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Department of Computer Engineering,
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Abstract- In previous work, the constrained independent
component analysis (cICA) algorithm has been proposed to
extract the interested signals from the mixtures of some source
signals. However, the simultaneous extraction of all signals at the
same time presented by cICA prolongs the processing time of this
algorithm to extract output signals. In this paper, we introduce a
new version of the cICA algorithm to improve cICA in the
computational time aspect. By whitening input signals,

normalizing weight vectors, and using the one-by-one extraction
of output signals, our proposed cICA algorithm has reduced the
computational time to recover original signals when compared
with the conventional cICA. Meanwhile our propesed cICA
algorithm still retains the same recovering performance with that
of the conventional cICA. Moreover, in this paper, we also
introduce a potential application of our proposed cICA and the
conventional cICA on the speech separation problem using priori
information to extract the interested speech signals from mixed
signals.

I. INTRODUCTION

Blind source separation (BSS) is defined as a method of
estimating the original signals from a set of observations that
are the mixtures of original signals. In general, a mixing
matrix of the original signals is unknown in advanced. A
particular example of the BSS problem is the cocktail-party
problem depicted in Fig. 1. One might have some speakers in
a room, with some microphones used to record the speech
signals from the speakers. The task of BSS is to recover the
unmixed speech signals of the speakers from the mixed signals
received by the microphones.

Source Mixed
signals . signals
M‘

Recovered
signals

Fig. 1. Blind Source Separation with the cocktail-party problem.

Independent Component Analysis (ICA) [1] is one of the
most successful techniques that has been proposed to solve the
BSS problem. The idea of ICA is based on the central limit
theorem saying that the probability distribution of the mixtures
of statistically independent signals trends to follow the
Gaussian distribution. Therefore, ICA attempts to extract
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independent components (ICs) by finding a demixing ®
of observed signals that maximizes the non-Gaussianity 4
extracted signals. The extracted signals become s aty
independent and close to the original signals.
Applications of the ICA technique are demonstra
large number of areas such as biomedical signal pro
computer vision, or speech processing. In biomedical
processing, ICA has been popular with extracting the
signals from bio-signal data such as electroenceph
(EEG) or magnetoencephalogram (MEG) [2][3]. ICA
also found in the human-machine interaction areas
the P300 evoked potential emitted from the human
control electronic devices [4]. In computer vision areas,
applied to find the texture information for content ba
retrieval [S] or to find a set of basic components @
images for face recognition [6]. In the speech .
processing, ICA is used for speech separation [7][8].
The main existing disadvantage of the ICA al
that the number of recovered signals should be equal
number of mixed signals. When applying ICA for
complete ICA problem where the number of extracted
is less than the number of mixed signals, the extracte
are changed over time. The reason causing this proble
the ICA algorithm only extracts the output signals
the non-Gaussianity criteria, without using extra in
to determine the output signals of interest.
applications, there might be a lot number of extracted
but we might be interested in a small number of sig
rest of extracted signals might be noisy or unmeaning
In previous work [9], Lu et al. proposed an app
cICA to tackle this problem. Reference signals are
the conventional ICA to drive the extract signa
improvement aims at avoiding the arbitrary
extracting signals and only recovering the signals @
However, there are still some drawbacks that
limitations of ‘the cICA algorithm in the computatie
aspect: The cICA algorithm attempts to sim
recover and decorrelate all output signals at the
The cICA algorithm does not consider whitening ing
and normalizing the demixing matrix to restrict the
values of the output signals when the variances of
signals are too far from that of the reference signals.
In this paper, we propose a fast version of
algorithm. The fast cICA algorithm achieves faster g
speed by using the one-by-one extraction process ;
signals rather than using the simultaneous ext
algorithm extracts only one signal at each time,



sader the decorrelation constraints between an
ll gl with some previous extracted signals rather
5 to reduce the computations. Second, the fast
n uses the preprocessing with whitening input
# mormalizing weight vectors to bound the variance
mput signals that make sure a faster convergence of
ithm. In addition, in this work, we introduce an
of our fast cICA algorithm and the conventional
wenrract the speech signals of interest from the
[ speech signals.
er is organized as follows. In Section 2, we
ICA algorithm and summarize the essentials of
ithm. Our fast cICA algorithm is presented in
> experimental results are provided in Section 4.
we present our conclusion in Section 5.

e X

DONSTRAINED INDEPENDENT COMPONENT
ANALYSIS |

dent component analysis
er a BSS problem with n recorders receiving the
from m different sources. The ICA algorithm
recover m original signals from the n recorded
thout the knowledge about a mixing matrix of the

mals (assuming that the observed signals are the
Busures of the original signals). The observed signals
)x,(D),....,x, (¢))" are presented by

x(1) = As(t), 1)

