
CSMC: Chord based Session Management Framework for
Software as a Service Cloud

Zeeshan Pervez
Ubiquitous Computing Lab

KyungHee University
Yongin, Korea

+82-31-201-2950

zeeshan@oslab.khu.ac.kr

Asad Masood Khattak
Ubiquitous Computing Lab

KyungHee University
Yongin, Korea

+82-31-201-2950

asad.masood@oslab.khu.ac.kr

Young-Koo Lee
Ubiquitous Computing Lab

KyungHee University
Yongin, Korea

+82-31-201-2950

yklee@khu.ac.kr

Sungyoung Lee
Ubiquitous Computing Lab

KyungHee University
Yongin, Korea

+82-31-201-2950

sylee@oslab.khu.ac.kr

ABSTRACT

Fusion of virtualization technologies with availability of high
bandwidth internet at the end user level has given birth to cloud
computing. It promises colossal on-demand processing and
storage capacity along with saleable service delivery model.
Software solution providers are applying cloud computing to
reduce service provisioning cost, by providing their business
functionality as a service. However, it requires modification in
context of how existing services are provisioned. Existing session
management policies require dedicated computing resources to
process sessions; this deviate from concept of “Pay-As-You-Use”.
To conform to cloud computing architecture there is need to
decouple session management with provisioned services. Derived
by the need of on-demand service provisioning in this paper we
present a decentralized session management framework inspired
by P2P routing protocol. We call the proposed algorithm Chord
based Session Management Framework for Software as a Service
Cloud (CSMC). By applying CSMC there will be no need of
separately deployed computing resources for managing sessions,
in fact CSMC uses existing least utilized resources within Cloud
Area Network (CAN). CSMC has been tested on three different
cloud configurations, our results reveal that CSMC can effectively
deployed in cloud to achieve seamless service scalability.

Categories and Subject Descriptors
A.1 [Introductory and Survey], C.2 [Computer-
Communication Networks] - Distributed Systems.

General Terms
Algorithms, Management, Measurement, Performance.

Keywords
Software-as-a-Service (SaaS), Distributed Session Management.

1. INTRODUCTION
Over the time we have seen some dramatic changes in software
delivery model: from stand alone applications to client server
architecture and from distributed to service oriented architecture
(SOA) [1]. All of these transformations were intended to make
business process execution effectual and to provide ease of use.
New software delivery models emerge due to the fact that either
the earlier delivery models were not supporting the business needs
or technological advancement have broken some barriers which
were considered to be as inevitable in previous ones. Exponential
increase in processing power of enterprise servers, adoption of
virtualization and availability of high bandwidth to the end user
have given birth of new type of computing paradigm known as
cloud computing [2]. It encompasses Software as a Service
(SaaS), Platform as a Service (PaaS), and Infrastructure as a
Service (IaaS).

Among all of these types, SaaS is a software delivery model,
which provides access to business functionality remotely as a
service [3]. Leading companies in Information Technology
industry are gradually moving their applications and related data
over the internet and delivering them through SaaS [4]. Google
has used SaaS platform to offer web applications for
communication and collaboration [5], gradually replacing
recourse exhaustive desktop applications. Similarly Microsoft is
offering their development and database services though SaaS
codename Microsoft Azure [6]. SaaS is preached by companies
like SalesForce, 3Tera, Microsoft, Zoho and Amazon, as a result
of which business specific services can be consumed in ubiquitous
environment.

One of the distinguishing features of cloud computing is adoption
of virtualization [2], that helps service providers to provision their
services on-demand bases. These services encompass software
(business application) and data storage services or even hardware
and network resources as a service [8]. The concept of “pay-as-
you-use” is principally backed by virtualization. Although on-
demand services (service scaling) is just a matter of simple click
as advertised by most of the cloud hosting providers [9]. But in
fact there are lots of issues related to this simple click event;
session management, virtual machine deployment, and load
balancing are few of them. Services are scaled (up or down) to
comply with service level agreement (SLA) signed between

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and (or) a fee.
ICUIMC '11, February 21-23, 2011, Seoul, Korea

Copyright 2011 ACM 978-1-4503-0571-6.. $10.00.

service provider and service consumer or to reclaim the resources
when they are not required (less number of concurrent users).

