
A Framework for Scheduling Virtual Machines to
Support Real-time Services for U-Life Care

Nguyen Trung Hieu, Jin Wang, Sungyoung Lee, and Young-Koo Lee
Department of Computer Engineering
Kyung Hee University, South Korea

{nthieu, wangjin, sylee}@oslab.khu.ac.kr, yklee@khu.ac.kr

Abstract—This paper presents an approach for scheduling -Life
care applications in the cloud computing environment based on
virtual resources to support real-time services and to improve
user Quality of Service (QoS) requirements. We design and
develop an architecture called ULC3 (Ubiquitous Life Care Cloud
Computing) that uses virtual resources provided by cloud
computing to schedule U-Life care applications. The ULC3 is
based on the concepts of cloud computing and wireless sensor
networks. The architecture is very important and necessary to
support create virtual clusters dynamically, deploys the required
number of virtual machines (VMs) in potential computing
resources to meet the application requirements, and to configure
with the required software execution environment. Thus, the
system can improve computation time, guarantee the QoS, and
support real-time services. Finally, the results from the execute
applications are provided to the end-users as a service.

Keywords-Cloud Computing; Cloud Scheduling; Virtual
Machine; Scheduling Algorithm; Distributed Resource Allocation

I. INTRODUCTION
Cloud computing can provide resource as services via
virtualization technology which provides software environment
in the form of virtual machine (VM) [1][2]. In cloud
computing, applications with operating system (OS), specific
hardware, software, and libraries requirements can be executed
in a larger amount of resources by instantiating VMs from a
repository so that requirements can be supported. For that
reason, to employ VMs as a computing resource can deliver
various advantages such as QoS guarantee, performance
isolation, easy resource management, and can deploy effective
computing environment. With huge resource provided by cloud
computing, many U-Life care applications can be completed to
meet the deadline and the QoS requirements. Integrating the U-
Life care applications in the cloud computing can not only
improve the QoS but also be accessible from anywhere at any
time, optimal using the best resources for processing complex
applications and storage a larger number of data, load
balancing, load sharing, helps cutting down costs and
minimizing the computation time [3][4].

Scheduling applications in the cloud computing
environment based on the virtual resources is one of the core
and challenging issues. The main idea behind scheduling
applications focuses on how cloud computing can provide
virtual resources that is encapsulated in a VM to meet user's
application requirements. The user's application requirements

consist of OS, computation resources (CPU, memory, storage,
and network), and software execution environment
(applications, libraries, simulation tools, and services) for
application execute that meet real-time and guarantee QoS
requirements. For scheduling applications, we find the best of
distributed resources from cloud computing environment and
dynamic creation of VMs to meet user's application
requirements, and then map from application to a VM. In [5],
Xuan Lin and et al use the real-time scheduling algorithm to
distribute the applications to the best resources in the cluster
computing environments.

The existing job scheduling technology such as Sun Grid
Engine [6], Cluster Resources Torque [7], and as well as
Condor [8] has limited functionality such as only focusing on-
demand provisioning of suitable computing resource for job
execution, not support real-time scheduling scenario, and not
support dynamic deploy and create VMs.

Therefore, how to schedule applications in cloud computing
environment to support real-time services and to improve QoS
becomes an urgent problem. Many research works have
proposed application scheduling methods, but there are some
issues that should be addressed for a cloud computing.

First, [9][10][11] propose some approaches for scheduling
application to virtual resources provided by cloud computing.
They only focus on the useful of resources. In particular, they
cannot achieve the real-time tasks such as real-time collect
data, real-time schedule application to VMs with OS,
computation resources, software execution environment, and
real-time delivery services to end users. Additionally, CPU,
computation resources, and software execution environment
requirement must also be considered within the scheduling
algorithm. A schedule VMs approach for the whole cloud
computing is needed.

Second, many applications have varying resources
demands, for example, an application may request OS, more
computation resources, necessary software execution
environment, and this resources are encapsulated in a VM that
application can run on. Besides, the application may also
require real-time scenario and dynamic resource allocation.

