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Abstract. Keyphrases are useful for variety of purposes including: text clustering, 
classification, content-based retrieval, and automatic text summarization. A small amount of 
documents have author-assigned keyphrases. Manual assignment of the keyphrases to existing 
documents is a tedious task, therefore, automatic keyphrase extraction has been extensively 
used to organize documents.  Existing automatic keyphrase extraction algorithms are limited in 
assigning semantically relevant keyphrases to documents. In this paper we have proposed a 
methodology to assign keyphrases to digital documents. Our approach exploits semantic 
relationships and hierarchical structure of the classification scheme to filter out irrelevant 
keyphrases suggested by Keyphrase Extraction Algorithm (KEA++). Experiments demonstrate 
that the refinement improves the precision of extracted keyphrases from 0.19% to 0.38% while 
maintains the same recall. 

1   Introduction 

 Keyphrases precisely express the primary topics and theme of documents and are valuable for 
cataloging and classification [1,2]. A keyphrase is defined as a meaningful and significant 
expression consisting of a single word, e.g., information, or compound words, e.g., information 
retrieval. Manual assignment and extraction of keyphrases is resource expensive and time 
consuming. It requires a human indexer to read the document and select appropriate descriptors, 
according to defined cataloguing rules. Therefore, it stimulates the need for automatic extraction of 
keyphrases from digital documents in order to deliver their main contents. 

Existing approaches for keyphrase generation include keyphrase assignment and keyphrase 
extraction [3, 4]. In keyphrase assignment keyphrases are selected from a predefined list of 
keyphrases, thesaurus or subject taxonomy (i.e., Wordnet, Agrovoc) [4]. While in later approach all 
words and phrases included in the document are potential keyphrases [5, 6]. Phrases are analyzed 
on the basis of intrinsic properties such as frequency, length, and other syntactic information. The 
quality of the generated keyphrases by the existing approaches has not been able to meet the 
required accuracy level of applications [7,8]. 

The extraction algorithm used in this paper, KEA++, applies a hybrid approach of keyphrase 
extraction and keyphrase assignment [7-9]. KEA++ combines advantages of both, while avoiding 
their shortcomings. It makes use of a domain specific taxonomy to assign relevant keyphrases to 
documents. Limitation of this approach is that output keyphrases contain some irrelevant 
information along with the relevant ones. For example, out of five keyphrases, two might fit well, 
while the remaining three have no semantic connection to the document (discussed later in the case 
study). The focus of this paper is to improve the semantic alignment procedure by exploiting 
different hierarchical levels of taxonomy. The proposed methodology is a novel approach of 
refinement, and comprises two major processes: (a) extraction and (b) refinement. KEA++ (Key 
Phrase Extraction Algorithm) [7-9] has been adopted for extracting keyphrases. The refinement 
process refines the result set of keyphrases returned by KEA++ using different levels of taxonomy. 
It detects the semantic keyphrases that are closer to human intuition as compared to KEA++.  
Experiments have been performed on dataset of 100 documents collected from the Journal of 



Universal Computer Science (JUCS1). Experimental results show better precision (0.45) of 
proposed methodology in comparison to the precision (0.22) of KEA++ at the third level of the 
ACM Computing Classification2 while maintaining the same recall. 
 The rest of the paper is organized as follows. Section 2 discusses related work. Section 3 
explains the proposed methodology of automatic keyphrase refinement. Results from JUCS dataset 
are given in Section 4. Conclusion together with possible future work discusses in section 5. 

2. Related Work 

Keyphrase extraction is a process to gather useful information from documents that help in 
describing the true content of the documents. KEA [10,11] identifies candidate phrases from textual 
sequences defined by orthogonal boundaries and extract relevant ones based two feature values for 
each candidate: the (1) TF x IDF measure, and (2) the distance from the beginning of the document 
to the first occurrence of a phrase. GenEx uses the genetic algorithm which is based on 12 numeric 
parameters and flags [12, 13]. This keyphrase extraction algorithm has two main components: (1) 
Genitor and (2) Extractor. Genitor is applied to determine the best parameter settings from the 
training data. Extractor combines a set of symbolic heuristics to create a ranked list of keyphrases.  