SaaS can be classified in four levels [7]; at the highest level
(Level-IV) services are multi-tenant and configurable. Multi-
tenant services are developed keeping in view the heterogeneity of
the service consumer. Diverse consumers can subscribe to same
instance of a service, yet they will experience bespoken response
according to their business requirement. Level-IV services are
most lucrative for any service provider, since they only need to
spend once on development process and later on these services
can be configured according to customer requirements. However,
provisioning these types of services demands some tailored
management procedures in terms of session and load balancing.

Session management procedures which are currently deployed by
hosting providers works well in web architecture (Client Server),
where there is no concept of “pay-as-you-use”, and resource
utilization is not considered at the utmost priority. Existing
session management algorithms used by most of web-servers are
developed by the hypothesis that resources (compute and storage

servers) will be available throughout their lifecycle. Although
web-servers provide disaster recovery mechanism by replicating
session information on multiple servers, nevertheless they are not
adaptive to true dynamic nature of cloud, in which resource can be
added or removed with a single command on cloud management
console.

Deploying service in cloud using these conventional session
management procedures increases the service provisioning cost as
they demand dedicated resources to process and store session
information. Apart from that these session management
procedures also hinder in the development of Level-IV services,
as session are bound to particular instance of a web-server,
restricting consumers to one instance of a server. In this paper we
present a decentralized session management algorithm which is
not bound to any particular web-server. This decoupling of
session management helps in provisioning on-demand services
and reclaiming cloud compute resources when they are not
required to reduce the provisioning cost; without affecting
existing active session. We use P2P routing protocol i.e., (Chord)
to distribute the session values among the cloud compute
resources. With P2P routing protocol, resources are fully utilized
without the need to have dedicated session management server.

The rest of the paper is organized as in Section II we will discuss
the different session management methodologies provided by
existing web-servers. Section III will summarize some of systems
in which Chord is successfully utilized to develop distributed
applications. Section IV will present our proposed distributed
session management framework. Session V will talk about the
session management procedure using Chord. In Section VI will be
outline our test bed used for experiments, along with
implementation strategy. In Section VII we will present our
results in three different configurations; and finally in Section
VIII we will conclude our work.

2. RELATED WORK
Web applications and services are hosted on web-servers to
deliver their contents and functionality to the end user. There is an
exhaustive list of web servers used by the industry to provision
services. Three well known and commonly in use web-servers are
Internet Information Services [8], Apache Tomcat [11], and
GlassFish [12]. These servers are designed to achieve high

throughput, and to cater flash crowd problem. Besides this with
the emergence of Web 2.0 interactive application concept, these
web-servers are configured to execute numerous HTTP Post
requests generated by an individual client application. Various
strategies have been adopted by these servers to provide desktop
application like experience in web applications, which led them to
session management in various ways.

Figure 1 - Web-Server Session Management Methodologies

Mainly sessions are handled by applying three distinctive
methodologies, subject to application requirements. These
requirements include number of concurrent users, session validity
period, and inter arrival time of request from a valid user. Apart
from that, usage of session in application also influences the
decision of application architecture in selecting the suitable
session management methodology. Below we have discussed
three different session management procedures used in most of
the web-servers.

2.1 Main Memory Based Session

Management (MMB):
One methodology frequently used and is enabled by default in
most of the web-server [10], [11], [12]; persists session
information in worker process of the web-server shown in Figure
1 (a). This strategy is best suited for an application which has a
limited number of concurrent users. Whenever, session
information is required web-server can extract it from the worker
process. In this methodology session state depends on the life time
of the application; if application is restarted all of the active
sessions are lost. This methodology works well for applications
where session is not intensively used in business logic to persist
data.

2.2 Repository Based Session Management
(RB):

Second approach that is applied to medium size applications [10],
[11], [12]; persists sessions in dedicated database or file as shown
in Figure 1 (b). This approach is used in applications where
sessions are rigorously used to store business objects when
navigating between web pages. With this approach session
validity period can be increased to much longer duration as
compared to MMB. In addition to that, it also facilitates

Web Server Web Server

Session

Repository

Load Balancer

Worker Node 1

(Web Server)
Worker Node 2

(Web Server)

(a) (b)

(c)

Worker Node N

(Web Server)

Main Memory

application developer to persist entire business object in session
without compromising application response time. The core benefit
of RB, it trims down the usage of main memory and takes
advantage of database algorithms for searching and indexing huge
repository of active sessions.