15 a mixing matrix with size (nxm) and
L5, (t),....s,,(#))" is the original signal. The ICA
| attempts to compute ‘the demixing - matrix
w,,...,w, ]" with size (mxn) to inversely recover

sources from the observations x(#)

YO =Wx@), @
=(¥,(1),y,(0),.... y,,(0))" 1s the extracted signal, with
1)

-V, (t) are close to the original sources, they

mutually independent. The ICA algorithm aims at

e demixing matrix W to maximize the non-
By of the extracted signal y(?) that causes y(?) to be
mdependent and converge toward one of the ICs.
ement of the non-Gaussianity is given by the
Jiy) [1]

J0) = plE{f W)}~ E{f )] » 3)
1 a Gaussian variable with zero mean and unit
Some available functions are suggested for f

Because the extracted signals

fi(y) = logcosh(ay)/a, )
fHi(») = exp(-ay*/2)/a, 5)
L0)=y/4, (6)

where a is a positive constant. The function f; is mostly used
for the general case, f; is used for the supper-Gaussian signal,
and f; is used for the sub-Gaussian signal, respectively.

Because the non-Gaussianity is an only criterion used to
extract output signals, there will be an arbitrary ordering of
extracted ICs. When we want to extract less than the number
of observations, the extracted results are changed over time
and we cannot recover the signals of interest.

B. Constrained independent component analysis
The cICA algorithm is developed to retrieve only desired ICs
by using additional constraints to drive the extractions of
output signals. We summarize the essentials of cICA in this
section. More details of cICA can be found in [9].

The cICA algorithm integrates some equality constraints
h(y:W) and inequality constraints g(y:W) into the optimization
function (3) of the ICA algorithm. The overall optimization
equation of cICA is rewritten by

max 37003 AEON-EFoF D
subjeci;;o h(y: ;IV) =0,g(y:W)<0
or
min ~ 3 J(3) =3 PEL, )} - E{f, ) 2
subjectl:J h(y: vs;) ; 0,g(y:W)<0 ’
where h(y : W) =k, (v (01595 )ses by, (9,))T and

gy :W)=(8,(01),8,(7) 8 (¥, ) -
A set of equality constraints 4(y:W) to make the output
signals uncorrelated and bound the variance values of the

output signals to be one is given by

b Gny)=EYy, ) =0Yij=12,.mizj  ©)

b ()= EP? =D =0,i=12,..m. (10)

The priority information is provided to the cICA
algorithm by some reference signals. A set of inequality

constraints g(»:W) used to make the output signals closed to
the reference signals is given by

an

whereZ is a threshold andg(y,r)is the closeness

&) =e(,n)-§<0,i=12,.,m,

measurement between y; and 7;. The common formulation of
€(y;,1;) is the mean squared error g(y,,r,) =E{(J’: —r,)z} and

the inverse correlation g(y,,r) =1/ E{y,r,}*.

To solve an optimization problem with equality
constraints and inequality constraints, we need to add extra
variables into an optimization function with the Lagrange
multipliers. The expansion of the cICA algorithm with the
Lagrange multipliers is completely described in [9]. Here, we
only rewrite the update rules to calculate the values of the
weight matrix and the Lagrange multipliers by the Newton’s
method,
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W« W-D EfFI)x" }+ TVG +2AE{x" 7, (12)

- pemax{o,u+y,8(y: W) (13)
A A+y,h(y: W), . (14)
where 7, X "~ and ¥, are the  learning

RES, 1 = [ty gty 0 A=[hyy g B! BE the
Lagrange multipliers, D= diag(d,,d,,...,d,) is a. diagonal
matrix with each diagonal element
d,==E{p.f",, )1+ 84, + E{ug", )}

Vi(y) = ' G D2)seees S O > T = diag(pty, phy e ) »

VG =V, 2,0V, 82 02)in Vi, € D)5 =B},

and A is a matrix with A, ={/1,1E{y,yj} irJ . Here,
¢ ﬂ'ii(E{yiz}_l) =

we use V, g(y)rather than E{g‘(y)xT } as recommended by

Liu et al. [10] to make sure that the equality constraints are

still valid when E {XT} is close to 0.

III. FAST CONSTRAINED INDEPENDENT
COMPONENT ANALYSIS

A. Fast constrained independent component analysis
In this section, we develop the fast cICA with multiple
references by the two modifications on the conventional cICA.
First, the preprocessing with whitening input signals and
normalizing weight vectors at each update step are integrated
into the cICA algorithm, as in [11]. This addition aims at
bounding the variance values of extracted signals that make
the estimation of the output signals faster. Second, we perform
the one-by-one extraction process of the output signals and
reduce the complexity of equality constraints in (9), (10), and
(11). The simultaneous decorrelation of all output signals at
the same time makes cICA be harder to converge to stable
values. The mathematical details of the fast cICA algorithm
and its update rule to learn the weight vector are presented
following.

