
A Middleware Framework for Context Acquisition in Ubiquitous
Computing Systems.

N.Q. Hung, S.Y.Lee, L.X. Hung

Computer Engineering Dept.
Kyung Hee University, Republic of Korea
{nqhung, sylee, lxhung}@oslab.khu.ac.kr

Abstract

The aim of ubiquitous computing is to
combine the worlds of computing and
communication in a way to provide seem-less
services to the end user by augmenting everyday
objects with physical and logical information.
Context aware computing, as one important
ingredient of ubiquitous computing, helps to
realize this dream. Due to plethora of sensors with
variable granularity of context, we aim at
providing middleware for context aware services
named CAMUS1 (Context-Aware Middleware for
Ubiquitous Computing Systems) whose
functionalities range from gathering raw sensor
information, adapting it to application
understandable format and then dispatching this
information to interested applications. This paper
presents the design and architecture of the
CAMUS middleware framework, with focus on
context fusion/acquisition from extracted features
of diverse sensors. The ultimate goal is to come up
with a reusable middleware framework ranging
from low-level sensor-extracted features, context
fusion from extracted features, and context
dissemination to diverse application, resulting in a
toolkit-like collection of algorithms for extracting
features from sensors, and reasoning mechanisms
for deducing context data.

1. Introduction

The general trend in computing is progressing
towards the vision of Ubiquitous Computing (or
Pervasive Computing), in which devices are
seamlessly integrated into the life of everyday
users, and services are readily available to users
anywhere all the time [1, 2]. Ubiquitous
computing is closely associated with visions of
smarter devices and environments capable of

1 This work is supported in part by the Ministry of Commerce,
Industry & Energy, and the Korea Science and Engineering
Foundation

providing proactive services to their users. Sensing
is a key enabling technology to make this possible.
As devices and services become more complex
and sophisticated, everyday users often find
themselves spending more time and efforts in
configuring and instructing these devices and
services. Context-aware computing is an emerging
paradigm to overcome these issues by providing
intelligent services that can anticipate the needs of
users and act on their behalf, becoming a part of
the user environment, disappearing from his
awareness. By enabling computer systems to
understand their situational context, context-aware
computing frees users from being the slaves of
their computer systems. Thus, it helps the users to
achieve more by doing less [3, 4].

With advancement in computing technologies
and in keeping with Moore’s Law, sensing and
computing devices are getting cheaper, smaller,
and more powerful and at the same time the device
power consumption is getting efficient. In near
future, sensors will be deployed pervasively in the
environment, even on our bodies (wearable
computers), to carry out sensing and monitoring
tasks. Real world objects will be enriched with
information processing capabilities and wirelessly
networked in an ad hoc, spontaneous manner. In
such a ubiquitous computing environment, a
middleware infrastructure is needed to act as a
mediator between environment and users, to
maintain sensing information and context data, as
well as to provide reasoning/delivery services for
context-aware applications. From the application
developer’s point of view, the main hurdles in
development and deployment of a context-aware
system are i) handling diverse and potentially
unreliable sensor data, ii) dealing with
synthesizers to deduce context from sensor data,
and iii) maintaining semantic and communication
interoperability between different systems.
Delegating these issues to middleware will enable
the application developer to focus on application
logic and subsequently system deployment will
become flexible. In this paper we address these
fundamental issues by proposing a context-aware

middleware framework with a composite solution
covering different issues ranging from useful
context representation, dynamic context
composition, using perception techniques and
sensor network management at sensor layer, and
providing useful services for context
subscription/publication at the application layer.
Focusing on context fusion/acquisition from
extracted features of diverse sensors, the paper
addresses a reusable middleware framework,
resulting in a toolkit-like collection of algorithms
for extracting features from sensors, and reasoning
mechanisms for deducing context data

We discuss the motivation in Section 2. In
Section 3 and 4 we describe the feature abstraction,
and CAMUS architecture. Section 5 overviews
several perception techniques used for extracting
features from diverse sensors and deducing
context information from those extracted features.
Section 6 discusses several advantages of the
proposed framework. Related work and future
directions are discussed in Section 7 and 8
respectively. Section 9 will conclude the article.

