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ABSTRACT
Although there have been a great number of papers in the
area of emotional speech recognition, most of them con-
tribute to the feature extraction phase. Regarding classi-
fication algorithm, hidden Markov model (HMM) is still the
most commonly used method. Whereas HMM was pointed
out to be less accurate than its discriminative counterpart,
the hidden conditional random fields (HCRF) model, for ex-
ample in phone classification or gesture recognition. There-
fore in this study, we investigate the use of the HCRF model
in emotional speech classification problem. In our experi-
ments, we extracted Mel-frequency cepstral coefficients (MFCC)
features from the well-known Berlin emotional speech dataset
(EMO) and eNTERFACE 2005 dataset. After that, we
used the 10-fold cross validation rule to train, evaluate and
compare our result with that of HMM. The experiments
show that HCRF achieves significant improvement (p-value
≤ 0.05) in classification accuracy. In addition, we speed up
the training phase of the model by caching the gradient com-
putation. Therefore our computation time is much less than
that of the existing methods.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
I.5.1 [Pattern Recognition]: Statistical

General Terms
Emotion Classification
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HCRF, HMM, MFCC, Emotional Speech

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SoICT 2011, October 13-14, 2011, Hanoi, Vietnam.
Copyright 2011 ACM 978-1-4503-0880-9/11/10 ...$10.00.

Emotion is a mental state that arises spontaneously. In
daily life, emotion is not only an effective way to convey
our intention in communication but also a good indicator
of our mental health. That is the reason why automatic
detection of human emotions is an important factor to en-
hance the quality of the service provided by the computer
such as human-computer interaction (HCI) [5] or lifestyle
monitoring in ubiquitous health care systems [16]. While
human emotion can be expressed by a variety of physiologi-
cal changes such as speech, blood pressure, heart rate, facial
expression, etc; many researchers prefer acoustic speech as
a source of emotion [1, 2, 7] because speech signal is the
most commonly used and most natural method of human
communication.

A speech-based emotion classification system comprises of
two stages: a signal processing unit that extracts features
from the input speech data, and a classifier that decides the
emotion label of the corresponding input. Regarding fea-
ture extraction techniques, there are quite a large number of
speech features that have been proposed for emotion recog-
nition. In a comprehensive survey of speech-based emotion
recognition systems [1], the authors recommended that the
choice of proper features highly depends on the classifica-
tion task being considered. The authors also pointed that
Mel-frequency cepstrum coefficients (MFCC) are promising
features for speech representation. Since feature extraction
algorithms are beyond the scope of this paper, we utilize ex-
isting methods to extract the spectral features (MFCC) to
be used with our proposed classifier.

While there are quite a large number of recent researches
focusing on improving the feature extraction stage, almost
all the proposed speech emotion classification systems utilize
conventional learning methods [5] such as hidden Markov
model (HMM), Gaussian mixture model (GMM), support
vector machine (SVM), artificial neural networks (ANN),
etc. Among these classifiers, HMM is pointed out by sev-
eral studies [4, 11] to be the most commonly used method.
However, some recent research in other areas such as speech
recognition [6], gesture recognition [13], showed that HMM,
which is a generative learning model, is less accurate than
its discriminative counterpart, the hidden conditional ran-
dom fields model (HCRF).
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Motivated by the lack of improvement in learning model,
we have proposed our Gaussian mixture HCRF for the speech-
based emotion classification problem. In the rest of our pa-
per, we review some related work in section 2. Our proposed
method is introduced in section 3. Experiments and discus-
sions are presented in section 4. Finally, we conclude our
paper in section 5.

2. RELATED WORK
In the recent years, a significant number of methods have

been proposed to enhance the accuracy of speech-based emo-
tion recognition systems [5]. Surprisingly, few of them con-
tributed to the improvement of the learning model for the
speech data. As pointed out in [5], even different kinds of
classifiers have been applied to solve the problem, HMM is
still the most commonly used method, and produces accura-
cies that are comparable to other well-known classifiers such
as GMM, ANN, SVM, etc. In addition, HMM has its own
advantage of handling sequential data when frame-level fea-
tures are used. In such a case, other vector-based classifiers
like GMM, ANN, SVM, are not able to learn the sequence
of feature vectors.

