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Abstract 
 

The aim of ubiquitous computing is to 
combine the worlds of computing and 
communication in a way to provide seem-less 
services to the end user by augmenting everyday 
objects with physical and logical information. 
Context aware computing, as one important 
ingredient of ubiquitous computing, helps to 
realize this dream. Due to plethora of sensors with 
variable granularity of context, we aim at 
providing middleware for context aware services 
named CAMUS1 (Context-Aware Middleware for 
Ubiquitous Computing Systems) whose 
functionalities range from gathering raw sensor 
information, adapting it to application 
understandable format and then dispatching this 
information to interested applications. This paper 
presents the design and architecture of the 
CAMUS middleware framework, with focus on 
context fusion/acquisition from extracted features 
of diverse sensors. The ultimate goal is to come up 
with a reusable middleware framework ranging 
from low-level sensor-extracted features, context 
fusion from extracted features, and context 
dissemination to diverse application, resulting in a 
toolkit-like collection of algorithms for extracting 
features from sensors, and reasoning mechanisms 
for deducing context data. 
 
1. Introduction 
 

The general trend in computing is progressing 
towards the vision of Ubiquitous Computing (or 
Pervasive Computing), in which devices are 
seamlessly integrated into the life of everyday 
users, and services are readily available to users 
anywhere all the time [1, 2]. Ubiquitous 
computing is closely associated with visions of 
smarter devices and environments capable of 
                                                 
1 This work is supported in part by the Ministry of Commerce, 
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providing proactive services to their users. Sensing 
is a key enabling technology to make this possible. 
As devices and services become more complex 
and sophisticated, everyday users often find 
themselves spending more time and efforts in 
configuring and instructing these devices and 
services. Context-aware computing is an emerging 
paradigm to overcome these issues by providing 
intelligent services that can anticipate the needs of 
users and act on their behalf, becoming a part of 
the user environment, disappearing from his 
awareness. By enabling computer systems to 
understand their situational context, context-aware 
computing frees users from being the slaves of 
their computer systems. Thus, it helps the users to 
achieve more by doing less [3, 4]. 

With advancement in computing technologies 
and in keeping with Moore’s Law, sensing and 
computing devices are getting cheaper, smaller, 
and more powerful and at the same time the device 
power consumption is getting efficient.  In near 
future, sensors will be deployed pervasively in the 
environment, even on our bodies (wearable 
computers), to carry out sensing and monitoring 
tasks. Real world objects will be enriched with 
information processing capabilities and wirelessly 
networked in an ad hoc, spontaneous manner. In 
such a ubiquitous computing environment, a 
middleware infrastructure is needed to act as a 
mediator between environment and users, to 
maintain sensing information and context data, as 
well as to provide reasoning/delivery services for 
context-aware applications. From the application 
developer’s point of view, the main hurdles in 
development and deployment of a context-aware 
system are i) handling diverse and potentially 
unreliable sensor data, ii) dealing with 
synthesizers to deduce context from sensor data, 
and iii) maintaining semantic and communication 
interoperability between different systems. 
Delegating these issues to middleware will enable 
the application developer to focus on application 
logic and subsequently system deployment will 
become flexible. In this paper we address these 
fundamental issues by proposing a context-aware 



middleware framework with a composite solution 
covering different issues ranging from useful 
context representation, dynamic context 
composition, using perception techniques and 
sensor network management at sensor layer, and 
providing useful services for context 
subscription/publication at the application layer. 
Focusing on context fusion/acquisition from 
extracted features of diverse sensors, the paper 
addresses a reusable middleware framework, 
resulting in a toolkit-like collection of algorithms 
for extracting features from sensors, and reasoning 
mechanisms for deducing context data 

We discuss the motivation in Section 2. In 
Section 3 and 4 we describe the feature abstraction, 
and CAMUS architecture. Section 5 overviews 
several perception techniques used for extracting 
features from diverse sensors and deducing 
context information from those extracted features. 
Section 6 discusses several advantages of the 
proposed framework. Related work and future 
directions are discussed in Section 7 and 8 
respectively. Section 9 will conclude the article. 
 