The next approach is to use Natural Language Processing (NLP) tools in addition to machine 
learning, therefore the A.Hulth algorithm [14] compares different methods to extract candidate 
words and phrases like NP chunking, Parts of Speech (PoS) pattern matching, and trivial n-gram 
extraction. Candidates are filtered on the basis of four features: (1) term frequency, (2) inverse 
document frequency, (3) position of the first occurrence, and (4) PoS tag. In keyphrase assignment, 
a predefined set of keyphrases called the controlled vocabulary is used to describe the 
characteristics of documents in order to find the appropriate keyphrases, rather than individual 
phrases within them [15,16,17]. 

KEA++ is a hybrid of keyphrase assignment and keyphrase extraction [7-9]. It can involve 
taxonomy in extracting keyphrases from documents. Keyphrase selection is based on the 
computation of the naïve based statistical model and relations within the taxonomy. KEA++ takes a 
document, along with the taxonomy, as input for keyphrase extraction. KEA++ extracts terms from 
the documents (i.e., not explicitly mentioned in the document but existing in the taxonomy) by 
relating them to the terms of the taxonomy. The results of controlled indexing are highly affected 
by the parameter settings [18, 19]. The major parameters affecting the results are: vocabulary name, 
vocabulary format, vocabulary encoding, max. length of phrases, min. length of phrase, min. 
occurrence and no of extracted keyphrases. 

The quality of the generated keyphrases by existing algorithms is inadequate, and they need to be 
improved for their applicability in real world applications. Some of the existing approaches use the 
taxonomy’s hierarchy, yet it can be utilized in a more effective way. The results of KEA++ returned 
relevant keyphrases along with noise. In order to filter out the irrelevant information from the 
returned keyphrases of KEA++, there is a need for some refinement methodology that reduces the 
noise from the returned results of KEA++.  

3. Proposed Methodology 

Proposed methodology processes the returned results of KEA++ [7-9] by exploiting different 
hierarchical level of taxonomy. It involves two main steps: (a) extraction and (b) refinement. 
Extraction is a prerequisite of refinement. The refinement process is based on refinement rules. 
Refinement rules are applied to the set of keyphrases returned by KEA++ after the customized 
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parameter settings. We set the vocabulary name parameter to the ACM computing classification in 
the SKOS format using UTF-8 encoding. It is used for the implementation and testing purpose of 
our algorithm, while our contribution is adoptable for other classification systems. The remaining 
refinement parameter settings of KEA++ are: Max. Length of Phrases: After analyzing the ACM 
Computing Classification, we set the value of this parameter to five words. Min. Length of Phrase:  
The minimum phrase length is one word in ACM taxonomy (i.e., hardware), which is the top level. 
We set the value of this parameter to two words because setting the value to one word provides 
many irrelevant keyphrases. Min. Occurrence: KEA++ recommends two words for this parameter 
in long documents.  No. of Extracted Keyphrases:   If the value of this parameter is less than ten 
words, for example four words, then KEA++ returns the top four keyphrases from the results it 
computes.  These keyphrases might not be relevant. Other parameter settings as mentioned above 
can affect the results of this parameter. 

3.1. Refinement Rules 

These rules emphasize the importance of different levels/facts and their associated semantic 
relation in the training and semantic keyphrase extraction process. The basic idea filtered out 
semantic keyphrases according to the most related levels and available relations within different 
levels of taxonomy applying following rules: 

Rule I: Adopting the Training Level: The training level is the hierarchical level of the taxonomy, 
adjusted for manually extracted keyphrases in documents. We adopt the KEA++ training level 
during the refinement process to extract the refined set of semantic keyphrases. The effective usage 
of the remaining rules depends on the accurate value of the training level of the taxonomy.  

Rule II: Preserving the Training Level Keyphrases: We only preserve keyphrases aligned on the 
training level. KEA++ results have keyphrases that belong to different levels in the taxonomy. In 
addition to training level keyphrases, it might have upper level keyphrases and lower level 
keyphrases which do not contain information as relevant as the training level keyphrases. This rule 
selects the most relevant keyphrases from the resulting set of KEA++. 

Rule III: Stemming the Lower Level General Keyphrases: In the ACM Computing 
Classification, there is the general category of keyphrases on each level of the hierarchy. If a 
keyphrase is aligned on a lower level than the training level (e.g., C.2.3.0), and associated with the 
general category in the lower level, then we stem the lower level keyphrase to its training level 
(e.g., C.2.3) keyphrases. This rule helps in extracting the maximum possible information from the 
lower level keyphrases in the presence of training level keyphrases. 