2.3 Dedicated Machine Based Session

Management(DMB):
Third methodology is applied for massively large applications. It
is best suited for the applications [10], [11], [12], where sessions
are persisted on multiple locations in order to avoid any failure
and to achieve load balancing in case if there are too many hits on
a web-server. Figure 1 (c) shows the DMB topology, consisting of
one Load Balancer (master node) and multiple worker nodes
(web-server). This approach is mainly adopted by enterprise
applications where; sessions are created for much longer duration
of time and must be kept persistent to increase user experience,
and to reduce the dependency on other components (incase if

business object are not subject to frequent changes). This
approach requires dedicated resources for session management.
Usually scheduling algorithms are deployed on master node that
routes the incoming request to appropriate web-server. Apart from
that, this technique of session management requires replica of
session repository on each web-server.

IIS, Tomcat, and Glassfish are shipped with these three session
management approaches described earlier, with a few variations.
IIS use Microsoft SQL Server for Repository Based session
management whereas; Glassfish use local file system to persist
session information instead of dedicated database. Tomcat use
FileStore as an alternative of main memory, for every session a
separate file is created in FileStore that persist session
information. However, for the DMB approach all of web-servers
employ same strategy, at master node load balancer is deployed
and actual sessions are persisted on multiple worker nodes.

Existing web-servers provide session management procedures
explicitly engineered keeping in view the web architecture. Cloud
computing preaches on-demand virtualized services which can
scale accordingly to their utilization requirements. There is need
of session management procedure which can scale with services.
Making use of dedicated compute nodes for session management
will restrict service provider to provision services on-demand
bases. P2P algorithms are well known for their scalability and
distributed nature. A lot of literature has been published on P2P
routing protocols. Chord is a P2P routing protocol which has been
successfully used in various application to achieve scalability.

3. CHORD IN DISTRIBUTED SYSTEM
Chord [13] is a lookup protocol dedicated to internet applications
that need to discover any type of resources maintained by users
that form an underlining network [16]. It provides an elementary
service: for a given key, Chord returns a node identifier that is
responsible for hosting or locating the resource. Chord has been
deployed in several applications: CFS (Collaborative File System)
[14] which is an internet scale distributed file system, and
ConChord [15] which uses CFS to provide a distributed
framework for the delivery of SDSI (Simple Distributed Security

Infrastructure) security certificates.

Some applications employ Chord in a much different way as
compared to file sharing applications. Snapshot [17] is a

distributed network management algorithm developed on the
bases of Chord. This management scheme helps
telecommunication carries to gather information about the current
performance capabilities of their network. Besides this it also
assists telecommunication carries in monitoring entire or subset of
the network. Each subset of the network creates the snapshot of
the underlying network which is then used to identify the point
where counter measures are required.

Network heterogeneity is another problem which can affect the
response time of lookup query in Chord network. Not all
participating nodes possess the same processing power and
network bandwidth. [18] is another file sharing variant of Chord
which addresses network heterogeneity. To overcome this
problem they proposed an improved Chord model, based on
Topic-Cluster and Hierarchic Layer (HTC-Chord). The proposed
algorithm divides the network according to the interest (Topic)
and processing capabilities of the node. Through this scheme,
lookup request is restricted to a subset of nodes, in which the
nodes have same interests. As a result of which, response time of
a request is reduced since it is only routed to the nodes having
similar interest and possess appropriate processing power.

[19] proposed a key look strategy based in Power Law. They have
introduced the concept of Super Node, which possess huge
processing and high bandwidth availability. Super Node works as
anchor nodes, instead of diving deep in Chord network, request
are entertained by the Super Nodes, avoiding nodes which has less
processing capabilities.

4. SYSTEM ARCHITECTURE
CSMC is a Chord based session management framework for
Software as a Service cloud (SaaS), which provides distributed
session management enabling session decoupling. CSMC enables
services providers to achieve seamless service scalability, without
interfering the processing of existing active sessions. The
component stack of CSMC consists of six managerial components
shown in Figure 2.

Figure 2 - CSMC Component Stack

4.1 Cloud Gateway (CGW)
The top most layer of CSMC is CGW, it works as an entry point
in SaaS. Every service provisioned by the cloud is accessible
through CGW. Applications consuming cloud hosted services will
have no idea about the underlying component stack, for them
CGW is the service provider. This high level of abstract is very

ComputeNodeID: 27

Web Server

Provide Usability Stats

Session Lookup and Key Management

Session Management – Validation / Creation

Service Provisioning

Least utilized resource selection R
e
q
u
e
s
t P

ro
p
a
g
a
tio
n
 in
 C
lo
u
d
 .