2. Motivation 

 
A desired feature of acquired context is its 

relation to situation of the entity in focus. 
Situational context reflects the multifaceted 
characterization of a situation that typically require 
substantial analysis and fusion of data from 
individual sensors of diverse types.  For example, 
to be aware of a user’s current situation like 
sleeping, watching TV, reading etc requires the 
system to sense and decide location type (outdoors 
(GPS) or indoors (i-Badge)), light level (dark or 
bright), time of day, audio level (low, high, silent), 
specific motion patterns (or absence of them, e.g. 
lack of arm movement), etc. The described 
multifaceted characterization of situational context 
requires diverse sensor types (sometimes deployed 
redundantly to reduce the inherent ambiguity in 
sensed data) to be used at a single time for 
formation of useful context. Moreover, a context 
management system is also needed to deduce and 
deliver context information to diverse applications 
running on heterogeneous devices. Where existing 
context aware systems have accommodated for 
context management functionality, they have not 
addressed sensor management issues adequately [5, 
9, 11]. Our proposed framework provides a sensor 
middleware layer to manage diverse sensor types, 
extract the useful features from sensor data stream 
to deduce context data. In this way, the higher 
layers are provided with a uniform abstraction to 

the heterogeneous sensor environment.  
The most demanding feature that motivates 

further research and development in context-aware 
computing comes from the fact that existing 
context-aware computing projects take 
application-oriented approach, supporting some 
target application scenarios. As a result, the sensor 
types used are fixed and dictated by the scenario 
which makes it hard to deploy new sensor types or 
adapt the middleware system to new applications 
needs. Thus existing systems lack reusability and 
scalability in the middleware framework. CAMUS 
masks the application developers from 
heterogeneity of sensors and their access patterns 
through middleware support for encapsulation.  

The proposed framework provides separation 
of concerns in which context can be modeled 
separately from sensor technologies and properties 
of sensors.  Moreover, CAMUS middleware 
architecture will be supported by an application 
development toolkit which will allow robust 
development and deployment of context aware 
applications in a ubiquitous environment. 

 
3. The feature abstraction 

 
Every sensor in the system is expected to 

produce a large amount of values over time. Some 
of them will produce such a large stream of data, 
giving such a low-level description, that it is 
almost impossible to use this directly as input for a 
recognition system. The values of a light sensor 
can, for instance, be replaced by the mean and the 
variance over a sliding history window. Another – 
and perhaps better - example is the microphone 
since it produces an even larger amount of values. 
A range of transformations and filters are 
traditionally applied by default for this purpose 
(e.g. time domain analysis, power spectrum, Fast 
Fourier Transformation (FFT) for base frequency, 
etc.). 

Features. The most basic way to pre-process 
a data stream from a sensor is to use common 
elements from statistics, such as minimum, 
maximum, average or standard deviation. These 
values are usually referred to as features, 
descriptors, or cues, as they describe a stream of 
data by extracting just one value. The features can 
be interpreted as values that are the results of often 
simple and lightweight calculations on data that is 
sent in a dense stream. Many features are derived 
from the light sensor data in a standard period, 
such as the average brightness, standard deviation, 
base frequency (of artificial light from lamps), and 
so on. From the temperature sensor data, we get 



the features: maximal and minimal temperature, 
average temperature, changing speed, etc. 

Features are extracted not only in time domain 
but also in frequency domain, for example the 
base frequency. The data from light sensor is 
transformed into frequency domain through FFT, 
and then used a linear window to find out the base 
frequency of in the date. This base frequency 
should be a stable value when there is artificial 
light near the light sensor (to discriminate between 
outdoor/indoor, reading book/watching TV, etc). 
Correlation and wavelet transform can be used to 
extract features from sensors as well. 

Features have several benefits. By using 
these features instead of the raw stream of sensor 
data, bandwidth and amount of data can be 
reduced. This enables any slower adaptive 
learning algorithms that work on the features 
instead of the raw sensor data to be as near real-
time as possible. 

The data from some sensors, especially from 
light sensor, involves some random noises that 
usually occur with no more than two sequential 
values in one sampling cycle. Before analyzing the 
data from this kind of sensors, a mid value filter 
(or median function) with K-value-size window 
could be used to do the preprocessing. 

Utilizing features also optimizes the system’s 
generalization performance since a slightly more 
abstract interpretation of the data is processed. The 
higher-level interpretation makes it furthermore 
easier to inspect any rules that adaptive algorithms 
may form afterwards. 