To address the above issues, we propose the architecture
called ULC3 in this paper based on the real-time patients’ data
collected by different sensors and cameras as well as the virtual
resources provided by cloud computing. The architecture uses
the cloud resources for scheduling the U-Life care applications

2011 12th International Conference on Parallel and Distributed Computing, Applications and Technologies

978-0-7695-4564-6/11 $26.00 © 2011 IEEE

DOI 10.1109/PDCAT.2011.5

128

2011 12th International Conference on Parallel and Distributed Computing, Applications and Technologies

978-0-7695-4564-6/11 $26.00 © 2011 IEEE

DOI 10.1109/PDCAT.2011.5

128

and the applications can be completed to meet the deadline and
the QoS requirements. The major contributions are summarized
as follows:

• Real-time monitoring and collecting patient's data from
sensors and cameras,

• choose the best of resources provided by cloud computing
for dynamic create virtual clusters and deploy VMs with
OS, computation resources, and software execution
environment,

• schedule U-Life care applications to VMs for real-time
processing the patient's information,

• real-time delivery U-Life care services to end users via
Software as a Service model.

The rest of the paper is arranged as follows: In next section,
contains a review of the recent studies. Section III we present
overview architecture and scenarios that are used as a running
example throughout the paper. Section IV describes the
architecture of ULC3 and its various components. The
performance analysis is introduced in Section V. The last
Section of this paper presents our conclusions.

II. RELATED WORK
Scheduling distributed VMs in a cloud computing environment
[9][12], Thamarai Selvi Somasundaram and et al, and Lizhe
Wang and et al present some models for scheduling parallel
tasks and VMs based on cloud environment. There problems
have similar with our problem, such as scheduling dealing with
physical resources, VM resources, and software required.
However, they does not consider a real-time requirements such
as real-time monitoring and collecting data; choose the best of
the resources provided by cloud computing for dynamically
create and deploy VMs with OS, computation resources, and
software execution environment; processing with real-time data
as input, real-time delivery services to end users, and guarantee
QoS requirements. In addition, they deployed VMs with
software required that pre-installed.

Recently, in [13][14], the authors propose an approach
integrate Wireless sensor network with cloud computing. They
propose a solution to automate processes for patients' vital data
collection by using sensor attached to existing medical
equipments. The information becomes available in the cloud.
From where it can be processed by expert systems, storage a
large of patients' data, security health records, and/or
distributed to medical staff for analysis. However, their work
don't relate to the challenge problem such as how cloud
computing can provide virtual resources for processing and
analyzing patients' data, how cloud computing can guarantee
QoS requirements and meet the deadline, and how schedule
application to the best virtual resources that provide by cloud
computing.

Herein, in our work, we consider the real-time and QoS
tasks, and focus on monitoring and discovery resources status
of the cloud computing environment. We propose Resource
Allocation Algorithm to choose the best resources and to
determine which physical resources will be selected to create
the VMs. Then, we map from u-Life care application to a VM

for execution to get the best response time. The cloud
collaborator with live migration technology will be used when
Cloud Provider can not meet user’s application requirements.

III. OVERVIEW ARCHITECTURE AND SCENARIOS
U-Life care applications such as human activity recognize,
sensor activity recognize, image processing, sensor signal
processing, health monitoring, ... for detecting and analyzing
patient's information are complex applications that many
computation resources are needed for processing a large
amount of data, storage a huge data, in order to minimum
response time, reduce costs, and guarantee QoS requirements.
Furthermore, each of these applications has different
composition, configuration, and deployment requirements.

The overview architecture and the main components of this
paper are shown as Figure 1. Communication, Sensing and
Security Core is responsible for monitoring and collecting real-
time raw patients’ data from sensors and cameras. Sensed data
is uploaded to cloud computing. In the cloud, this sensed data
(sensor, video or audio-data) can be used to as input data of U-
Life care applications that are running in VMs.

Figure 1. The overview architecture

To run the U-Life care applications in the cloud computing
environment, we design and develop ULC3 architecture. The
architecture is very necessary and important because it discover
of suitable resources for application execution, choose the best
of resources for creating and deploying VMs with OS,
computation resources, and software execution environment,
schedule applications to the VMs for detecting, analyzing the
information of patients, and then real-time delivery healthcare
services to end users. Additional, the collaboration between
cloud providers or other clouds aim to meet application
requirements is presented. We solve the problem about
improving U-Life care services by schedule all of U-Life care
applications to run in the expert systems to improve
computation time, reduce the transmission time, meet the
deadline and QoS requirements.