2. Motivation

A desired feature of acquired context is its

relation to situation of the entity in focus.
Situational context reflects the multifaceted
characterization of a situation that typically require
substantial analysis and fusion of data from
individual sensors of diverse types. For example,
to be aware of a user’s current situation like
sleeping, watching TV, reading etc requires the
system to sense and decide location type (outdoors
(GPS) or indoors (i-Badge)), light level (dark or
bright), time of day, audio level (low, high, silent),
specific motion patterns (or absence of them, e.g.
lack of arm movement), etc. The described
multifaceted characterization of situational context
requires diverse sensor types (sometimes deployed
redundantly to reduce the inherent ambiguity in
sensed data) to be used at a single time for
formation of useful context. Moreover, a context
management system is also needed to deduce and
deliver context information to diverse applications
running on heterogeneous devices. Where existing
context aware systems have accommodated for
context management functionality, they have not
addressed sensor management issues adequately [5,
9, 11]. Our proposed framework provides a sensor
middleware layer to manage diverse sensor types,
extract the useful features from sensor data stream
to deduce context data. In this way, the higher
layers are provided with a uniform abstraction to

the heterogeneous sensor environment.
The most demanding feature that motivates

further research and development in context-aware
computing comes from the fact that existing
context-aware computing projects take
application-oriented approach, supporting some
target application scenarios. As a result, the sensor
types used are fixed and dictated by the scenario
which makes it hard to deploy new sensor types or
adapt the middleware system to new applications
needs. Thus existing systems lack reusability and
scalability in the middleware framework. CAMUS
masks the application developers from
heterogeneity of sensors and their access patterns
through middleware support for encapsulation.

The proposed framework provides separation
of concerns in which context can be modeled
separately from sensor technologies and properties
of sensors. Moreover, CAMUS middleware
architecture will be supported by an application
development toolkit which will allow robust
development and deployment of context aware
applications in a ubiquitous environment.

3. The feature abstraction

Every sensor in the system is expected to

produce a large amount of values over time. Some
of them will produce such a large stream of data,
giving such a low-level description, that it is
almost impossible to use this directly as input for a
recognition system. The values of a light sensor
can, for instance, be replaced by the mean and the
variance over a sliding history window. Another –
and perhaps better - example is the microphone
since it produces an even larger amount of values.
A range of transformations and filters are
traditionally applied by default for this purpose
(e.g. time domain analysis, power spectrum, Fast
Fourier Transformation (FFT) for base frequency,
etc.).

Features. The most basic way to pre-process
a data stream from a sensor is to use common
elements from statistics, such as minimum,
maximum, average or standard deviation. These
values are usually referred to as features,
descriptors, or cues, as they describe a stream of
data by extracting just one value. The features can
be interpreted as values that are the results of often
simple and lightweight calculations on data that is
sent in a dense stream. Many features are derived
from the light sensor data in a standard period,
such as the average brightness, standard deviation,
base frequency (of artificial light from lamps), and
so on. From the temperature sensor data, we get

the features: maximal and minimal temperature,
average temperature, changing speed, etc.

Features are extracted not only in time domain
but also in frequency domain, for example the
base frequency. The data from light sensor is
transformed into frequency domain through FFT,
and then used a linear window to find out the base
frequency of in the date. This base frequency
should be a stable value when there is artificial
light near the light sensor (to discriminate between
outdoor/indoor, reading book/watching TV, etc).
Correlation and wavelet transform can be used to
extract features from sensors as well.

Features have several benefits. By using
these features instead of the raw stream of sensor
data, bandwidth and amount of data can be
reduced. This enables any slower adaptive
learning algorithms that work on the features
instead of the raw sensor data to be as near real-
time as possible.

The data from some sensors, especially from
light sensor, involves some random noises that
usually occur with no more than two sequential
values in one sampling cycle. Before analyzing the
data from this kind of sensors, a mid value filter
(or median function) with K-value-size window
could be used to do the preprocessing.

Utilizing features also optimizes the system’s
generalization performance since a slightly more
abstract interpretation of the data is processed. The
higher-level interpretation makes it furthermore
easier to inspect any rules that adaptive algorithms
may form afterwards.

3. CAMUS middleware framework

The proposed middleware framework

CAMUS provides a two-layered abstraction as
depicted in figure 1. The first abstraction, called
Feature Extracting (FE) Layer, separates the
heterogeneous sensor field from sensor data
consumers (upper layers). And the second
abstraction, Context-awareness (CA) Layer,
separates the context acquisition and synthesis
from the application layer.