 

3. CAMUS middleware framework 
 
The proposed middleware framework 

CAMUS provides a two-layered abstraction as 
depicted in figure 1. The first abstraction, called 
Feature Extracting (FE) Layer, separates the 
heterogeneous sensor field from sensor data 
consumers (upper layers). And the second 
abstraction, Context-awareness (CA) Layer, 
separates the context acquisition and synthesis 
from the application layer. 

 

3.1 Feature Extracting (FE) Layer 
 
This layer provides an abstraction from raw 

sensor data and is the key element for masking the 
diversity of sensors and providing mechanisms to 
acquire diverse sensor data. The name Feature 
Extraction refers to the fact that at this layer 
sensory data is formulated into features. From the 

data stream of one sensor, a computing node can 
extract diverse features by applying low level 
functions for the consumption of upper layers. For 
example, an audio sensor might be generating a 
continuous audio stream. At the FE layer, features 
such as base frequency, ration between zero 
crossing and direction change points (peak) and 
noise level can be extracted to discriminate 
between voice, music, silence etc.  

The FE layer hides the details of sensor 
interfaces from the context-consuming layers it 
serves by providing a smaller, uniform interface 
defined as set of features describing the sensed 
system environment. In building different 
applications, the concept of features will be very 
useful to make changes in hardware (sensors, 
devices such as PDAs) transparent to the context 
recognition layer. When including new sensors 
with different characteristics, only changes in the 
corresponding feature functions need to be adapted. 
This way, the FE layer strictly separates the sensor 
layer and context consuming layers which means 
context can be modeled in abstraction from sensor 
technologies and properties of specific sensors. 
Here, the architecture provides the advantages 
from separation of concerns. 

CAMUS provides a feature tuple space (FT) 
to support interoperability between heterogeneous 
sensor nodes in the environment (e.g., RFID tags 
or iBadges for users and objects identifying, audio, 
video and light sensors for activities 
discrimination and detection, etc.) The feature 
tuple space is a multi-dimensional space that 
includes, among other things, sensor and feature 
types (Sensor_ID and Feature_ID), and the data 
value of the extracted feature (which is not sensed 
data of the environment in some cases, e.g., 
contents in the memory of an RFID tag). 
Additional dimension for timestamp may be 
included for consistency in the distributed tuple 
space: 

FT = {Sensor_type_ID, feature_ID, 
feature_value, timestamp} 

Consumers can access the feature tuple space 
in a sensor network via uniform FE APIs. Back-
end system accesses the sensor network for 
features needed in deducing different levels of 
context (location context, activities, etc). Handheld 
devices may access sensor network for features to 
deduce some primitive context directly (as identity 
context, temperature, etc) using query/notification 
mechanism or for transfer of information to back-
end system (as a transient access point). During 
system development or maintenance periods, 



handheld devices can also be used to access the 
feature tuple space for debugging. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.2 Context-Awareness (CA) Lay
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Ontology Language (OWL) [6, 7, 8] in another 
paper [12]. 
 
3.3 Hierarchical Tuple Space 
 

CAMUS follows a bottom-up approach, 
starting with the actual data from the hardware 
sensors, and generalizing towards the user’s 
description of the observed data. This method is 
the different with the traditional design of a 
sensor-based system where a specific application 
dictates which concepts are useful, and what 
sensors are required. The bottom-up approach 
leads to an abstract hierarchical tuple space in 
CAMUS framework as depicted in figure 2, and 
its advantages are discussed in section 6. Here the 
feature extracting functions and algorithms, along 
with context reasoning mechanisms (stated in 
section 5 – Perception methods) are represented in 
two libraries, FELib and CALib respectively. 
 
4. CAMUS Core middleware services 
 

The heterogeneity and dynamism inherent in 
smart/active spaces leads to high levels of 
heterogeneity at the link and transport layers. 
Services can be developed using existing 
technologies and deployed at the infrastructure 
level to mask such heterogeneity and provide 
support for handheld devices and applications 
executing in resource constraint environments. 
These services provide communication, amongst 
the framework components at different levels, and 
assistance to applications. In the CAMUS 
architecture, infrastructure services exist at three 



levels: Core Feature Services, Context-Feature 
Mediator Services and Core Context Services as 
depicted in figure 3. We discuss details of 
communication mechanisms and services in 
another paper [12]. 