The gradient of the optimization problem in (8) for one
signal with the addition of the Lagrange multipliers is given
by

VL, =-E{ ()X |+ iV, g(5) +4A(E{? J-DEpx" - (15)

The last term 4A(E{y2 }— D E{yxT} used to restrict the variance
of output signal to a value of one is replaced by normalizing
the weight vector at each stepw « w /||wﬂ For the output
signal p, we need to establish p-I constraints
(E{ijpgz =0,Vj=12,.,p-1 to decorrelate the output

signal p with the p-1 extracted signals. According to the Kuhn-
Tucker theorem, with these additional constraints, a set of
equations used to compute the values of the weight vector is
depicted by

-1 ‘ g 6
VL, =—E{]'(yp)xT}+/¢prgp(yp)+22,11pE{,;jyp}E{ijr}=0 (16)

E,y,D? =09, j=12,.,p-1
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where A, is the Lagrange multiplier. We attempt |
these equations by the gradient descent with the ‘
method. The Jacobian matrix off is approxima

VL2 =B )+ Elug, " (r,)D + 25 4, %
j=1
5= 201817y, - We  perform

approximation by replacing E{y] ’, }E{ijf }with (wrw

P

where

Finally, we have the update rules to compute ez
vector as below '
w, «w, =V LEQ ' (y,)x" }+ 49, g,(,)

1
¥ 22 Ay (WowIw,),
=

w, < w, /“wp“
where 7 is a learning rate. Here, the weight vects
initialized with a value from the uniform distributiom, |

L are set to zero at the first iteration. The update
iterated until the weight vector w, convergesto a s

B.  The roles of whitening input signals and ne
weight vectors for extracting the signals with high
values
In the conventional cICA algorithm, we need to
equality constraints in (9) to make the outpus
uncorrelated. However, with the output signals
variance values, the correlation formulation in (9)
rewritten by

by y) = Elyy, ) HEY?EY )= 0,12 5
to make (y,y,) converge faster to. zero. ]
withg{y?}>>1, the values of 41;:(3E{)’i2}‘1) cam
approximated by 84, as in d; of equation (12).

learning rule for the weight matrix of the conven
given in 12) needs to have
adjustments: D = diag(d,,d,,....d,) is a diagonal

each diagonal element
d,==Efp,f", 0)}+44,GEp -1
+* E{/‘,‘g"i (yi)}+ 22’11‘} /E{yiz}’

e
and A is a matrix with

;LiJ'E{yiyj }/(E{yiz }E{y}z }) i’
N =14 -1)- S, B, PAEGE P EDY) o=

i

.

For the fast cICA, it is unnecessary to imie
denominator E{yz}E{yj} into the equationy, (y,,y,
the variance E{f}: W E{xxT }Walways gets a value
the weight vector is normalized at each
[W|=w"w=1, and whitening input signals ma

become an identity matrix.



| vesults in the following section have
sgmals with high variance values, the
ming rules in equation (19) and (20)
| of the conventional ¢ICA algorithm.
A algorithm is still superior to ‘the
orithm and even the cICA algorithm
#m the processing time aspect.  The
i and normalizing weight vectors have
{£{y?} in the computations of our fast

meduced the computational complexity in
weight vectors.

V. EXPERIMENTS
b mmthetic data
s with synthetic data to compare the
of our fast cICA algorithm with the
Migorithm. The programming codes used
mic data are provided in the software
A algorithm [12]. The original signals of
sbown in Fig. 2(a). The mixing matrix of
# created randomly and the reference
By the sign of the original signals. The
depicted in Fig. 2(b) and the reference
'm Fig. 2(c), respectively. To compare the
ve of our fast cICA and the conventional
me compute the peak-signal-to-noise
%, o7/ MSE) (o is the variance of the
i is the mean squared error between the
 the original signal) and the absolute
the extracted signal and original

2y~ The output signals are better

higher PSNR values and their absolute

L i A% Ay

ISR ERE 153 %

s UL NN,
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e AR A AATA

4
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Fig. 2. (a) Synthetic data with the ogi;inal signals. (b) The mixed signals.
(c) The reference signals.

The experimental results with the synthetic data given in
Table 1 have shown that our fast cICA takes lesser time to
recover the original signals than does the conventional cICA
(Note that in this table, ‘Src’ is used to abbreviate ‘Source’).
Meanwhile, in the recovering performance aspect, our fast
cICA algorithm has similar values of PSNR and absolute
correlation with those of the conventional cICA algorithm.

TABLE I
COMPARISON OF RECOVERING PERFORMACES AND RUNNING TIMES BETWEEN CICA
AND FAST CICA ON SYNTHETIC DATA.