In this work, we focus on ULC3 that supports two scenarios:

 The first scenario, patients' data is real-time collected from
sensors and cameras, then being uploaded to the cloud
computing environment. Inside the cloud computing, Cloud
Scheduler chooses the best of resources and sends the
provisioning instruction to Cloud Provider and then Cloud
Provider dynamically creates and deploys VMs (from the

129129

Image Repository) with U-Life care application requirements.
After finishing successful creates and deploys VMs, Cloud
Scheduler maps applications to VMs, so that applications can
be executed with real-time data as input and the results will be
delivered to end users via Software as a Service,

 The second scenario, medical staffs would like to run
offline medical applications with patients' data are collected
from medical devices. They need many computing resources
for processing and the minimum response time is required.
They send request to the cloud computing with computing
resource requirements. The large amount of resources can be
provisioned and made available for applications execution that
is encapsulated in the VMs.

IV. ULC3 – U-LIFE CARE CLOUD COMPUTING
As shown in Figure 2, the ULC3 framework is designed. It’s
implemented as a scheduler that responsible for mapping and
managing applications run in VMs and schedule U-Life care
applications to available cloud computing resources. We
describe various components of ULC3 to support real-time
services and guarantee QoS requirements for U-Life care in the
following subsections.

Figure 2. Scheduling virtual machines model

A. System Manager
Manage all of components in ULC3. It provides functionality
for managing the cloud environment.

B. Resource Manager
The Monitoring and Discovery service is responsible for real-
time monitoring up-to-date and accurate information of the
cloud computing environment.

Provisioning component provides a provisioning policy for
allocating processing VMs to physical machine.

To reduce the time to download image OS and software
necessary from the Internet, we used the Image Repository to
storage image files, software, and libraries necessary for
deploying VMs.

C. Cloud Scheduler
The Cloud Scheduler is a master component which controls
various activities of the ULC3 such as receive application

request, extract and get resource requirements, select of
suitable resource from Resource Pool for creating virtual
clusters and VMs, and schedule applications to run on VMs.

All real-time jobs which come to the system first enter a
Scheduling Agent. Depending on the application requirements,
Scheduling Agent determines the jobs will be added in a
services queue or not.

Based on the list resources from Resource Pool, the Job
Scheduler will apply the scheduling algorithm and send
provisioning instruction to Cloud Provider for creating VMs,
then mapping applications to VMs. One a ready real-time task
is already scheduled it will be mapped to a certain available
VMs on which it will be executed. Each work VM also has
some software that task needs and a node queue that is
responsible for the local task scheduling.

Resource Pool is responsible storage information on the
current cloud environment such as the number and type of
VMs already running in the cloud, the remaining resources
available for creating new VMs, and how many resources
available in the cloud computing environment.

D. Cloud Provider
The Cloud Provider (CP) is composed by a set of hosts
(physical computing nodes in a Cloud), which are responsible
for guaranteeing the QoS for running the VMs by supply all
their computing needs such as process, store, and analyze huge
data. It handles the VMs creation and deploy of specific
environment that the applications needed. So, if the CP is
unable to provide QoS for running VMs, the dynamic
collaboration between Cloud Providers (CPs) is needed.

There are 3 most popular Cloud Interface which are
OpenNebula, Nimbus, and Eucalyptus. All of them are
providing function for manager, schedulers, create, and deploy
VMs.

E. Cloud Collaborator
Collaboration between CP and CP, or our cloud and other
Clouds with migration technology offers significant
performance and financial benefit such as: improving the
ability of delivering SaaS to end users and meeting QoS
requirements, and enhancing the resources provisioning from
federation [15].

F. HARE
Human Activity Recognize Engine is an example of U-Life
care application that running in VMs. HARE can detect the
human activity such as eating, sleeping, walking, reading … of
patients.