Core Feature Services deal with extraction of 
environment and context features from sensor 
signals. These services also register event 
subscriptions, trigger event notifications, handle 
queries and generate responses related to the basic 
feature information at the sensors.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Context-Feature Mediator Services aids 

higher-level services by mapping their 
requirements into queries to be forwarded to the 
feature tuple space. Moreover, the mediator also 
performs the reverse role of transforming features 
into context data to be passed from feature tuple 
space to the higher context services.  In this way, 
this mediator performs the critical function of 
summing up features into context that is analogous 
to converting raw data into (useful) information. 
These services have input data (features) from the 
lower level Context Feature services. Foremost 
task of these services is to assemble feature data 
into utilizable context data. It is achieved through 
Data Aggregation and Fusion sub services. A 
reasoning engine is available to these services to 
aid them in their tasks. Secondly, these services 
present the acquired context to upper level 
services and applications. The higher level 
services can query these services and also register 
for contextual events of their interests with them.  

The Core Context Services lie at the top of 
the architecture and consist of asynchronous 
Context Event service and synchronous Context 
Query service. These services handle the overall 

query/response and event registration/ notification 
tasks for the applications.  

Though the aim of the system is to provide 
context sensitive information to interested devices 
and applications, it is nevertheless desirable in 
some cases that raw sensory data be made 
available to applications/devices to infer on their 
own. This provision is also addressed in CAMUS 
architecture where sensory data from Feature 
Tuple Space will be made available to interested 
entities. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Hierarchical Tuple Space in CAMUS

5. Perception Methods 
 
Context refers to information that describes 

some aspect of the conditions in which an 
application executes. There is no clear distinction 
about what is and is not a context, but the most 
interesting kinds of context are those that humans 
do not explicitly provide. With the advancement in 
sensing and automated means of perceiving 
physical environment, we can automatically 
collect much more implicit context then ever. 

Lightweight algorithms are being investigated 
and embedded in sensor nodes to extract diverse 
useful features for context fusion [13], [14]. They 
can be basic statistical functions such as average, 
median, standard deviation, minimum and 
maximum, or first and higher order derivatives, 
which can be calculated consuming very low cost 
and at times on the fly without needing to save all 
samples. Time domain analysis may also be 
adopted, which is particularly useful for data from 
light and audio sensors. For audio the average 
itself has no meaning but it is useful to calculate 
further features. Knowing the average means that 
calculations on how often the average is crossed in 



a certain time and also the average distance 
between crossing the average can be performed. It 
is also possible to calculate the distribution of the 
distances between crossing the average. This is an 
indicator for the base frequency and the stability of 
the base frequency in the signal. Counting the 
direction changes in the signal is also possible on 
the fly. The ratio between the average crossings 
and the direction changes gives an indication on 
the type of signal and allows discrimination 
between contexts. For example in the audio signal 
it is possible to discriminate music, speech, and 
noise, and in the acceleration signal it is possible 
to find characteristic values for certain patterns of 
movement. For fast changing signals like audio 
signals, the peaks or energy (root mean square) of 
the signal in small time windows (e.g. getting an 
indication every 100ms) provides information 
about the sampled data. Certain audio events 
(speaking of a word, ringing of the phone, 
applause, music) result in a characteristic series of 
values.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To reduce inherent ambiguity in sensor data 

and to infer high-level context from the extracted 
features, high-level perception methods like 
pattern-matching engines and neural network will 
also be investigated and implemented in back-end 
systems. Most of the awareness of the contexts is 
based on more than one feature and even other 
contexts. The features and contexts are regarded as 
different dimensions of input vector of the fusion 
algorithm. There are two advantages of applying 
neural networks to fuse the decision. One is that 

the neural network is noise-tolerant and can 
process the input features with plenty of noise. 
The other advantage is that neural network allows 
the system to be reconfigured according to the 
specified application instance. Many neural 
networks are computationally demanding. But 
there are still some methods that can be 
implemented on very restricted hardware 
platforms (handheld devices, and sensors) like 
back-propagation neural networks, logical neural 
networks [15], etc. Nearest neighbor matching is 
a very simple technique for pattern matching. A 
representative vector is calculated and stored 
during the learning phase. When the system is in 
operational mode, an incoming vector is compared 
to the stored sample vectors and the distance is 
calculated.  