Rule IV: Preserving the Lower Level Keyphrases: If the result set of KEA++ contains no 
training level keyphrases, then we preserve the lower level keyphrases from the result set of 
KEA++. This rule identifies the relevant keyphrases in the absence of training level keyphrases. In 
this case, lower level keyphrases represent the documents alignment on more accurate nodes, which 
belong to more specific keyphrases in the taxonomy.  

Rule V: Identifying and Preserving the Training Level Equivalent Keyphrase: Different 
keyphrases aligned to separate categories of the ACM Computing Classification can be 
semantically equivalent, e.g., Control Structures and Microprogramming (B.1) is equivalent to 
Language Classifications (D.3.2). The procedure is carried out by first identifying the training level 
keyphrases from the set of upper level keyphrases. If the upper level has equivalent keyphrases of 
the training level, then preserve the training level keyphrase in the refined result set and discard the 
upper level keyphrase. But before discarding them, it helps in preserving any training level 
keyphrases equivalent to an upper level keyphrase. 

Rule VI: Removing Redundant Keyphrases: After stemming the lower level general keyphrases 
and identifying and preserving the training level equivalent keyphrases, the result might contain 



redundant keyphrases (i.e., C.2.3, C.2.3, D.4.5). Remove the redundant keyphrases from the set of 
refined keyphrases (i.e., C.2.3, D.4.5). 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm 1: Refinement Algorithm 

3.2 Refinement Algorithm 

The algorithm describes the flow of refinement rules that is illustrated in Algorithm 1. 
Extraction of the semantic keyphrases is the essential requirement of the refinement process. First 
of all parameters of the extraction algorithm KEA++ are set with respect to keyphrases’ length in 
the taxonomy and length of the documents. Secondly train KEA++ on the set of documents using 
taxonomy. Then apply KEA++ on actual documents (data). Adopting the training level for the 
refinement rules has primary importance because it guides the remaining rules in their process. The 
keyphrases returned by KEA++ is processed to get its level label in the taxonomy. Indentify level 
labels is required before applying the refinement rules because they represent the hierarchical order 
of the keyphrases as described in steps 1 to 3 of Algorithm 1.  If the KEA++ result has training 
level keyphrase then these training level keyphrases are retained in the result set as shown in steps 5 
to 12 of Algorithm 1. Lower level keyphrases are stemmed to their training level keyphrases and 
kept in the result set if they are associated with the general category at the lower level in taxonomy. 
Otherwise lower level keyphrases are discarded. Upper level keyphrases are handled according to 
Rule-V and discarded after indentifying and preserving their equivalent keyphrases from taxonomy 
which belong to the same level of training level keyphrases. If the initial result does not contain any 
training level keyphrases then lower level keyphrases of the result are preserved and added in the 
final refined result. Upper level keyphrases in the initial result are handled according to Rule-V and 
discarded after indentifying and preserving their equivalent keyphrases from taxonomy which 
belong to the same level of training level keyphrases. This process is executed from steps 13 to 21 
of the algorithm. Finally redundant keyphrases are removed from the final refined set of 
keyphrases.  

Input:  Training:  
       (a) Set the parameters of KEA++ by keeping in view the keyphrase length in the taxonomy and documents type 
       (b) Documents along with their keyphrase and taxonomy 
   Dataset for Extraction: 
       (a) Documents with unknown keyphrases 
Output: Set of refined keyphrases 
 
1: TrainLevel  ←  KEA++ TrainLevel //(Rule I) 
2:  resultSet [] ←  returned keyphrases by KEA++[] 
3:  resultSet [] ← level labels (Resultset []) 
4:  for resultSet[] <> empty do 
5:    if (resultSet(training level)) then 
6:        if (keyphrase level = lower level keyphrases) then 
7:  processSet[] = preserving lower level keyphrases //Rule II 
8:        else  
9:  processSet[] ← identifying and preserving training level equivalent //Rule V 
10:  processSet[] ← remove redundant keyphrases //Rule VI 
11:  refineSet[] ← processSet[] 
12:       end if   
13:  else  
14:         if (keyphrase level = training level) then 
15:  refineSet[] ← processSet[] 
16:        else  
17:  if (keyphrase level = upper level) then 
18:          processSet[] ← identifying and preserving training level 

                                                                  equivalent keyphrases //Rule V 
19:  else  
20:          processSet[] ← stemming lower level general keyphrases //Rule III 

      21:                        end if                                                                                                   
22:  processSet[] ← remove redundant keyphrases //Rule VI 
23:  refineSet[] ← processSet[] 
24:       end if 
25: end if 
26: end for 
27: return refineSet[] //refine result set of semantic keyphrases. 



