> definition. If <xs:element name> contains

another <xs:element name>, which has not only literal, we can

assume that is a “part-of” relationship. Our procedure

considers it as a class which is a subclass of the previous class

(element-name). Contrary, if an element of the source tree

with declaration <xs:element name> is always a leaf

(containing only a literal and no attributes), this element is

mapped to a property (despite it is defined by <xs:element

name>).

Proceedings of the 2nd International Conference on Emerging Databases (EDB2010)

Moreover, there are two kinds of class definition in XML

Schema, <xs:element name> and <xs:element ref>. The

second one refers to the name of another element. This

reference to an element or an attribute is comparable to

cloning an object. Therefore, our procedure considers

<xs:element ref> as <xs:element name> and both are applied

the same mapping rules. If an element has element ID, our

procedure considers it as unique identifier for this element.

Hence, if there are other elements with the same name and

same level, we use this ID instead of creating new attribute for

class element.

Furthermore, because attribute provides extra information

about elements, its function is to describe a property of the

class, we consider it as a property of the class. Therefore, for

attribute definition with the declarations as <xs:attribute name

=”xxx”> or <xs:attribute ref =”xxx”>, the second one refers

to another attribute (similar to <xs:element ref>), our

procedure maps it to a property of a corresponding class.

For data type definitions, such as type= ”xs:string/date/…”,

they are mapped to rdfs:datatype. This is used to connect a

data type with its property. Moreover, in order to link between

this property and its value, we use rdfs:literal. For connecting

value of a class, rdf:value is added.

On the other hand, due to limited expressions in RDF and

the inappropriate mapping between RDF and XML Schema,

we have to skip some unnecessary definitions in XML

Schema, such as definitions for element attributes as

substitutionGroup, default, fixed, form, maxOccurs,

minOccurss, abstract, block, final, identity-constraints, and the

complexType declared within the simpeType.

Creating RDF Schema includes two main steps:

a) Class description: containing rdfs:comment (class

name + “class”) – human readable description of the

resource- and rdfs:Container (describing the resource

is a subclass of a class).

b) Property description: holding rdfs:domain – indicates

the class which this property is described for – and

rdfs:range – indicates a class which values of the

property must be members or a data type.

For instance, an XML Schema of the following link

http://www.onjava.com/pub/a/onjava/2004/09/15/schema-

validation.html is look like below:

<?xml version="1.0" encoding="utf-8" ?>

<xs:schema xmlns:xs=

"http://www.w3.org/2001/XMLSchema">

<xs:element name="catalog">

<xs:complexType>

<xs:sequence>

<xs:element ref="journal" minOccurs="0"
 maxOccurs="unbounded" />

 </xs:sequence>

 <xs:attribute name="title" type="xs:string" />

 <xs:attribute name="publisher" type="xs:string" />

 </xs:complexType>

 </xs:element>

<xs:element name="journal">

 <xs:complexType>

 <xs:sequence>

<xs:element ref="article" minOccurs="0"

 maxOccurs="unbounded" />

 </xs:sequence>

 <xs:attribute name="date" type="xs:string" />

 </xs:complexType>

 </xs:element>

<xs:element name="article">

 <xs:complexType>
 <xs:sequence>

 <xs:element name="title" type="xs:string" />

<xs:element ref="author" minOccurs="0"
 maxOccurs="unbounded" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="author" type="xs:string" />

 </xs:schema>

In the above XSD document, root class is catalog, that

contains information of journal element. Element journal

contains three properties, title, publisher and date, and a class

article. A class article includes the title and author elements.

Although title and author are defined by xs:element name, but

they do not contain any other elements, we consider them as

attributes.

Since there are two elements that have the same name,

title, the second repeated name is renamed by adding its parent

name in front of its name.

By using all above notations we harvest RDF Schema as

following:

<?xml version="1.0" ?>

<rdf:RDF xmlns:rdf=
"http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:rdfs=