However, the limitations of HMM are also clearly ad-
dressed in [6, 13], which are the generative nature and the
independence assumption between states and observations.
Maximum entropy Markov model (MEMM), a non-generative
model, is proposed to overcome the limitations of HMM and
shows good results for tasks such as part-of-speech (POS)
tagging [14], information extraction [10], and automatic speech
recognition (ASR) [8]. Nevertheless, MEMM has a com-
monly known weakness that is called label bias problem [9]
because it uses per-state normalization of transition scores,
implying a score conservation at each state.

Conditional random fields (CRF) [9] and hidden condi-
tional random fields (HCRF) [6, 13], generalizations of MEMM,
are then proposed to fully take the advantages of MEMM
and to solve the label bias problem. HCRF extends the
capability of CRF with hidden states making it able to
learn hidden structure of sequential data. Both of them
use global normalization instead of per-state normalization.
Thus, they allow weighted scores, making the parameter
spaces larger than those of MEMM and certainly HMM.

However, the existing HCRF model [6] is capable of han-
dling only diagonal-covariance Gaussian mixtures. There-
fore, we overcome that limitation by proposing a full covari-
ance Gaussian mixture HCRF model. Details of our method
will be presented in the following section.

3. THE PROPOSED APPROACH
We consider a task of mapping from inputs X to labels

Y ∈ Γ, for example Γ = {angry, happy, neutral} in a speech-
based emotion classification problem. Each input X is a
sequence of T feature vectors, X = {x1, x2, ..., xT }. Our
training set contains N pairs (Xi, Yi), i = 1, 2, ..., N . In a
Q-state and M-mixture HCRF, the conditional probability
of a class label Y given input X and the model’s parameter

set Λ will be computed by

p(Y |X; Λ) =

∑
S

exp
{
Λf(Y, S, X)

}
z(X, Λ)

, (1)

where

z(X, Λ) =
∑
Y ′

P (Y ′|X; Λ) (2)

is the normalization factor to guarantee the sum-to-one rule
of the conditional probability and M is the number of Gaus-
sian density functions used in the mixture. In (1), S =
{s1, s2, ..., sT } is a sequence of hidden states, each si, i =
1, 2, ..., T , can have an integer value from 1 to Q, the num-
ber of states, Λ is the parameter vector, and f(Y, S, X) is
a feature vector which decides what statistics will be learnt
by the model.

The choice the feature vector determines the dependencies
of the HCRF model. To compare the performance of the
HCRF model to that of HMM, we use the below selections
to form a Markov chain HCRF with a Gaussian mixture
distribution at each state.

fPrior
s (Y, S, X) = δ(s1 = s)∀s, (3)

fTransition
ss′ (Y, S, X) =

T∑
t=1

δ(st−1 = s)δ(st = s′)∀s, s′, (4)

fObservation
s (Y, S, X) =

T∑
t=1

log

(
M∑

m=1

ΓObs
s,mN(xt, μs,m, Σs,m)

)
δ(st = s), (5)

N(x, μs,m, Σs,m) =

1

(2π)
D
2 |Σs,m| 12

exp

(
−1

2
(x − μs,m)′Σ−1

s,m(x − μs,m)

)
, (6)

where M is the number of density functions, D is the di-
mension of the observation, ΓObs

s,m is the mixing weight of

the mth component with mean μs,m and covariance matrix
Σs,m. As we can see in (5), by changing Γ, μ, and Σ we can
create any mixture of the normal densities. Therefore, the
corresponding observation weight (ΛObs

s ) is not necessary to
be updated during the training phase, hence we can set

ΛObs
s = 1∀s. (7)

As the result, the conditional probability can be rewritten
as below

p(Y |X; Λ, Γ, μ, Σ) =

∑
S

exp
(
P (S) + T (S) + O(S)

)
z(X, Λ, Γ, μ, Σ)

, (8)

where

P (S) =
∑

s

ΛPrior
s fPrior

s (Y, S, X), (9)

