
A fast implementation of semi-Markov
conditional random fields

La The Vinh, Sungyoung Lee, and Young-Koo Lee

Dept. of Computer Engineering,
Kyung Hee University

{vinhlt,sylee,yklee}@oslab.khu.ac.kr

Abstract. Recently, Conditional Random Fields (CRF) model has been
used and proved to be a good model for sequential modeling. It, however,
lacks the capability of duration modeling. Therefore, some researchers in-
troduced semi Markov Conditional Random Fields (semi-CRF) to take
into account the duration distribution and showed some improvements.
Nevertheless, the training algorithms for semi-CRF require quite a high
complexity making semi-CRF impractical in some large-scale problems.
Therefore, in this work we propose a fast implementation of the training
algorithm in order to reduce the complexity required by semi-CRF. Our
theoretical analysis as well as experiments’ result show a noticeable im-
provement in computation time, which is about ten times less than that
of the original algorithm.

Keywords: Conditional Random Fields, Semi-Markov Model

1 Introduction

Recently, Conditional Random Fields(CRF) was introduced as a discriminative
model for sequential data and produced a much better result than the well-known
existing generative model so-called Hidden Markov Model [3]. Nonetheless, both
conventional HMM and first order linear chain CRF are limited to the Marko-
vian property, which assumes that the current state depends only on the previous
state. Because of this assumption, the model is not able to capture the duration
distribution as well as the long-range transitions of states. To solve the prob-
lem, Sarawagi and Cohen proposed a semi Markov Conditional Random Fields
(semi-CRF) model in [5]. However, Sarawagi and Cohen’s model increases the
complexity of forward/backward as well as gradient estimation algorithms by
D times, where D were the maximum duration length. Although there is some
other work about semi-CRF [2], [6], none of them shows any improvement in the
computation complexity of the model. In [4] the author proposed a method to
make semi-CRF scalable. In that work, the author utilized a Naive Bayes clas-
sifier to filter out some candidates making the computation much more faster.
However, there may be a trade-off since the removed candidates may affect the
final accuracy of the model in some applications. Therefore, we are going to over-
come the above limitations by developing fast gradient estimation algorithms for
semi-CRF while keeping the model’s behavior [5] unchanged.



2 La The Vinh, Sungyoung Lee, and Young-Koo Lee

2 Semi-Markov Conditional Random Fields

Hereafter, we assume that the observation and the corresponding label sequence
of length T are given in the form

X = {x1, x2, ..., xT }, (1)

Y = {y1, y2, ..., yT }. (2)

In our work, each state of a semi-CRF is defined as

si = (y, b, e) i = 1, 2, ..., P, (3)

where P is the length of sequence S = s1...sP , which is constructed from input
labels Y = (y1, y2, ..., yT ). y, b, e in turn are label, beginning time, and end-
ing time of state si. The beginning and ending time must satisfy the following
constraints.

si.b ≤ si.e i = 1, 2, ..., P, (4)

si.e + 1 = si+1.b i = 1, 2, ..., P − 1, (5)

s1.b = 1, (6)

sP .e = T. (7)

Now, the likelihood of S given X is estimated by

P (S|X) =

P∏
i=1

Ψ(si−1, si, X)

ZX
, (8)

ZX =
∑

S′

P ′∏

i=1

Ψ(s′i−1, s
′
i, X), (9)

where Ψ(si−1, si, X) encodes the potential of the transition from si−1 to si.In
equations (8) and (9), we can consider the product of potential functions Ψ over
all transitions of a sequence as the potential of the sequence, then we can rewrite
(8) in the form

P (S|X) =
Pol(S)∑

S′
Pol(S′)

, (10)

where

Pol(S) =
P∏

i=1

Ψ(si−1, si, X) (11)

is the potential of the sequence S = s1, s2, ..., sP . The potential function can be
defined as followings

Ψ(si−1, si, X) =




eQT (si−1,si,X)×
eQD(si−1,si,X)×
eQO(si−1,si,X)


 , (12)



A fast implementation of semi-Markov conditional random fields 3

where QT , QD and QO are the weighted transition, duration and observation
potential functions, respectively. These functions may have different forms in
different applications. Nevertheless, we present below examples of the functions
which could be applied in some well-known applications, namely Name Entity
Recognition (NER), Activity Recognition (AR).

QT (si−1, si, X) =
∑

y′,y

wT (y′, y)δ(si−1.y = y′, si.y = y), (13)

where wT (y′, y) is the weight of transition from y′ to y and δ is given by

δ(X) =
{

1 if X is true
0 if X is false . (14)

QD(si−1, si, X) =
∑

y,d

GD(y, d)δ(si.y = y, d = si.e− si.b + 1) (15)

=
∑

y,d

wD(y)
(d−my)2

2σ2
y

δ(si.y = y, d = si.e− si.b + 1), (16)

where wD(y) is the duration weight of y. my and σy are the average and the stan-
dard deviation of state y’s duration respectively, which can be easily extracted
from training data.