Cloud Gateway

Resource Manager

Node Manager

Chord Manager

Session Manager

Service Manager

useful during service scaling. As client applications are only
interacting with CGW, there is no need to change the service
binding when multiple instances of a service are deployed.
Internal components of CSMC will automatically route the
clients’ request to most appropriate instance. Underlying
components of CSMC stack will ensure that services are
provisioned accordingly to signed SLA.

4.2 Resource Manager
Effective resource utilization is one of the key selling point of
cloud computing. Resource Manager is the component which has
the global view of resource utilization in the cloud. In order to
avoid bottlenecks, Resource Manager constantly routes the
requests to least utilized resources. It works like glue between
CGW and actual computing resources in cloud. Consequently,
CGW does not need to handle request forwarding task instead it
has been be delegated to Resource Manager. This enables CGW
to manage incoming requests while Resource Manager governs
selection of the most appropriate service instance.

4.3 Node Manager
Node Manger assists Resource Manager in selecting the
appropriate service instance depending on clients’ SLA. It
periodically updates information about resource utilization to
Resource Manger. It monitors the worker thread of web-server to
analysis the response time of the node. Each node in CSMC
enabled cloud is deployed to provide two primarily functions; first
is service provisioning and second is Chord based session
management. Service provisioning is the core function of every
node. In order to avoid the situation where too many request are
routed to the same node; each individual Node Manager
constantly examines the processing capacity of the node, and
update the Resource Manager.

4.4 Chord Manage
Chord Manager is the core component in CSMC, entire Chord
related functions are handled by Chord Manager. Functions like
key value lookup (session identifier), finger table scan, and
request forwarding are handled by it. Under the hood, Chord
Manager is responsible for distributed session management. In
CSMC every node is responsible for storing fraction of the active
sessions. A unique chord identifier is assigned to each compute
node by the Resource Manger. Sessions are allocated to each
compute node according to its chord identifier. In interactive
applications, session management is one of the prime concerns of
application developer as well as for service providers. As
applications are becoming more and more interactive, sessions are
intensively used by applications developers to persists business
objects during HTTP Post request [20] or in case of partial call
back operation (AJAX) [22]. Chord Manager together with
Session Manger help hosted services to validate session
authenticity and provide desired session information.

4.5 Session Manager
For every legitimate user new session is created if does not exist
or if its validity period has been expired, by session manager.
Since HTTP is a stateless protocol, session management is the
most efficient mechanism to persist the business objects while
navigating between web pages. Apart from that, session is also
used to identify user legitimacy. Every session is valid for a
particular period of time after that it is discarded. Importance of
session management is escalated if the client application is an

interactive application, which needs quicker response as compare
to conventional web applications. Besides this, as web
applications are providing functionalities with desktop like
experience more and more business objects are persisted in
session variable that demands more memory space and reduced
lookup time.

4.6 Service Manger
In SaaS architecture single compute node provides multiple
services though virtualization. In order to identify their usage
pattern Service Manger is added. Service Manger keeps track of
all of the hosted services on a single compute node. Service
Manger assists SLA mangers in deciding which service should be
scaled for effective resource utilization. It also assists Node
Manager in analyzing worker process of the web-server that helps
in reducing the session lookup time.

Collectively, all six managerial components of CSMC facilitates
in achieving distributed session management in cloud, driven by
the need of cost effective resource utilization. With CSMC, there
is no need of dedicated session management components in cloud
which increases service provisioning cost and can become a
bottleneck in case of flash crowd.

5. SESSION MANAGEMENT WITH CSMC
In cloud computing services are scaled according to the number of
concurrent users/requests. [7] describes four level of service
provisioning models, at the highest level (Level – IV); services are
scalable, configurable and possess the multi-tenant property. To
achieve true multi-tenancy, there is a need to decouple session
management from a particular web-server. In cloud, services are
provisioned on virtualized resources (Virtual Machines) and these
resources can be reclaimed back if not required or more
virtualized resources can be added if necessary. In this context
availability of web-servers is depended on number of concurrent
users. To achieve seamless service scaling (up or down) there is
need of session decoupling so that executing of concurrent session
is not disrupted and newly session can be created seamlessly.