3.1 Feature Extracting (FE) Layer

This layer provides an abstraction from raw

sensor data and is the key element for masking the
diversity of sensors and providing mechanisms to
acquire diverse sensor data. The name Feature
Extraction refers to the fact that at this layer
sensory data is formulated into features. From the

data stream of one sensor, a computing node can
extract diverse features by applying low level
functions for the consumption of upper layers. For
example, an audio sensor might be generating a
continuous audio stream. At the FE layer, features
such as base frequency, ration between zero
crossing and direction change points (peak) and
noise level can be extracted to discriminate
between voice, music, silence etc.

The FE layer hides the details of sensor
interfaces from the context-consuming layers it
serves by providing a smaller, uniform interface
defined as set of features describing the sensed
system environment. In building different
applications, the concept of features will be very
useful to make changes in hardware (sensors,
devices such as PDAs) transparent to the context
recognition layer. When including new sensors
with different characteristics, only changes in the
corresponding feature functions need to be adapted.
This way, the FE layer strictly separates the sensor
layer and context consuming layers which means
context can be modeled in abstraction from sensor
technologies and properties of specific sensors.
Here, the architecture provides the advantages
from separation of concerns.

CAMUS provides a feature tuple space (FT)
to support interoperability between heterogeneous
sensor nodes in the environment (e.g., RFID tags
or iBadges for users and objects identifying, audio,
video and light sensors for activities
discrimination and detection, etc.) The feature
tuple space is a multi-dimensional space that
includes, among other things, sensor and feature
types (Sensor_ID and Feature_ID), and the data
value of the extracted feature (which is not sensed
data of the environment in some cases, e.g.,
contents in the memory of an RFID tag).
Additional dimension for timestamp may be
included for consistency in the distributed tuple
space:

FT = {Sensor_type_ID, feature_ID,
feature_value, timestamp}

Consumers can access the feature tuple space
in a sensor network via uniform FE APIs. Back-
end system accesses the sensor network for
features needed in deducing different levels of
context (location context, activities, etc). Handheld
devices may access sensor network for features to
deduce some primitive context directly (as identity
context, temperature, etc) using query/notification
mechanism or for transfer of information to back-
end system (as a transient access point). During
system development or maintenance periods,

handheld devices can also be used to access the
feature tuple space for debugging.

3.2 Context-Awareness (CA) Lay

This layer fuses the diverse e

features received from different senso
context synthesis. Context data is
function of diverse available fe
methods for generating context fro
features can be rule-based algorithm
methods, neural networks, or reasonin

While features are assumed to
context is considered to be more clos
the application scenarios. The featu
layer needs to produce only those fea
required by the context consumers,
remaining – unnecessary – features.
the philosophy “application-knowle
of CAMUS, which helps to
computational and communication co
At this layer, CAMUS supports th
developers in the process of contex
and synthesis by providing ready-to
in the Context Tuple Space (CT).

CT = {Context_ID, Attribute_
data, time, probability}

The context information (CT) is
an ID and has several associated cont
Each attribute also has an ID and data
in context-data, a data type defined b
developer. The structure given abov
provision of including probabilities fo
value if the perception system
information. Place and time inform
context in its own; instead it adds mea
contextual information. Hence it i

meta-information about a context. We discuss how
to represent/modeling context data using Web

e

 Figure 1: CAMUS Architectur
er

nvironmental
rs to provide
derived as a
atures. The
m primitive
s, statistical

g machine.
 be generic,
ely related to
re extracting
tures that are
ignoring the
This reflects
dge-in-node”
reduce the

st.
e application
t acquisition

-use contexts

ID, context-

identified by
ext attributes.
 value stored
y the system
e allows the
r the context
offers this

ation is not
ning to other
s treated as

Ontology Language (OWL) [6, 7, 8] in another
paper [12].

3.3 Hierarchical Tuple Space

CAMUS follows a bottom-up approach,
starting with the actual data from the hardware
sensors, and generalizing towards the user’s
description of the observed data. This method is
the different with the traditional design of a
sensor-based system where a specific application
dictates which concepts are useful, and what
sensors are required. The bottom-up approach
leads to an abstract hierarchical tuple space in
CAMUS framework as depicted in figure 2, and
its advantages are discussed in section 6. Here the
feature extracting functions and algorithms, along
with context reasoning mechanisms (stated in
section 5 – Perception methods) are represented in
two libraries, FELib and CALib respectively.