T (S) =
∑
ss′

ΛTransition
ss′ fTransition

ss′ (Y, S, X), (10)
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Figure 1: Classification accuracies of two methods (2 states, 3 mixtures) with EMO dataset
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Figure 2: Classification accuracies of two methods (2 states, 6 mixtures) with eNTERFACE dataset
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Figure 3: An example of the gradient computation time of the existing forward/backward and our method.
Figure A, Q=2, M=6, T=10-100. Figure B, Q=1-6, M=6, T=100. Figure C, Q=2, M=1-6, T=100

1 3 5 7
2 56.28 74.11 71.88 72.28
4 63.66 72.63 72.64 69.45
6 65.28 72.51 68.52 63.26
8 65.71 71.92 65.31 60.66

Table 1: 10-fold average accuracy(%) of hidden
Markov model with different state number (rows)
and mixture number (columns), Berlin dataset

and

O(S) =
∑

s

fObservation
s (Y, S, X), (11)

Based on equations (8), (9), (10) and (11) we can compute
the conditional probability by using the well-known forward
and backward algorithms.

In the training phase, our goal is to find the parameters
(Λ, Γ, μ, and Σ) to maximize the conditional probability of
the training data. In our work, we utilize L-BFGS method to
search for the optimal point. However, instead of repeating
the forward and backward algorithms to compute the gra-
dients as others did [6], we run the forward and backward
algorithms only when calculating the conditional probabil-
ity, then we reuse the result to compute the gradients. As a
result, the computation time is significantly reduced.

4. EXPERIMENTS
In our experiments, we use two well-known datasets namely

Berlin emotional speech dataset [3] and eNTERFACE 2005
multi-modal emotion dataset [12]. With each dataset, Mel-
frequency cepstral coefficients (MFCCs) are extracted then
the training and testing data are built based on the 10-fold
cross validation rule. We performed the classification exper-
iments with HCRF and HMM. Then we utilized the paired
t-test to calculate p-values [15] in order to show the signifi-
cance level.

4.1 Berlin emotional speech dataset

The dataset contains emotional utterances produced by
10 German actors (5 males and 5 females) reading ten pre-
defined sentences in one of seven emotion states namely
anger, joy, sadness, fear, disgust, boredom, and neutral.
Each recording was evaluated by 20 judges, and only those
recognized by at least 80% of the listeners were kept.

In our experiments, we conducted the classification with
HMM of different state number and Gaussian mixture num-
ber. From the result (depicted in Table 1), we selected the
values that maximize the accuracy (2 states and 3 mixtures).
After that, we performed the classification with the HCRF
model of the same state number and mixture number. The
classification result is depicted in figure 1.

As can be seen, the average accuracy of HMM (74.11%)
is lower than that of HCRF (77.43%). In addition, HCRF
achieves more stable accuracies since the standard devia-
tion is only 2%, which is clearly smaller than 5% of the
HMM. Obviously HCRF is significantly better than HMM
evidenced by a p-value of 0.05.

4.2 eNTERFACE 2005 emotional speech dataset
eNTERFACE dataset contains 1320 videos produced by

44 subjects. Each subject simulated 6 emotion states (anger,
disgust, fear, happiness, sadness, and surprise) by read-
ing 5 predefined sentences. We separate audio data from
those videos, then extract Mel-frequency cepstral coefficients
(MFCCs) to construct training and testing data as what we
did with Berlin dataset. All the above steps are repeated
with eNTERFACE dataset, the result is depicted in figure
2. In this experiment, HMM’s accuracy (44.55%) is still
lower than that of the HCRF model (47.18%). The differ-
ence between the two methods are significant since p-value
= 0.02, which is much smaller than the 0.05 threshold.

Furthermore, while the existing implementations of HCRF
compute the gradients by repeating the forward and back-
ward algorithms, our method executes them once and caches
the result for the later use. Therefore, the execution time
is significantly reduced as shown in Figure 3 (the execution
time is measured by Matlab R2008a running on a computer
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with Intel Duo 2.6GHz and 2GB RAM).

5. CONCLUSION
From our results, it is clear that HCRF’s accuracy is sig-

nificantly higher than that of HMM (p − value ≤ 0.05).
Moreover, our computation method strongly decreases the
execution time for training the HCRF model. This achieve-
ment will extend the use of HCRF model to more scalable
applications. In the classification phase, we use the same
computation method as the others do, hence the complexity
is not different from that of the existing work.
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