With CSMC we have accomplished true session decoupling with
the hosted services. CSMC enables service providers to scale their
services without making any changes in the underlying
configuration. Figure 3 shows the CSMC topology in Cloud Area
Network (CAN).

CSMC works in a collaborative manner. Every component of
CSMC provides assistance to other component. As a result single
point of failure is avoided and also this type of disseminated
strategy is best suited for flash crowd problem that demands
additional compute nodes. CGW is the point of interaction for
every service consumer. The idea is similar as that of Service
Oriented Architecture (SOA), services are exposed without
providing the internal service composition logic. Every service
consumer binds client application with CGW to consume the
hosted services. Received request is then delegated to Resource
Manager which routes the request to the least utilized service
instance according to the SLA. At very abstract level Resource
Manger performs the request routing but internally it segregate the
request according to the SLA and select the resource (compute

node / service instance) which is most suitable for conforming the
SLA. This type of resource selection requires resource utilization
information, which can provide information about current
processing capabilities of a compute node. In CSMC this
utilization information is provided by the Node Manager, which

periodically intimate Resource Manger about the processing
capabilities.

Figure 3 - CSMC in Cloud Area Network

On receiving the service usage request, individual service needs
session information in case of HTTP Post request. In CSMC
enabled cloud sessions are not bound to any particular instance of
a service; in fact sessions are bound to compute nodes according
to the session identifier. To locate the session within the CAN,
session identifier is utilized which indicates the node responsible
for maintaining the session information. Session information is

retrieved from CAN though Chord in logarithmic time
�

�
����,

where � is number of compute nodes in CAN [13].

Figure 3 shows Chord topology for CAN of 8 nodes having
maximum capacity for 16 compute nodes. It is clear that current
cloud computing capacity can be doubled without requiring any
configuration alteration in current topology. Black dots in Chord
ring show the absence of compute node, whilst the white circles
show, the actual compute node on which request can be routed.
On each compute node CSMC component stack is deployed
which helps in maintaining the Chord ring and intimating the
Resource Manager about the processing capability. This
information helps in automated request routing and service
scaling. Each compute node is connected to its successor in the
Chord and additionally contains the finger table to route the
session lookup query to the appropriate node.

Figure 4 - CSMC Session Lookup Request Propagation

6. TEST BED AND IMPLEMENTATION
In order to reinforce our claim we have tested our system for
different number of compute nodes 5, 9 and 20 representing
modulo of 23, 24 and 25 chord space respectively. The test bed
consists of a Cloud Gateway and a Resource Manager, and
multiple compute nodes. Cloud Gateway and Resource Manager
is Windows 7 Enterprise running on an Intel Quad Core with 4
GB RAM and 360 GB hard drive, whereas, compute node are
virtualized images of Windows XP Service Pack 3.0 having 2.0
GHz of processing and 1.5 GB of allocated main memory. All
compute nodes have IIS 5.10 deployed as a web-server and .Net
Framework 4.0 as a runtime environment for component stack of
CSMC.

On each compute node same instance of a web service is deployed
to mimic the business logic provisioned by the cloud. We used
OpenSTA [21] as a load generator for the hosted services. CSMC
components stack is developed in .Net Framework 4.0 and is
deployed on each compute node as a WCF web service. One of
the benefits we get from WCF is dynamic service binding. Instead
of having, a predefined binding between the compute node,
successor and finger references, only generic binding is defined
whose end points can be dynamically configured at the run time
accordingly. Apart from that it also assists in direct reply
procedure. Once session information is identified in CAN it is
directly send back to the compute node who has requested it. This
is achieved by specifying the chord identifier of the requester in
the routed request.

To notify the Resource Manger about the resource utilization we
have used PerformanceCounter class provided by

12

1

7

14

15

11

10

Resource

Manager

0

2

6

5

8

13

Request Routing but Cloud Gateway (CGW) to the least busy node in Cloud

Request forwarding by Cloud Nodes to it’s successor

Chord Manager

Node Manager

Session Manager

Service Manager

9

4

3

Service Consumption Request

Cloud

Gateway

Select least utilize resource

Select least utilize resource

Node utilization

statistics

Provide statistics about the node resource utilization

CSMC

Component Stack

12

1

7

14

15

11

10

0

2

6

5

8

13

Session

Identifier

4

5

7

Node

4

7

7

11 11

Chord Manager

Node Manager

Finger Table

Session Manager

Service Manager

9

4

3

Session

Identifier

8

9

10

Node

10

10

10

15 15

Chord Manager

Node Manager

Finger Table

CSMC

Component Stack

Session Manager

Service Manager

Resource

Manager

Service Consumption Request

Cloud

Gateway

Validate Session Id :1837241306

Request Routing but Cloud Gateway (CGW) to the least busy node in Cloud

Request forwarding by Cloud Nodes to it’s successor

Request forwarding by Cloud Nodes to appropriate location

CSMC

Component Stack

System.Diagnostics namespace in .Net Framework. The
information about the resource utilization is send back to
Resource Manager periodically after every 15 seconds (but is
configurable according to the requirement).