3.3. Case Study 

2To focus more on the refinement process proposed in this paper, a case study is presented in 
which training models is trained on third level of ACM Computing Classification. Table 1 
illustrates the information about the documents used in the evaluation (available on the web).  The 
first column of Table 2 represents the semantic keyphrases returned by KEA++ after applying the 
parameters proposed in the refinement process. 

Table. 1. Sample document 

Title Passive Estimation of Quality of Experience 
Identification Key: JUCS, Vol. 14, Issue 5, year 2008 
Manual Alignment: C.2.3 (Network Operations),  C.4 (Performance of System) 

Extracted semantic keyphrases align the document on five nodes of the ACM Computing 
Classification, while document is manually aligned on two nodes. Extracted keyphrases include 
both relevant and noise/irrelevant keyphrases.  

 
Table 2: Results of the refinement algorithm 

KEA++ Results Level Label Refined Results 
Network Management  C.2.3.0  
Distributed Functions G.3.2 G.3.2 
Network Operations C.2.3 C.2.3 
Approximate Methods I.4.2.1  
Data Structures  E.1  

 
We select the level labels of the keyphrases from the ACM Computing Classification as 

shown in the second column of Table 2.  Keyphrases with their associated level labels show 
alignment of the document with different depths in the ACM Computing Classification. The refined 
results are calculated after applying the rules of the refinement algorithm. The results are quite 
improved in that they include an exact match with one relevant keyphrase. The whole process of 
refinement involves following steps. After identifying the level labels of keyphrases, the refinement 
algorithm checks whether the level labels of the keyphrases contain the training level. If it has the 
training level (C.3.2 and G.3.2), then it preserves these training level keyphrases. Now it identifies 
whether the result set has upper level keyphrases. As it has upper level keyphrases (E.1), the rule V 
is applicable here. The existence of low level keyphrases belongs to a general category (C.2.3.0), so 
it is stemmed to the training level (C.2.3) keyphrase. In the end, the algorithm removes the 
redundant keyphrases (C.2.3, C.2.3) and declares the result set as the final refined result set (C.2.3, 
G.3.2), as shown in the third column of Table 2. This case study explains that lower level keyphrase 
extraction is not significant when compared to training level keyphrases.  

4. Results and Evaluation  

In this section, the results of manual annotation, KEA++, and the proposed refinement algorithm 
are compared. The precision of the refinement algorithm is evaluated on various hierarchical levels 
as provided in the manual annotations of the dataset. Evaluation contains both (a) keyphrase based 
evaluation and (b) document based evaluation. We modeled the ACM Computing Classification in 
SKOS format3.  Dataset4 from (JUCS)  has a key file along with the document file which contains 
manually assigned keyphrases. Two experiments have been performed on dataset of 100 
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documents. Experiment I is based on 65 documents, 50 for training and 15 for testing purpose. 
Experiment II is performed on 100 documents, 70 documents were used for training and 30 were 
used for testing. To evaluate the precision of the system, documents which were used as testing 
documents in the first experiment were replaced with the training documents.  

4.1 Keyphrase based Evaluation 

It is used to estimate the performance in terms of returned keyphrases.  It is further categorized 
as (a) keyphrases returned per average number of documents, and (b) total returned keyphrases. In 
the former category, we compare results among (1) manual annotation, (2) KEA++, and (3) the 
refinement rules. Fig. 1 (a) and (b) show that the number of KEA++ returned keyphrases lies 
between 0 to 7, 0 to 13, respectively. Manual annotation of the same documents varies from 1 to 4, 
1 to 5, respectively. Keyphrases returned by the refinement algorithm range from 0 to 3. It shows 
that the refinement algorithm reduces the number of keyphrases returned against an average number 
of documents as compared to KEA++ and closer to the manual annotation. However, it does not 
affect the precision of correctly aligned documents, as shown in the next subsection.  