V. PERFORMANCE ANALYSIS

A. Problem Definition
The problem of scheduling VMs on the cloud system can be
defined as follows:

• U-Life care application: App = {Appi | i = 1…n.}

130130

App is the set of n U-Life care application which will be
schedule to VMs in cloud computing. Each application
Appi has 7 parameters:

− Appi.AppID is the application identification

− Appi.ReqCPU is the CPU capabilities required,

− Appi.ReqMEM is the Memory available required,

− Appi.ReqDisk is the Disk space available required,

− Appi.ReqSoftware is the Software and libraries
available required, this can be a set of software and
libraries,

− Appi.ReqDTime is the Deadline required. It’s time for
application requirement that need for completing task.

− Appj.AppStatus = {Free, Allo, Sche, Wait, Exec,
Comp} is the application status.

• Cloud Provider: Cp = {Cpj | j = 1…m.}

Cp is the set of m physical resources in the cloud system
that is grouped in the CP. Each CP Cpj has 4 properties:

− Cpj.CpID is the CP identification

− Cpj.CPUPerformance is the value of CPU
performance,

− Cpj.MemorySize is the value of memory size

− Cpj.DiskSpace is the value of disk space.

• Virtual machines: Vm = {Vmk | k = 1…v}

Vm is the set of v VMs. Each VM Vmk has 5 properties:

− Vmk.VmID is the VM identification

− Vmk.CPUCapability is the value of CPU capabilities,

− Vmk.MemorySize is the value of memory size,

− Vmk.DiskSpace is the value of disk space,

− Vmk.Software is the software and libraries installed on
the VM, this can be a set of software and libraries.

The roots of the scheduling VMs are find the best value in a
set of CPs that meet the application requirements, create and
deploy VMs, and schedule applications to VMs. We define the
resources allocation as a function f1: Vm � Cp which choose
the best of resources in Cp(CPU, memory size, and disk
resources) and the application scheduling as a function f2: App
� Vm.

In this paper, we assume that our cloud computing
environment have 3 CPs called Cloud Provider-1 (CP-1),
Cloud Provider-2 (CP-2), and Cloud Provider-3 (CP-3). Each
CP can provide virtual resources that are encapsulated in VMs.
The resources provided by CPs depend on the application
requirements such as OS, computation resources (CPU,
memory, storage, and network) and software execution
environment (applications, libraries, simulation tools, and
services).

B. Scheduling Algorithm
The main idea of scheduling algorithm in this paper main focus
on the two levels scheduling model: u-Life care applications
model and Cloud Provider resources model. In the u-Life care
applications model, we define the application requirements that
provide configuration information for allocation of resources
and creation of the VM. In another model, we propose
Resource Allocation Algorithm to select the best currently
available resources for running VMs in order to minimize the
total execution time and to meet QoS requirements. The
Resource Allocation Algorithm contains 3 steps: (1) All of
applications should be sorted according to the deadline; (2)
depending on the application (App) requirements; we
implement the shared resource allocation policies by calculate
the probability of capacity of each CPs (Pi) that will be
assigned to each VM; (3) selection CP = max {Pi} (choose CP
based on the largest the value of probability of capacity). The
probability of capacity Pi can be presented as follows.

 Pi = � * App.ReqCPU / Cpi.CPUPerformance +

 � * App.ReqMem / Cpi.MemorySize + (1)

 � * App.ReqDisk / Cpi.DiskSpace

In which � + � + � = 1, and Pi is the probability of capacity
when create VM to meet application requirements in Cloud
Provider-i (Cpi). The value of �, �, � can be set according to
real situation which is used to present the important of the
various resources. For example, U-Life care applications
require real-time and QoS, we set the priority of CPU, memory,
and disk space according as follows: the CPU is very important
as the first, the second is memory, and the third is disk space.
Based on each probability of capacity, the largest value of Pi
will be chosen to assign VM to Cpi. In the same time, many
applications are already in the service queue; therefore, after
assigned VM to Cpi, we update the available resources of CP
and re-compute the probability of capacity. Here, we only
consider computed probability of capacity which meet
conditional as follows (2) to avoid creation of a VM that
demands more processing power than is available within the
CP.