Since we are dealing with the dynamic environment, where
compute node can be added or removed from the cloud depending
on the resource requirement. Whenever new compute node is
added to CAN, chord identifier is assigned to it by Resource
Manger, and session values are allocated to it which falls within
the range of assigned chord identifier and its successor chord
identifier. Once node is added to CAN and sessions values are
assigned to it, Resource Manager will send update finger table
request to compute nodes in CAN. Every compute node
maintained its finger table in XML file. Each finger entry consists
of chord identifier of a compute node and its IP address. chord
identifier is used in selecting the most suitable node during
session lookup, where as IP address is used to define the dynamic
end points between the nodes.

Session values are stored on individual nodes using SQL Server
2008 but is not limited to database. CSMC is configurable,
depending on the requirement, file based session management
policy can be used simply by configuring the CSMC component
stack to file based session management. Different type of session
management policies are handled by the Session Manager,
providing the abstraction layer for querying the underlying session
management policy. Depending on the management policy
Session Manager will create new sessions and retrieve desired
session values from the configured medium. CSMC does not
support main memory based session management policy, because
CSMC is implemented as a web services; storing the entire
session repository in main memory is a not a feasible solution.

7. EXPERIMENTS AND RESULT
We examined CSMC behavior on three different configurations.
At the very basic level we evaluated CSMC for modulo 2m (where
m=3) Chord space, Table 1 shows the number of nodes
considered in this basic configuration. Each node’s chord
identifier is mentioned along with its finger table entries.
Additionally we have added Hosted ID, indicating node
responsible for storing the session in modulo 23 space, because
Node-0, Node-3, Node-6, are not available in chord space.

Table 1 -Chord Space of modulo of 23 compute nodes

Chord

Identifier

(n)

Finger (n+2(k+1))modulo 23 Hosted

ID
K = 1 K = 2 K = 3

1 2 3 5 0,1

2 3 4 6 2

4 5 6 0 3,4

5 6 7 1 5

7 0 1 3 6,7

For the medium sized cloud we considered modulo 2m (where
m=4) chord space (see Table 2). In total 9 compute nodes are used
on which services are deployed along with the CSMC component
stack. Sessions are distributed among the nodes in the modulo 24
space, if the desired compute node is missing then it successor is
held responsible for storing and processing the sessions
repository.

Table 2 - Chord Space of modulo of 24 compute nodes

Chord

Identifier

(n)

Finger (n+2(k+1))modulo 24 Hosted

ID
K = 1 K = 2 K = 3 K = 4

1 2 3 5 9 0,1

3 4 5 7 11 2,3

4 5 6 8 12 4

7 8 9 11 15 5,6,7

10 11 12 14 2 8,9,10

11 12 13 15 3 11

12 13 14 0 4 12

14 15 0 2 6 13,14

15 0 1 3 7 15

We have tested CSMC in modulo 2m (where m=5) Chord space
with the maximum capacity of 32 computer nodes. Table 3 shows
the compute nodes, along with their finger table and hosted ID.

We have tested CSMC on three different test bed configurations
(modulo 2m where m = 3, 4, and 5 respectively) explained earlier
in this section. Session decoupling has been successfully tested in
all of these configurations. The purpose of these experiments is to
emphasize on the fact that CSMC outperform the conventional
session management architecture irrespective of the size of cloud.

In total one million sessions values are distributed among the
compute nodes modulo 2m (where m = 3, 4, and 5 respectively).
Session object consists of a session identifier (8 bytes) and user
business object. User business object constitute of date of birth,
gender, security credentials and time stamp of his last interaction
with the system (3, 1, 8 and 3 bytes respectively). In total session
object for a particular user consist of 23 bytes. On each compute
node load is generated by periodically generating request by
OpenSTA.