"http://www.w3.org/2000/01/rdf-schema#">

<rdfs:Class rdf:ID="Catalog">

 <rdfs:comment>catalog Class</rdfs:comment>

</rdfs:Class>

<rdfs:Class rdf:ID="journal">

 <rdfs:comment>journal Class</rdfs:comment>

 <rdfs:Container rdf:resource="#catalog" />

</rdfs:Class>

<rdfs:Class rdf:ID="article">

 <rdfs:comment>article Class</rdfs:comment>

 <rdfs:Container rdf:resource="#journal" />

</rdfs:Class>

<rdf:Property rdf:ID="title">

 <rdfs:domain rdf:resource="#journal" />

<rdfs:range rdf:resource=

"http://www.w3.org/1999/02/22-rdf-syntax-ns#Literal" />

 </rdf:Property>

<rdf:Property rdf:ID="publisher">

 <rdfs:domain rdf:resource="#journal" />

<rdfs:range rdf:resource=

"http://www.w3.org/1999/02/22-rdf-syntax-ns#Literal" />

 </rdf:Property>

<rdf:Property rdf:ID="date">

 <rdfs:domain rdf:resource="#journal" />

<rdfs:range rdf:resource=

"http://www.w3.org/1999/02/22-rdf-syntax-ns#Literal" />

 </rdf:Property>

<rdf:Property rdf:ID="article_title">

 <rdfs:domain rdf:resource="#article" />

<rdfs:range rdf:resource=

"http://www.w3.org/1999/02/22-rdf-syntax-ns#Literal" />

 </rdf:Property>

 <rdf:Property rdf:ID="author">

 <rdfs:domain rdf:resource="#article" />

<rdfs:range rdf:resource=

"http://www.w3.org/1999/02/22-rdf-syntax-ns#Literal" />

 </rdf:Property>

 </rdf:RDF>

http://www.onjava.com/pub/a/onjava/2004/09/15/schema-validation.html
http://www.onjava.com/pub/a/onjava/2004/09/15/schema-validation.html

Proceedings of the 2nd International Conference on Emerging Databases (EDB2010)

Clearly, in the above RDF Schema document, there are

three classes, catalog, journal and article. Each class is added

a description by using rdfs:comment. The nested class is

described by using rdfs:Container. The attribute title of the

class article is changed to article_title. Each property is

supported by rdfs:domain and rdfs:range which restrict the

anterior and posterior values of a property. Since all of

attributes in the given example do not contain any child

element, the rdfs:subPropertyOf is not used.

IV. XML TRANSFORMING

A. Algorithm

After deriving RDF Schema from an XML Schema, we

continue to examine the valid XML document. The result is

RDF triples to interpret these XML data based on the

generated ontology. The URI of the XML document will be

the URI of each class. The algorithm starts traversing from the

beginning of the XML document and finishes when it meets

the close tag of root element. The comments are skipped

during the transformation process.

Since during the mapping step, we have changed some

names of the XSD elements, in this transformation step, we

must update the changed element in the XML instances too.

The algorithm can be express by pseudo-code as below:

Read the description of root-class in the XML document to

draw its properties if they are available.

For 1 to total number of child-node (of the XML document)

Begin

Create the namespace for XML document;

For each complex element (class)

 Begin

 Generate an RDF description for each class;

 Create a resource for class (URI=baseURI +

 resourceName+#class+number)

 //For nested class, resource name is the path specifying this

class

 //For root class, there is no number, only class name

 For each attribute in the class

 begin

 Create tag “namespace:attribute name”;

 Copy attribute values;

 end;

 Else (being a class)

 Repeated as child-node

 End;

End;

On the contrast to XML instances, which allow same

element names to be appeared within the document, valid

RDF requires that each class has a unique resource. Therefore,

when we transform a class element, we assign a resource for

each class. Our approach defines the resource by

concatenating the URI of the XML document with the class

name, following with the number of appeared times.

In the case that property has more than one value, these

values can be stored by RDF container (rdf:Bag). For instance,

if there are three authors for one article, the RDF statements

are as following:
<rdf:Bag>
<rdf:li>Author name 1</rdf:li>
<rdf:li>Author name 2</rdf:li>
<rdf:li>Author name 3</rdf:li>

<rdf:/Bag>

B. Example

In this section, we illustrate the transforming from XML

document into RDF. The XML document is also taken on the

same website with XML Schema.

Here is XML document:

<?xml version="1.0" encoding="UTF-8" ?>

<!-- A OnJava Journal Catalog -->

<catalog xmlns:xsi=

 "http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation=

 "file://c:/Schemas/catalog.xsd"

 title="OnJava.com" publisher="O'Reilly">

<journal date="April 2004">
<article>

 <title>Declarative Programming in Java</title>

 <author>Narayanan Jayaratchagan</author>

 </article>

 </journal>

<journal date="January 2004">

<article>

 <title>Data Binding with XMLBeans</title>

 <author>Daniel Steinberg</author>

 </article>

 </journal>

</catalog>

Our algorithm traverses from the beginning of the XML

document and finish until meeting close tag of the root class.

When it meets an element, it will compare this element to

definition in the RDF Schema to decide whether it is a class or

a property. If it is a property, it will drag this value and tag

from XML document to RDF. Otherwise (class), it creates

rdf:Description and describes new resource for that class.

In this document, there are two “journal” nodes, each node

includes another “article” node. Therefore, our procedure

creates four resources for each node.