 
 
 
 
 
 
Fig. 1(a). Keyphrases returned per average                       Fig.1 (b). Keyphrases returned per average          

                    no of documents of experiment I                       no of documents of experiment II 
 
Total returned keyphrases compares the precision, and recall of both KEA++ and the refinement 

rules. Fig. 2 (a) and (b) show the precision of both algorithms. In the case of KEA++, the precision 
0.19 and 0.23, while the refinement algorithm shows more precise results, with values of 0.38 and 
0.45, respectively. The recall comparison is illustrated in Fig. 3 (a) and (b) and the recall of KEA++ 
and the refinement algorithm are the same in the case of both experiments. 

 
 
 
 
 
 

Fig. 2 (a). Precision against total keyphrases                     Fig.2 (b). Precision against total keyphrases              
           returned of experiment I                          returned of experiment II 

 
 
 

 
 
 

Fig. 3 (a). Recall against total keyphrases        Fig. 3 (b). Recall against total keyphrases                      
                returned of experiment I                                 returned of experiment II 

4.2 Document based evaluation 

The document based evaluation verifies the performance of both algorithms against correctly 
aligned documents. We do not consider the recall calculation as the number of documents is the 
same in both cases. This evaluation criterion is further categorized as (a) the totally matched result 



and (b) the approximate matched result. The totally matched result contains all of the manually 
annotated keyphrases of the particular document, while the approximate matched result comprises a 
subset of manually annotated keyphrases of the particular document.  

 

 
Fig. 4 (a). Precision of totally matched   Fig. 4 (b). Precision of totally matched                      

          results of experiment I                             results of experiment II 

 
 
 
 
 
 

     Fig. 5 (a). Precision of approximate matched   Fig. 5 (b). Precision of approximate matched                           
     results of experiment I                                  results of experiment II 

The totally matched result is a more conservative approach because it ignores the approximately 
aligned documents. Figure 4 (a) and (b) illustrate the precision for the totally matched results, the 
precisions is same on the third level of taxonomy. Furthermore, the refinement rules returned a 
reduced number of keyphrases. Figure 5 (a) and (b) show the precision of both approaches for the 
approximate matched results. Due to the reduced number of keyphrases per average number of 
documents, the precision is comparatively lower on the third level of the taxonomy. 

Table 3. Precision, recall, and F-measure statistics 

Experiments Results of [9]. Experiment. I Experiment. II 
Algorithms KEA++ KEA++ Refined 

Results 
KEA++ Refined 

Results 
Documents 200  65  100  
Avg. # of Manual Annotation 5.4 2.27 2.35 
Precision 0.28 0.19 0.38 0.23 0.45 
Recall 0.26 0.24 0.24 0.28 0.28 
F-measure 0.25 0.21 0.29 0.25 0.34 

 
Table 3 shows precision, recall, and F-measure statistics,  in results of [9], the precision, recall, 

and F-measure of KEA++ are 0.28, 0.26, and 0.25, respectively, while the average number of 
manual annotation is 5.4 per document in the dataset of 200 documents.  The precision, recall, and 
F-measure of KEA++ on our experiments are different. Obviously, the precision and recall is 
affected by a change in the number of documents in the dataset, and the average number of manual 
annotations per document in each dataset. In the case of the refinement algorithm, the precision has 
been improved in all performed experiments while the recall is same as shown in Table 3. 

5. Conclusion and Future Work 

An exponential growth of electronic documents requires extraction of keyphrases for semantic 
alignment. The proposed algorithm processes the results returned by KEA++ and removes 
irrelevant keyphrases by exploiting the hierarchical structure of taxonomy to achieve better 
accuracy. The refinement algorithm provides the functional flow to the refinement rules. To 



evaluate the methodology, JUCS dataset is used in different experiments and results show obvious 
improvement in the precision as compared to KEA++, while maintaining the same recall. Currently 
the focus was on a single training level in applying the refinement algorithm so in future this 
refinement algorithm can be extended to involve more than one training level while executing the 
refinement algorithm in order to achieve more accurate results and to make the methodology 
scalable.  
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