4. CAMUS Core middleware services

The heterogeneity and dynamism inherent in
smart/active spaces leads to high levels of
heterogeneity at the link and transport layers.
Services can be developed using existing
technologies and deployed at the infrastructure
level to mask such heterogeneity and provide
support for handheld devices and applications
executing in resource constraint environments.
These services provide communication, amongst
the framework components at different levels, and
assistance to applications. In the CAMUS
architecture, infrastructure services exist at three

levels: Core Feature Services, Context-Feature
Mediator Services and Core Context Services as
depicted in figure 3. We discuss details of
communication mechanisms and services in
another paper [12].

Core Feature Services deal with extraction of
environment and context features from sensor
signals. These services also register event
subscriptions, trigger event notifications, handle
queries and generate responses related to the basic
feature information at the sensors.

Context-Feature Mediator Services aids

higher-level services by mapping their
requirements into queries to be forwarded to the
feature tuple space. Moreover, the mediator also
performs the reverse role of transforming features
into context data to be passed from feature tuple
space to the higher context services. In this way,
this mediator performs the critical function of
summing up features into context that is analogous
to converting raw data into (useful) information.
These services have input data (features) from the
lower level Context Feature services. Foremost
task of these services is to assemble feature data
into utilizable context data. It is achieved through
Data Aggregation and Fusion sub services. A
reasoning engine is available to these services to
aid them in their tasks. Secondly, these services
present the acquired context to upper level
services and applications. The higher level
services can query these services and also register
for contextual events of their interests with them.

The Core Context Services lie at the top of
the architecture and consist of asynchronous
Context Event service and synchronous Context
Query service. These services handle the overall

query/response and event registration/ notification
tasks for the applications.

Though the aim of the system is to provide
context sensitive information to interested devices
and applications, it is nevertheless desirable in
some cases that raw sensory data be made
available to applications/devices to infer on their
own. This provision is also addressed in CAMUS
architecture where sensory data from Feature
Tuple Space will be made available to interested
entities.

Figure 2. Hierarchical Tuple Space in CAMUS

5. Perception Methods

Context refers to information that describes

some aspect of the conditions in which an
application executes. There is no clear distinction
about what is and is not a context, but the most
interesting kinds of context are those that humans
do not explicitly provide. With the advancement in
sensing and automated means of perceiving
physical environment, we can automatically
collect much more implicit context then ever.

Lightweight algorithms are being investigated
and embedded in sensor nodes to extract diverse
useful features for context fusion [13], [14]. They
can be basic statistical functions such as average,
median, standard deviation, minimum and
maximum, or first and higher order derivatives,
which can be calculated consuming very low cost
and at times on the fly without needing to save all
samples. Time domain analysis may also be
adopted, which is particularly useful for data from
light and audio sensors. For audio the average
itself has no meaning but it is useful to calculate
further features. Knowing the average means that
calculations on how often the average is crossed in

a certain time and also the average distance
between crossing the average can be performed. It
is also possible to calculate the distribution of the
distances between crossing the average. This is an
indicator for the base frequency and the stability of
the base frequency in the signal. Counting the
direction changes in the signal is also possible on
the fly. The ratio between the average crossings
and the direction changes gives an indication on
the type of signal and allows discrimination
between contexts. For example in the audio signal
it is possible to discriminate music, speech, and
noise, and in the acceleration signal it is possible
to find characteristic values for certain patterns of
movement. For fast changing signals like audio
signals, the peaks or energy (root mean square) of
the signal in small time windows (e.g. getting an
indication every 100ms) provides information
about the sampled data. Certain audio events
(speaking of a word, ringing of the phone,
applause, music) result in a characteristic series of
values.