Because the value of property in this XML document is

always single value, we do not use the RDF container element

in the result.

Our corresponding RDF data for above XML document is

as following:

<?xml version="1.0"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:ca="http://www.recshop.fake/Catalog#">
<rdf:Description rdf:about="http://www.recshop.fake/ca/Catalog">

 <ca:title>OnJava.com</ca:title>

 <ca:publisher>O'Reilly</ca:publisher>

 <ca:journal>

<rdf:Description

rdf:about="http://www.recshop.fake/ca/Catalog/journal1">

 <ca:date>April 2004</ca:date>

 <ca:article>

<rdf:Description
rdf:about="http://www.recshop.fake/ca/Catalog/journal1/article1">

Proceedings of the 2nd International Conference on Emerging Databases (EDB2010)

 <ca:article_title>Declarative Programming in Java

 </ca:article_title>

 <ca:author>Narayanan Jayarachagan</ca:author>

</rdf:Description>

 </ca:article>
</rdf:Description>

 </ca:journal>

 <ca:journal>

<rdf:Description

rdf:about="http://www.recshop.fake/ca/Catalog/journal2">

 <ca:date>January 2004</ca:date>

 <ca:article>

<rdf:Description

rdf:about="http://www.recshop.fake/ca/Catalog/journal1/article2">

 <ca:article_title>Data Binding with XMLBeans
 </ca:article_title>

 <ca:author>Daniel Steinberg</ca:author>

</rdf:Description>

</ca:article>

</rdf:Description>

</ca:journal>

</rdf:Description>

</rdf:RDF>

xmlns:ca is a namespace, it specifies that elements with the

prefix ca are from the namespace

http://www.recshop.fake/Catalog#. Every class is described

within element rdf:Description that contains the information

of the resource identified by the rdf:about attribute.
Our procedure automatically generates RDF data, it does

not requires any human intervention so the result is
independent from every user. The RDF result obeys RDF
syntaxes, so it does not requires any change in order to be used
by the Semantic Web. This procedure also can be applied for
scalable XML documents which exist enormously on the
current web.

C. Discussion, implementation and evaluation

In this section, we discuss the reason why we choose the

RDF for the destination transforming. Of course, other

onlotogy languages than RDF can be used to described the

meaning of the XML, too. However, we target on the RDF

Schema and RDF instance since it is currently the foundation

ontology language for the Semantic Web. Moreover, currently

there are some tools supporting for it are available, such as

Protégé, Altova, and some other reasoning tools.

Our approach is notably different from other related

approaches. First, we translate between the schemas and

update the changing element during mapping step in the

original XML document. While mapping, we use the existing

RDF and RDF Schema vocabularies, especially to express the

relationship among nesting classes. Second, we transform the

XML instances with namespace supports. Since our approach

is based on the XSD definitions and exploits the RDF

syntaxes, our transformation process is done automatically

without any user intervention. Moreover, our result is a valid

RDF document which is very important for applying directly

on the web.

The program transforms valid XML document into RDF

data including two files *.rdfs and *.rdf. File .rdfs stores

descriptions of classes and the relationships between

properties and classes as well as the data-types of these

properties. The transformation does not depend on XML data,

it can be used to transform arbitrary XML documents. The

main function of our program is to interpret XML data as RDF

data by travelling from the beginning of the XML document

until matching close tag of root-class.

The program language to be used is C# with the help from

the library .Net 2.0. We choose C# because it is a strong

language supported for building application related to data

processing and windows interface.

 In order to validate our RDF output result, we use the

RDF Validation Service of W3C at

http://www.w3.org/RDF/Validator/. This RDF validation

service is based on Another RDF Parser (ARP). It currently

uses version 2-alpha-1. ARP was created and is maintained by

Jeremy Carroll at HP-Labs in Bristol. This W3C service was

created by Nokia's Art Barstow (a former W3C Team

member). The service now supports the Last Call Working

Draft specifications issued by the RDF Core Working Group,

including datatypes. It no longer supports deprecated elements

and attributes of the standard RDF Model and Syntax

Specification and will issue warnings or errors when

encountering them. In order to use this service, we only need

to copy and paste the RDF file to the input window. When

parsing large RDF files, requesting Triples Only instead of

Triples and Graph will significantly shorten the response time

of this service.

In the main interface of RDF validation, there are three

display formats: Triples only, Triples and Graph, and Graph

only. Here we choose „Triples and Graph” in order to see

Subject-Predicate-Object structure and the visualization of

RDF data.

For testing our RDF result, we paste our RDF statements

to this validator, the result is verified successfully. By pressing

the button “Parse RDF”, we can see the validation result as in

the figure 1. This means that our RDF document can be used

directly by other RDF editors or Semantic Web applications.