Table 3 - Chord Space of modulo of 25 compute nodes

Chord

Identifier

(n)

Finger (n+2(k+1))modulo 25 Hosted

ID
K = 1 K = 2 K = 3 K = 4 K = 5

0 1 2 4 8 16 0

1 2 3 5 9 17 1

4 5 6 8 12 20 2,3,4

6 7 8 10 14 22 5,6

9 10 11 13 17 25 7,8,9

12 13 14 16 20 28 10,11,12

13 14 15 17 21 29 13

14 15 16 18 22 30 14

15 16 17 19 23 31 15

17 18 19 21 25 1 16,17

19 20 21 23 27 3 18,19

21 22 23 25 29 5 20,21

22 23 24 26 30 6 22

23 24 25 27 31 7 23

24 25 26 28 0 8 24

25 26 27 29 1 9 25

27 28 29 31 3 11 26,27

28 29 30 0 4 12 28

30 31 0 2 6 14 29,30

31 0 1 3 7 15 31

In Figure 5 best and worst case response time for session lookup
is shown. In case of Chord the best case for key lookup is when
lookup request is routed directly to the compute node that is
responsible for persisting the values without involving any
intermediate request forwarding compute node. Whereas, the
worst case in Chord is when lookup request is routed to the
compute node that is multiple hops away from the actual compute
node. These intermediates nodes will fractionally increase the
session lookup time as they will try to forward the request to the
node closest to the required node.

Figure 6 shows the average response time for three configurations.
In case of first configuration, the average response time is greater
than that of the other as the processing load on each service in
much higher than that of the second and third configurations.
Same is the case with second and third configuration. However, in
all of these configurations we have achieved seamless service
scaling without the need of replicating the session pool for every
new instance of deployed service.

Figure 5 - Best and Worst Case Session Lookup Time For

10,000 Session

Figure 6 - Average Session Lookup Time For 10,000 Session

8. CONCLUSION
Through CSMC, we have achieved session decoupling, enabling
service provider to scale up services if required without the need
to replicate the existing active sessions to new services. Besides
this, whenever new compute node is added to cloud, CSMC
automatically distributes the sessions among the compute nodes.
CSMC eliminates the need of having a dedicated session state
server, which would increase the service provisioning cost. The
added advantage we get by applying Chord is the self
maintainability. Whenever new compute node is added or
removed sessions are automatically distributed among the
available resources.

CSMC evaluated on number of different configurations shows
how compute nodes can be virtually deployed or reclaimed.
Results shows that CSMC can be effectively utilized in varied size
of cloud and number of concurrent users. CSMC enables service
provider to develop multi-tenant services.

9. ACKNOWLEDGEMENT
This research was supported by the MKE(The Ministry of
Knowledge Economy), Korea, under IT/SW Creative research
program supervised by the NIPA(National IT Industry Promotion
Agency)" (NIPA-2010-(C1820-1001-0001)).

10. REFERENCES
[1]. Above the clouds: A berkeley view of cloud computing.

Technical Report UCB/EECS-2009-28, University of
California, Berkeley, 2009.

[2]. Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., and
Brandic, I. 2009. Cloud computing and emerging IT
platforms: Vision, hype, and reality for delivering computing
as the 5th utility. Future Gener. Comput. Syst. 25, 6 (June.
2009).

[3]. Sun, W., Zhang, K., Chen, S., Zhang, X., and Liang, H.
2007. Software as a Service: An Integration Perspective. In
Proceedings of the 5th international Conference on Service-
Oriented Computing (Vienna, Austria, September 17 - 20,
2007).

[4]. Zhang, L. and Zhou, Q. 2009. CCOA: Cloud Computing
Open Architecture. In Proceedings of the 2009 IEEE
international Conference on Web Services - Volume 00 (July
06 - 10, 2009).

[5]. Google Web Applications for Communication and
Collaborations. http://www.google.com/apps

[6]. Windows Azure platform.
http://www.microsoft.com/windowsazure/.

[7]. F. Chong, G. Carraro, Architecture Strategies for Catching
the Long Tail, Microsoft Corporation. Available from: <
http://msdn.microsoft.com/en-us/library/aa479069.aspx>,
April 2006

[8]. Sato, M. 2009. Creating Next Generation Cloud Computing
Based Network Services and the Contributions of Social
Cloud Operation Support System (OSS) to Society. In
Proceedings of the 2009 18th IEEE international Workshops
on Enabling Technologies: infrastructures For Collaborative
Enterprises (June 29 - July 01, 2009). WETICE. IEEE
Computer Society, Washington, DC, 52-56.