 App.ReqCPU � Cpi.CPUPerformance

 App.ReqMem � Cpi.MemorySize

 App.ReqDisk � Cpi.DiskSpace

App.ReqSoftware ⊆ ImageRepository.ListSoftware (2)

We shown an example for resource allocation based on the
probability of capacity of VM hosted in the CPs. We choose �
= 0.5, � = 0.3, and � = 0.2. We assume that inside our cloud
computing environment, each CP can provide resources are
shown in Table I, and the U-Life care application requirements
are shown in Table II. The deadline in Table II is the time
required for application completed processing.

TABLE I. AVAILABLE RESOURCES ON CLOUD COMPUTING

CPs Cp ID CPU(GHz) Memory(GB) Disk(GB)
Cp1(1, 4, 3, 20) 1 4 3 20
Cp2(2, 2, 2, 10) 2 2 2 10
Cp3(3, 5, 8, 50) 3 5 8 50

131131

TABLE II. U-LIFE CARE APPLICATION REQUIREMENTS

Application
requirements

App
ID

CPU
(GHz)

Memory
(GB)

Disk
(GB)

Deadline
(Second)

App1(1, 1, 1, 5, 120) 1 1 1 5 120
App2(2, 2, 2, 5, 200) 2 2 2 5 200
App3(3, 3, 4, 10, 400) 3 3 4 10 400
App4(4, 2, 1, 7, 500) 4 2 1 7 500
App5(5, 1, 2, 20, 600) 5 1 2 20 600
App6(6, 1, 2, 10, 800) 6 1 2 10 800

In the first step, we compute the probability of capacity Pi
as following (1) with meet conditional as following (2). The
results are shown in Table III. The probability P2 = 0.5 is
largest, therefore we choose CP-2 to create VM-1 with specific
requirements (1, 1, 5). After creating VM-1 successfully, the
available resources of CP-2 will be updated from (2, 2, 10) to
(1, 1, 5).

TABLE III. STEP 1- PROBABILITY OF CAPACITY

Probabilities Cp1(1, 4, 3, 20) Cp2(2, 2, 2, 10) Cp3(3, 5, 8, 50)
Pi = App1/Cpi 0.275 0.5 0.1575
Pi = App2/Cpi 0.5 0.9 0.295
Pi = App3/Cpi 0.49
Pi = App4/Cpi 0.42 0.79 0.2655
Pi = App5/Cpi 0.525 0.255
Pi = App6/Cpi 0.425 0.75 0.215

In the second step, we re-compute the probability of
capacity Pi where i = 2 to 6. The results are shown in Table IV.
The probability P1 = 0.5 is largest, therefore we choose CP-1 to
create VM-2 with specific requirements (2, 2, 5). After creating
VM-2 successfully, the available resources of CP-1 will be
updated from (4, 3, 20) to (2, 1, 15). The scheduling process
will be stop when all of applications are scheduled. The results
to assign U-Life care applications to CPs that are encapsulated
in VMs as shown in Figure 3:

TABLE IV. STEP 2 – NEW PROBABILITY OF CAPACITY

Probabilities Cp1(1, 4, 3, 20) Cp2(2, 1, 1, 5) Cp3(3, 5, 8, 50)
Pi = App2/Cpi 0.5 0.295
Pi = App3/Cpi 0.49
Pi = App4/Cpi 0.42 0.2655
Pi = App5/Cpi 0.525 0.255
Pi = App6/Cpi 0.425 0.215

Cloud
Computing

Front-end side

Cloud Provider-1
(1, 4, 3, 20)

Physical Resources

Cloud Provider-2
(2, 2, 2, 10)

Physical Resources

Cloud Provider-3
(3, 5, 8, 50)

Physical Resources

Back-end side

Virtual resources

Other Clouds
(Like EC2)

(2, 2, 2, 5, 200) (4, 2, 1, 7, 500) (1, 1, 1, 5, 120) (3, 3, 4, 10, 400) (5, 1, 2, 20, 600) (6, 1, 2, 10, 800)

Figure 3. The final results of resource allocation

In the scheduling process, difference applications require
difference resources, which require the corresponding VM can
change dynamically. Based on the application requirements, we
classify into 3 cases:

Case 1: Application requirements are met by Cloud Provider.
In this case, the first scheduler creates the application
description of a VM including OS required, computation
resources required, software execution environment required,
and deadline required. Then the second scheduler finds the best
resources from the CP for creating VM. Via the two levels
scheduling, the application can obtain the required resources.
Algorithm-1 briefs the scheduling process adopted for this
case.