To reduce inherent ambiguity in sensor data

and to infer high-level context from the extracted
features, high-level perception methods like
pattern-matching engines and neural network will
also be investigated and implemented in back-end
systems. Most of the awareness of the contexts is
based on more than one feature and even other
contexts. The features and contexts are regarded as
different dimensions of input vector of the fusion
algorithm. There are two advantages of applying
neural networks to fuse the decision. One is that

the neural network is noise-tolerant and can
process the input features with plenty of noise.
The other advantage is that neural network allows
the system to be reconfigured according to the
specified application instance. Many neural
networks are computationally demanding. But
there are still some methods that can be
implemented on very restricted hardware
platforms (handheld devices, and sensors) like
back-propagation neural networks, logical neural
networks [15], etc. Nearest neighbor matching is
a very simple technique for pattern matching. A
representative vector is calculated and stored
during the learning phase. When the system is in
operational mode, an incoming vector is compared
to the stored sample vectors and the distance is
calculated.

System can use pre-defined rules written in
some form of logic to infer, deduce different
contexts. For example, based on the number of
people in the room and the applications running in
the room the system can deduce what kind of

Figure 3: CAMUS Core services

activity is going on in the room. It uses rules
written in first order logic to perform the
deduction. Some of the rules may be:

1. #People(Room 302, “>=” , 3) AND
Application(PowerPoint, Running)

=> RoomActivity(302, Presentation)
2. #People(Room 302, “>=” , 1) AND
Application(MPEG Player, Running)

=>RoomActivity(302, Movie Screening)

6. Discussion

This proposed framework for context

acquisition is mostly software-based design
instead of a customized, hybrid, hardware-
software design. The assumption that there are
plenty of suitable sensors moves the focus to the
algorithm that processes the sensor data. The
system lets all sensors act together to generate
descriptions for all applications, instead of having
to design a tailored sensor system for each
application.

There are several advantages of the proposed
framework. First, the multi-step of abstraction
provides separation of concerns in collecting raw
data, extracting features from diverse and
heterogeneous sensors, fusing/deducing those
features into context information, and delivering
the information/events to different applications
running on diverse devices. This helps to model
context data separately from sensor technologies
and also filter/reduce traffic of data from sensor
level to application level dramatically. Second,
due to modularity and service-oriented design we
benefit from system software reusability and
evolution, sensor and context data abstraction, and
maintainability. Finally also due to the modular
design the middleware framework can be deployed
in a distributed manner and achieve the benefits of
parallelism and scalability.

7. Related work

A lot of work has already been done in the

field of context-aware systems for ubiquitous
computing and a lot more is still to appear. The
history dates back to 1988 when M. Weiser at el.
started their work on next-generation systems at
Xerox Parc. They utilized the concept of agents to
represent user static and device dynamic properties
allowing the system to behave accordingly.
Context toolkit [14] used the concept of GUI
widgets to represent abstract sensors which hid
sensor details from the applications but required
sensors’ manipulation at design time. Solar [15]
took it one step further by allowing customized
functionalities to be inserted into the system using
operator-graph abstraction. While Context
Fabric’s [16] automatic path creation allows path
to be created from source to sink by selecting
components internal to the system at runtime and
employs infrastructure approach for context aware
systems.

The context systems built until now have
mostly been prototypes, investigating different
approaches that can be adopted to enable context

awareness in a ubiquitous environment. Though
most systems presented viable new approaches
and designs, they lacked in interoperability,
flexibility and extensibility. CAMUS aims at
providing these missing features and a middleware
infrastructure for application development and
deployment.

8. Future Directions

In Ubiquitous Computing environment, there

exist the concerns for securing context information
from unauthorized uses and respecting
individuals’ privacy. We are assessing these
security and privacy concerns in CAMUS raised
by the collection of the data, the information
produced, and the dissemination of that
information to other people in other times and
places.

A successful Ubicomp project is proved by
some useful applications. For this, novel and
application scenarios will be explored in the vision
of Ubiquitous computing. Building these
applications will help evaluate and validate our
CAMUS Middleware framework. A test bed is
being setup for deployment and step-by-step
evaluation of our proposed architecture. This will
enable us to verify the architecture and provide
effective solutions for real world applications.

The culmination of architecture will lead to
development of a toolkit. This toolkit will aid the
application developers in fast development and
deployment of applications.