System can use pre-defined rules written in 
some form of logic to infer, deduce different 
contexts. For example, based on the number of 
people in the room and the applications running in 
the room the system can deduce what kind of  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: CAMUS Core services

activity is going on in the room. It uses rules 
written in first order logic to perform the 
deduction. Some of the rules may be: 

1. #People(Room 302, “>=” , 3) AND 
Application( PowerPoint, Running)  

=> RoomActivity(302, Presentation) 
2. #People(Room 302, “>=” , 1) AND 
Application( MPEG Player, Running) 

=>RoomActivity(302, Movie Screening) 
 
6. Discussion 



 
This proposed framework for context 

acquisition is mostly software-based design 
instead of a customized, hybrid, hardware-
software design. The assumption that there are 
plenty of suitable sensors moves the focus to the 
algorithm that processes the sensor data. The 
system lets all sensors act together to generate 
descriptions for all applications, instead of having 
to design a tailored sensor system for each 
application. 

There are several advantages of the proposed 
framework. First, the multi-step of abstraction 
provides separation of concerns in collecting raw 
data, extracting features from diverse and 
heterogeneous sensors, fusing/deducing those 
features into context information, and delivering 
the information/events to different applications 
running on diverse devices. This helps to model 
context data separately from sensor technologies 
and also filter/reduce traffic of data from sensor 
level to application level dramatically. Second, 
due to modularity and service-oriented design we 
benefit from system software reusability and 
evolution, sensor and context data abstraction, and 
maintainability. Finally also due to the modular 
design the middleware framework can be deployed 
in a distributed manner and achieve the benefits of 
parallelism and scalability. 
 
7. Related work 

 
A lot of work has already been done in the 

field of context-aware systems for ubiquitous 
computing and a lot more is still to appear. The 
history dates back to 1988 when M. Weiser at el. 
started their work on next-generation systems at 
Xerox Parc. They utilized the concept of agents to 
represent user static and device dynamic properties 
allowing the system to behave accordingly. 
Context toolkit [14] used the concept of GUI 
widgets to represent abstract sensors which hid 
sensor details from the applications but required 
sensors’ manipulation at design time. Solar [15] 
took it one step further by allowing customized 
functionalities to be inserted into the system using 
operator-graph abstraction. While Context 
Fabric’s [16] automatic path creation allows path 
to be created from source to sink by selecting 
components internal to the system at runtime and 
employs infrastructure approach for context aware 
systems. 

The context systems built until now have 
mostly been prototypes, investigating different 
approaches that can be adopted to enable context 

awareness in a ubiquitous environment. Though 
most systems presented viable new approaches 
and designs, they lacked in interoperability, 
flexibility and extensibility. CAMUS aims at 
providing these missing features and a middleware 
infrastructure for application development and 
deployment. 
 
8. Future Directions 

 
In Ubiquitous Computing environment, there 

exist the concerns for securing context information 
from unauthorized uses and respecting 
individuals’ privacy. We are assessing these 
security and privacy concerns in CAMUS raised 
by the collection of the data, the information 
produced, and the dissemination of that 
information to other people in other times and 
places. 

A successful Ubicomp project is proved by 
some useful applications. For this, novel and 
application scenarios will be explored in the vision 
of Ubiquitous computing. Building these 
applications will help evaluate and validate our 
CAMUS Middleware framework. A test bed is 
being setup for deployment and step-by-step 
evaluation of our proposed architecture. This will 
enable us to verify the architecture and provide 
effective solutions for real world applications.  

The culmination of architecture will lead to 
development of a toolkit. This toolkit will aid the 
application developers in fast development and 
deployment of applications. 
 
9. Summary 
 

In this paper we describe our middleware 
framework for context-aware ubiquitous 
computing systems with the focus on context 
acquisition from sensory data. CAMUS provides 
two levels of abstractions to the applications in the 
form of features and context. Features are 
extracted from the sensor layer and stored in a 
feature tuple space. These features are converted 
into context data at the context-awareness layer 
and stored in a context tuple space. This proposed 
two-tier middleware framework provides 
separation of concerns in which context can be 
modeled separately from sensor technologies and 
properties of sensors. The main objective is to 
come up with a reusable middleware framework 
ranging from low-level sensor-extracted features, 
context fusion from extracted features, and context 
dissemination to diverse application, resulting in a 



toolkit-like collection of algorithms for extracting 
features from sensors, and reasoning mechanisms 
for deducing context data. Thus application 
developers can benefit with a flexible and scalable 
context-aware middleware framework. A large 
selection of analysis algorithms can be applied to 
the sensor data, and different solutions may be 
provided in various situations rather than one 
specific algorithm that will be considered as the 
optimal solution in any circumstance. 
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