Case 2: Application requirements are not met by Cloud
Provider. In this case, the Cloud Provider collaborator with
migration technology will be used to guarantee QoS
requirements. In this process, two migration strategies can be
taken: (1) the first one is to migrate the VM to another Cloud
Provider with the resources available can meet the application
requirements, (2) the second one is to allocate the additional
required resources in current Cloud Provider for current VM,
reconfigure the VM, therefore this VM will be schedule
multiple applications run on.

Case 3: Application requirements are not met by a Cloud. In
this case, the application requirements which our cloud
computing can not provide. Therefore, the collaboration with
other Clouds will be used which can provide more resources
and software for application requirements.

Algorithm-1: Application requirements are met by Cloud Provider
Input: Application requirements and real-time patients’ data
Variable: Cp, Vm, App, ListSoftware[] LS
Output: Patients' information
isResource = false; isSoftware = false; isCProvider = 0;
for resource in Cloud Providers do
 if App.ReqCPU � Cp[i].CPUPerformance &&

App.ReqMEM � Cp[i].MemorySize &&
App.ReqDisk � Cp[i].DiskSpace then
 P[i] = Probability(App, Cp[i]);
 isResource = true;

 end if
end for
pTemp = P[0];
for Probability in array do
 if pTemp < P[i] then
 pTemp = P[i];
 isCloudProvider = i;
 end if
end for
if isResource == true then
 for software in ListSoftware[] LS do
 if App.ReqSoftware == LS[j].Software then

 isSoftware = true;
 end if

 end for
end if
if isResource == true && isSoftware == true then

CreateVM(Vm, isCloudProvider);
BootVM();

end if

C. Scheduling Analysis

We deploy a cloud environment for experiments using the
Linux Ubuntu OS and open source cloud Infrastructure as a
Service OpenNebula [16]. The OpenNebula is an open source

132132

toolkit that supports dynamic allocation of VMs in a resource
pool, supports live migration of VMs from one hypervisor host
to another, and also supports scheduling algorithms through
VM placement algorithms. We choose the OpenNebula
because it provides policies for VM placement, allowing for
custom placement policies to be implemented. The scheduler is
based on a Requirement/Rank matchmaker, which allocates
computer resources for VMs such as packing (placing as many
VMs onto a single node as possible), striping (spreading VMs
out across as many nodes as possible), and load-aware (placing
VMs on the least heavily-loaded nodes).

To evaluate the VM scheduling, we use one physical
machine as the front-end side in which we install the OS Linux
Ubuntu 10.04, OpenNebula to manage and schedule VM. The
CPU is Intel(R) Core 2 dual @2.67GHz, Memory is 3GB, and
Disk capacity is 320GB. Meanwhile, we chose 3 physical
machines as back-end side in which we install the OS Linux
Ubuntu 10.04, KVM VM. The CPU is Intel(R) Core(TM) i7
CPU 870 @3GHz, Memory is 8GB, and Disk capacity is
640GB. The whole network was connected by LAN.

D. VM Image Analysis
The experiments mainly focus the create VMs with OS,
specific hardware, necessary software, and U-Life care
application run on. We deploy a VM image with Ubuntu Linux
OS from ISO file, u-Life care application is Human Video
Activity Recognize with data capture from camera, and some
libraries necessary are installed. The OS ISO files, U-Life care
applications, and libraries necessary are downloaded from
Internet and stored in Image Repository. We use the Ubuntu's
vmbuilder tool that allows we build VMs for multiple
virtualization techniques.

The Figure 4 is show the result from our implement that are
deployed successfully cloud computing environment and VMs
in the Cloud Provider with OS, specific hardware, software,
and libraries requirements.