Figure 1. The validation result of our RDF document.

http://www.recshop.fake/Catalog
http://www.w3.org/RDF/Validator/
http://www-uk.hpl.hp.com/people/jjc/arp/
mailto:Jeremy_Carroll@hp.com
http://www.hpl.hp.com/bristol/index.html
mailto:art.barstow@nokia.com
http://www.w3.org/2001/sw/RDFCore/#documents
http://www.w3.org/2001/sw/RDFCore/#documents
http://www.w3.org/2001/sw/RDFCore/#documents
http://www.w3.org/2001/sw/RDFCore/
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

Proceedings of the 2nd International Conference on Emerging Databases (EDB2010)

Figure 2. Graph of the RDF data

V. CONCLUSION

In this paper we have proposed a set of mapping rules to

generate the ontology from the XML Schema and a procedure

to transform valid XML documents into RDF statements by

using the existing RDF vocabularies. These are crucial for

referencing and integrating XML data into the Semantic Web.

The generated RDF statements are much more semantics

than the original XML document. In general, if XML Schema

is available, our procedure effectively performs all mapping

and transformation automatically without any human

intervention.

Our transformation is fundamental and can be applied to

any XML Schema and XML instances. Therefore it can be

consider as a standard for automatic transformation from

XML data into RDF. The transformation is generic so that the

inverse transformation can be built by defining the converted

mapping rules. Moreover, the validation result shows that our

RDF statements are successfully satisfied the regulations of

the W3C. This means that our RDF file can be used directly

by Semantic Web applications without any changes.
We hope that the research has created a bridge to narrow

the gap between the XML and RDF. If this procedure is
executed, a large amount of the XML data on the current Web
will be interpreted into RDF statements which are useful for
the Semantic Web.

ACKNOWLEDGMENT

This research was supported by the MKE (The Ministry of

Knowledge Economy), Korea, under the ITRC (Information

Technology Research Center) support program supervised by

the NIPA(National IT Industry Promotion Agency)" (NIPA-

2010-(C1090-1021-0003))

REFERENCES

[1] S. Decker, S. Melnik, F. V. Harmelen, D. Fensel, M. Klein, J.

Broekstra, M. Erdmann, and I. Horrocks, “The Semantic Web:

The Roles of XML and RDF”, 2000, IEEE Internet Computing.

[2] Bert Bos, “The XML data model”, August 2005,

http://www.w3.org/XML/Datamodel.html

[3] Graham Klyne, Jeremy J. Caroll, and Brian McBride, “Resource

Description Framework (RDF): Concepts and Abstract Syntax”,

W3C Recommendation, 2004, available at:

http://www.w3.org/TR/rdf-concepts/

[4] Sergey Melnik, “Bridging the gap between RDF and XML”,

1999, http://www-db.stanford.edu/melnik/rdf/syntax.html

[5] B.Amann, I.Fundulaki, M.Scholl, C.Beeri, and A-M.Vercoustre,

“Mapping XML fragments to community Web ontologies”,

Fourth International Workshop on the Web and Databases

(WebDDB‟2001).

[6] Michel Klein, “Interpreting XML via an RDF Schema”, 2002,

Database and Expert Systems Applications.

[7] Pham Thi Thu Thuy, Young-Koo Lee, Sungyoung Lee, and

Byeong-Soo Jeong, “Exploiting XML Schema for Interpreting

XML Documents as RDF”, 2008 International Conference on

Services Computing.

[8] Matthias Ferdinand, Christian Zirpins, and David Trastour,

“Lifting XML Schema to OWL”, 2004, Web Engineering – 4th

Int.Conference, ICWE, pp. 354–358.

[9] Roberto García, Ferran Perdrix, and Rosa Gil, “Ontological

Infrastructure for a Semantic Newspaper”, 2006, Semantic Web

Annotations for Multimedia Workshop, SWAMM‟06, UK.

[10] Hannes Bohring, and S¨oren Auer, “Mapping XML to OWL

Ontologies”, 2005, Marktplatz Internet: Von e-Leanrning bis e-

Payment, Germany, pp. 147-156.

[11] Toni Rodrigues, Pedro Rosa, and Jorge Cardoso, “Mapping

XML to Existing OWL Ontologies”, 2006, International

Conference WWW/Internet.

[12] Priscilla Walmsley, “XML Schema part 0: Primer second

edition”, 2004, W3C Recommendation, available at:

http://www.w3.org/TR/xmlschema-0/.

http://www.w3.org/XML/Datamodel.html
http://www-db.stanford.edu/melnik/rdf/syntax.html
http://www.w3.org/TR/xmlschema-0/