Src Src Src Src | Running
1 2 3 4 Time (s)
; : Absolute
Con:Icggonal Cormliting 1 0.99 1 1 034
PSNR (dB) | 3278 2822 33.11 2548
Absolute
Fast cICA Correlation : $ 1 i 0.18
PSNR (dB) 34.57 2495 3431 28.91

B.  Experiments with speech data

In recent years, there a lot of attempts to apply the ICA
algorithm on recovering the original speech signals from a set
of mixed signals (the blind speech separation). However, in
order to extract only the signals of interest, we need to replace
the ICA algorithm by the cICA algorithm to use priori
information (reference signals) to drive the extracted signals.
In this section, we want to introduce the application of cICA
on the blind speech separation with multiple reference signals.
Moreover, we also want to test the performance of our fast
cICA algorithm and conventional cICA on the blind speech
separation in the computational time aspect.

We used the speech dataset in the website storing the
implementation of the ICA algorithm based on mutual
information [13][14]. The eight speech signals corresponding
to the files with name ‘alexd’, ‘dave? ', ‘daver’, ‘doors’,
‘halle’, ‘inter’, ‘mainl’, main2’ are used in our experiments
and depicted in Fig 3. We call these eight signals by S, S, ...,
Ss, respectively.

In the first experiment, we assume that the original signals
do not have too high variance values, so we normalize the
original signals to the signals with unit variance. The mixed
signals are generated from the original signals using a random
mixing matrix. We want to use our fast cICA algorithm and
the conventional cICA to extract the signals S, S, and Ss from
the mixed signals. The missing-frequency signals are used as
the reference signals for S; and S,: the high-pass filter signal

-201 -



with angular cut-off frequency 0.7rad/s is used as a reference
signal for Sj; the low-pass filter signal with angular cut-off
frequency 0.3rad/s is used as a reference signal for S,. For Ss,
observing the power spectral density (PSD) of Ss, we notice
that the most dominant angular frequency of this signal is
0.18rad/s. Thus, we choose a sinusoid signal cos(@(f+1,))

with angular frequency @ = 0.18rad /s as a reference signal.
The time dilate #, of the sinusoid signal is set a value of 20. To
chose the value for the time dilate #,, we test #, with some
values 0, 5, 10, etc. and chose the best value that makes the
convergence of cICA stable. The signals S; 'S, and Ss
recovered from the mixed signals by the conventional cICA
algorithm and the fast cICA algorithm are shown in Fig. 4(a)
and 4(b), respectively. From the experimental results given in
Table 2, we can see that our fast.cICA achieves the same
recovering performance as that of the conventional cICA.
However, in the running time aspect, the speed of our fast
cICA is about three times faster than that of the conventional
cICA.

Fig. 3. The original speech signals.

TABLEII
COMPARISON OF RECOVERING PERFORMACES AND RUNNING TIMES BETWEEN CICA
AND FAST CICA ON SPEECH DATA.

In the second experiment, we test the running of |
and fast cICA on the signals with high variance vahsesk
original speech signals without normalizing variance ase
in our experiment. We want to extract the two signals &
Sy from:the mixed signals. The low-pass filter mgmh
and S; with angular cut-off frequency 0.4rad/s are used#
reference signals. In this case, the cICA algorithm
some adjustments as in Section III.B to make cICA
faster. However, even .with some modifications, ¢
consumes more time. than our fast cICA to extract
original signals S, and S, as shown in Table 3.

EEe

@

(®) g
Fig. 4. The interested signalsS;, S, and S; are estimated froms:
signals by (a) the conventional cICA algorithm and (b) the M
algorithm. :m,
TABLE 11l

COMPARISON OF RECOVERING PERFORMACES AND RUNNING TIMES
CICA WITH COMDIFICATIONS, AND FAST CICA ON SPEECH DATA

VARIANCES. i

Conventional cICA I\/lc;c(l:igc‘:tiit:ns -
TOta(tigiNR 35.51 34.55
l;m% 2044 530

IV. CONCLUSIONS

In this paper, we have proposed a new version @
algorithm to improve this algorithm in the co
aspect. The experimental results with the syn

data have shown that our algorithm runs
conventional algorithm, meanwhile it still s

accurate performance of recovering the origim
Therefore, our algorithm must be better for bem
real applications.

Running
S3 S4 S8 Time (5)
3 Absolute
Con:;(r:xxonal Conliiion 104 096 094 5.55
: PSNR (dB) 2444 881 8.53
Absolute
Fast cICA Correlation e kRl o 1.89
PSNR (dB) 2479 8389 856 :
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, ciCA algorithm and the fast cICA
gobving the blind speech separation

ation to extract only the signals of
wific information of the signals such
@¢ Jow or high frequency components

ver the original speech signals from
 accuracy. The successful extraction of
sygnals from the mixed signals will be
of applications related to speech
ement, and audio editing.
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