Figure 4. Deploy VM with specific requirements

VI. CONCLUSIONS
Scheduling VMs in the cloud computing environment is a new
field and there are many challenges. The proposed architecture
aims to overcome the resources limitation when execute U-Life
care applications. We focus on the schedule virtual machines to
support real-time services for U-Life care, to improve

computation time by using power virtual resources provided by
cloud computing, and to enhance QoS requirements.
Furthermore, we show how cloud computing can provide
virtual resources with OS, specific hardware, software and
libraries necessary that is encapsulated in a VM to meet the
dynamic requirements of users and increases the resource
utilization. Dynamic virtual resources collaborate among Cloud
Providers and among cloud computing is presented.

ACKNOWLEDGMENT
This research was supported by MKE (Ministry of Knowledge
Economy), Korea, under the IT/SW Create research program
supervised by the NIPA (National IT Industry Promotion
Agency) (NIPA-2010-(C1810-1005-0001)).

REFERENCES
[1] Jinzy Zhu, Cloud Computing Technologies and Application, Hanbook of

Cloud Computing, pp. 21-45, 2010.
[2] Shshil Bhardwaj, Leena Jain, and Sandeep Jain, “Cloud computing: A

study of infrastructure as a service (IAAS)”, International Journal of
Engineering and Information Technology, Vol.2, No.1, 2010.

[3] Jinhua Hu, Jianhua Gu, Guofei Sun, and Tianhai Zhao, “A scheduling
strategy on load balancing of virtual machine resources in cloud
computing environment”, 3rd International Symposium on Parallel
Architectures, Algorithms and Programming, 2010.

[4] Sivadon Chaisiri, Bu-Sung Lee, and Dusit Niyato, “Optimization of
resource provisioning cost in cloud computing”, IEEE Transactions on
Services Computing, Vol. PP Issues 99, 2011.

[5] Xuan Lin, Anwar Mamat, Ying Lu, Jitender Deogun, Steve Goddard,
“Real-time scheduling of divisible loads in cluster computing
environments”, Journal of Parallel and Distributed Computing, Vol. 70,
Issue 3, pp. 296-308, March 2010.

[6] Sun Grid Engine, “Sun Grid Engine Opensource”,
http://www.gridengine.org.

[7] Cluster Resource Torque, “Cluster Resource Torque Opensource”,
http://www.clusterresources.com.

[8] Condor, “Condor Opensource”, http://www.cs.wisc.edu/condor.
[9] Thamarai Selvi Somasundaram, Balachandar R. Amarnath, R. Kumar,

and et al, “CARE Resource Broker: A framework for scheduling and
supporting virtual resource management”, Journal Future Generation
Computer Systems, Vol.26, Issue 3, March 2010.

[10] Valentin Kravtsov, Pavel Bar, David Carmeli, and et al, “A scheduling
framework for large-scale, parallel, and topology-aware applications”,
Journal of Parallel and Distributed Computing, Vol. 70, Issue 9, pp. 983-
992, September 2010.

[11] Bo Li, Jianxin Li, Jinpeng Huai, and et al, “EnaCloud: An energy-saving
application live placement approach for cloud computing environments”,
IEEE International Conference on Cloud Computing, 2009.

[12] Lizhe Wang, Gregor von Laszewski, Marcel Kunze, and Jie Tao,
“Schedule distributed virtual machines in a service oriented
environment”, 24th IEEE International Conference on Advanced
Information Networking and Applications, 2010.

[13] Le Xuan Hung, Sungyoung Lee, Phan Tran Ho Truc, and et al, “Secured
WSN-Integrated cloud computing for u-Life care”, 7th IEEE Consumer
Communications and Networking Conference, USA, 2010.

[14] Carlos Oberdan Rolim, Fernando Luiz Koch, and at al, “A cloud
computing solution for patient's data collection in health care
instititions”, Second International Conference on eHealth, Telemedicine,
and Social Medicine, 2010.

[15] Mohammad Mehedi Hassan, Biao Song, Eui-Nam Huh, “A market-
oriented dynamic collaborative cloud services platform”, Journal of
Annals of Telecommunications, Vol.65, No.11-12, pp. 669-688, 2010.

[16] OpenNebula, “OpenNebula Software”, http://opennebula.org/, 2011

133133