[9]. AWS Management Console, A Web-based Interface to
Manage Your Services. Available from: <
http://aws.amazon.com/console/ >.

[10]. Microsoft Supprot, Article ID: 307598, ASP.NET State
Management Overview. Available from: <
http://support.microsoft.com/kb/307598> , May, 2007

3 4 5

0

200

400

600

800

1000

R
e
s
p
o
n
s
e
 T

im
e
 (
m

ill
is

e
c
o
n
d
s
)

Cloud Aread Network : Chord Space 2
m

 Worst Case

 Best Case

3 4 5

80

90

100

110

120

130

140

150

R
e
s
p
o
n
s
e
 T

im
e
 (
m

ill
is

e
c
o
n
d
s
)

Cloud Aread Network : Chord Space 2
m

 Response Time (milliseconds)

[11]. The Apache Tomcat 5.5 Servlet/JSP Container,
Clustering/Session Replication HOW-TO. Available from: <
http://tomcat.apache.org/tomcat-5.5-doc/cluster-howto.html>

[12]. Sun GlassFish Enterprise Server v3 Prelude Developer's
Guide. Available from:
http://docs.sun.com/app/docs/doc/820-
4496/beaha?l=ja&a=view.

[13]. Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and
Balakrishnan, H. 2001. Chord: A scalable peer-to-peer
lookup service for internet applications. In Proceedings of
the 2001 Conference on Applications, Technologies,
Architectures, and Protocols For Computer Communications
(San Diego, California, United States). SIGCOMM '01.
ACM, New York, NY, 149-160.

[14]. Dabek, F., Kaashoek, M. F., Karger, D., Morris, R., and
Stoica, I. 2001. Wide-area cooperative storage with CFS. In
Proceedings of the Eighteenth ACM Symposium on
Operating Systems Principles (Banff, Alberta, Canada,
October 21 - 24, 2001). SOSP '01. ACM, New York, NY,
202-215.

[15]. Ajmani, S., Clarke, D. E., Moh, C., and Richman, S. 2002.
ConChord: Cooperative SDSI Certificate Storage and Name
Resolution. In Revised Papers From the First international
Workshop on Peer-To-Peer Systems (March 07 - 08, 2002).
P. Druschel, M. F. Kaashoek, and A. I. Rowstron, Eds.
Lecture Notes In Computer Science, vol. 2429. Springer-
Verlag, London, 141-154.

[16]. G. Doyen, E. Nataf, O. Festor, A Performance-Oriented
Management Information Model for the Chord Peer-to-

Peer Framework, Proc. of the IFIP/IEEE
International Conference on Management of Multimedia
Networks and Services (MMNS'2004), San Diego,
California, USA, October 2004.

[17]. Binzenhöfer, A., Kunzmann, G., and Henjes, R. 2008.
Design and analysis of a scalable algorithm to monitor
chord-based p2p systems at runtime. Concurr. Comput. :
Pract. Exper. 20, 6 (Apr. 2008), 625-641.

[18]. Zhao Jingling, Xiao Yonggang, Liao Qing Htc-Chord: An
Improved Chord Model Based On Topic-Cluster And
Hierarchic Layer. In the Proceedings of 2nd International
Conference on Broadband Network& Multimedia
Technology (Beijing, China, October 2009).

[19]. Ktari, S., Hecker, A., and Labiod, H. 2008. Power-law chord
architecture in P2P overlays. In Proceedings of the 2008
ACM CoNEXT Conference (Madrid, Spain, December 09 -
12, 2008). CoNEXT '08. ACM, New York, NY, 1-2.

[20]. Fielding, Roy T.; Gettys, James; Mogul, Jeffrey C.; Nielsen,
Henrik Frystyk; Masinter, Larry; Leach, Paul J.; Berners-
Lee. Hypertext Transfer Protocol -- HTTP/1.1. Avaiilable
from: < http://www.ietf.org/rfc/rfc2616.txt> (June 1999)

[21]. Open System Testing Architecture (OpenSTA).
http://www.opensta.org, 2003.

[22]. Garrett. JJ. "Ajax: A New Approach to Web Applications".
Available
form:<http://www.adaptivepath.com/ideas/essays/archives/0
00385.php.>. February, 2005.