9. Summary

In this paper we describe our middleware
framework for context-aware ubiquitous
computing systems with the focus on context
acquisition from sensory data. CAMUS provides
two levels of abstractions to the applications in the
form of features and context. Features are
extracted from the sensor layer and stored in a
feature tuple space. These features are converted
into context data at the context-awareness layer
and stored in a context tuple space. This proposed
two-tier middleware framework provides
separation of concerns in which context can be
modeled separately from sensor technologies and
properties of sensors. The main objective is to
come up with a reusable middleware framework
ranging from low-level sensor-extracted features,
context fusion from extracted features, and context
dissemination to diverse application, resulting in a

toolkit-like collection of algorithms for extracting
features from sensors, and reasoning mechanisms
for deducing context data. Thus application
developers can benefit with a flexible and scalable
context-aware middleware framework. A large
selection of analysis algorithms can be applied to
the sensor data, and different solutions may be
provided in various situations rather than one
specific algorithm that will be considered as the
optimal solution in any circumstance.

10. References

[1] M. Weiser, “The Computer for the 21st
Century,” Scientific Am., Sept., 1991, pp. 94-104;
reprinted in IEEE Pervasive Computing, Jan.-Mar.
2002, pp. 19-25.
[2] M. Satyanarayanan, “Pervasive Computing:
Vision and Challenges,” IEEE Personal
Communication, Aug. 2001, pp. 10-17.
[3] MIT Project Oxygen,
http://oxygen.lcs.mit.edu/Overview.html
[4] Sousa, J.P., Garlan, D., “Aura: an
Architectural Framework for User Mobility in
Ubiquitous Computing Environments”,
Proceedings of the 3rd Working IEEE/IFIP
Conference on Software Architecture, Montreal,
Aug. 25-31, 2002.
[5] S. S. Yau, F. Karim, Y. Wang, B. Wang, and
S.Gupta, “Reconfigurable Context-Sensitive
Middleware for Pervasive Computing,” IEEE
Pervasive Computing, joint special issue with
IEEE Personal Communications, 1(3), Jul.-Sep.
2002, pp.33-40.
[6] Mike Dean, Dan Connolly, Frank van
Harmelen, James Hendler, Ian Horrocks, Deborah
L. McGuinness, Peter F. Patel-Schneider, and
Lynn Andrea Stein, “Web ontology language
(owl) reference version 1.0.”, W3C Working Draft,
Nov. 2002.
[7] Dan Connolly, Frank van Harmelen, Ian
Horrocks, Deborah L. McGuinness, Peter F. Patel-
Schneider and Lynn Andrea Stein, “DAML+OIL
(March 2001) Reference Description”, 18th Dec.
2001. http://www.w3.org/TR/daml+oil-reference
[8] Jeff Heflin (Lehigh University), “OWL Web
Ontology Language Use Cases and Requirements”,
http://www.w3.org/TR/webont-req/
[9] Dey, A.K., et al, "A Conceptual Framework
and a Toolkit for Supporting the Rapid
Prototyping of Context-Aware Applications",
anchor article of a special issue on Context-Aware
Computing, Human-Computer Interaction (HCI)
Journal, Vol. 16, 2001.
[10] Guanling Chen and David Kotz, “Context

aggregation and dissemination in ubiquitous
computing systems”, In Proceedings of the Fourth
1EEE Workshop on Mobile Computing Systems
and Applications, IEEE Computer Society Press,
Jun. 2002.
[11] Context Fabric project,
http://guir.berkeley.edu/projects/cfabric.
[12] N.Q. Hung, S.Y. Lee et al. “CAMUS – A
Context-Aware Middleware Framework for
Ubiquitous Computing Systems”, submitted to
23rd IEEE International Performance Computing
and Communications Conference (IPCCC2004)-
April 14-17, 2004 - Phoenix, Arizona
[13] B. V. Dasarathy, “Information/Decision
fusion – principles and paradigms”, in Proceeding
of the workshop on Foundations of
Information/Decision Fusion, pp. 46-60, 1996.
[14] B. V. Dasarathy, “Sensor fusion potential
exploitation – innovative architectures and
illustrative applications”, in Proceedings of the
IEEE, pp. 24-38, January 1997.
[15] Aleksander. I. And H. Morton. “An
introduction to neural computing” (2 ed.). London,
U.K.:Chapman and Hall. 1995.

	A Middleware Framework for Context Acquisition in Ubiquitous
	Abstract
	1. Introduction
	2. Motivation

	3. CAMUS middleware framework
	FT = {Sensor_type_ID, feature_ID, feature_value, timestamp}
	CT = {Context_ID, Attribute_ID, context-data, time, probabil

	5. Perception Methods