QO(si−1, si, X) =
∑

y,t1,t2

(
Gy(y, t1, t2)×

δ(si.y = y, si.b = t1, si.e = t2)

)
, (17)

where

Gy(y, t1, t2) =
t2∑

t=t1

∑
o

wO(y, o)δ(xt = o), (18)

where wO(y, o) is the weights of the observation given that input symbol o is
observed in state with label y. For our convenience in the presentation of the
following equations, we denote G(y, t1, t2) = Gy(y, t1, t2) + GD(y, t2 − t1 + 1) as
a combined potential function.

As we noted above that the potential functions may have different definitions.
The above equations are just examples of them, which generally can be applied to
a large number of applications including language processing[1], gene prediction
[2], activity recognition [7], etc.

2.1 Forward algorithm

Forward algorithm is used to compute the normalization factor ZX efficiently
by using the dynamic programming method.
To compute ZX in (9) let we denote

α(y, t) =
∑

St∈Γ y
t

Pol(St), (19)



4 La The Vinh, Sungyoung Lee, and Young-Koo Lee

6.8 7 7.2 7.4 7.6 7.8 8 8.2 8.4
6

7

8

9

10

11

12

log(T), where T is the length of the input sequence

lo
g(

∆T
),

w
he

re
 ∆

T
 is

 th
e 

tim
e 

(in
 m

ill
is

ec
on

ds
)

ne
ed

ed
 to

 c
om

pu
te

 a
ll 

gr
ad

ie
nt

s

 

 

Time needed by Sarawagi and Cohen’s method
Time needed by our method

Fig. 1: Average time needed for computing all the gradients. Herein, the number of
labels (M) is 4, the maximum duration (D) is 16, the number of input values (or
often known as size of codebook) (V) is 128, the length of the input sequence
(T) changes from 1024 to 4096 with a step of 256. Therefore, the number of
gradients is M + M2 + MV = 532

where Γ y
t = {S = s1, s2, ..., sq} is a set of all semi-Markov sequences, which have

an original label sequence (y1, y2, ..., yt) with the last label is y. Thus, every
St = s1, s2, ..., sq ∈ Γ y

t satisfies sq.e = t, sq.y = y. Our forward algorithm is
implemented in the following equations

ZX =
∑

y

α(y, T ), (20)

α(y, t) =
D∑

d=1

(
λ(y, t− d)eG(y,t−d+1,t)

)
, (21)

λ(y, t) =
∑

y′
α(y′, t)ewT (y′,y). (22)

2.2 Backward algorithm

Similarly to the forward algorithm, let we denote

β(y, t) =
∑

ST−t+1∈Ωy
t

Pol(ST−t+1), (23)



A fast implementation of semi-Markov conditional random fields 5

where Ωy
t = {S = s1, s2, ..., sq} is a set of all semi-Markov sequences, which have

an original label sequence (yt, yt+1, ..., yT ) with the first label is y. The backward
algorithm is described in the below equations

ZX =
∑

y

β(y, 1), (24)

β(y, t) =
D∑

d=1

(
ζ(y, t + d)eG(y,t,t+d−1)

)
, (25)

where
ζ(y, t) =

∑

y′
β(y′, t)ewT (y,y′). (26)

2.3 Parameter estimation

The goal of parameter estimation is to choose appropriate values for the model
weights (wT , wD and wO) so that the likelihood of the observation data P (S|X)
is maximized. Take the logarithm form of P (S|X) we have

L(S|X) =
P∑

i=1




QT (si−1, si, X)+
QD(si−1, si, X)+
QO(si−1, si, X)


− log(ZX). (27)

To find the optimal parameter values w we have to solve dL
dw∗ = 0. From (27) we

know that
dL

dw∗
=

P∑

i=1

dQ∗(si−1, si, X)
dw∗

− 1
ZX

dZX

dw∗
. (28)

Herein we use Q∗ and w∗ with the superscript to refer to any kind of the potential
function and weight (* can be D, T, or O). Computing the first term of the right
side is trivial, ZX is calculated by using forward/backward variables. Therefore,
here we mainly focus on evaluating dZX

dw∗ for different kind of weights. From (9)
and (12) we have

dZX

dw∗
=

∑

ST

((
P∑

i=1

dQ∗(si−1, si, X)
dw∗

)
P∏

i=1

Ψ(si−1, si, X)

)
. (29)

Gradient of the transition weight Since

dQT (si−1, si, X)
dwT (y′, y)

= δ(si−1.y = y′, si.y = y), (30)

we have
dZX

dwT (y′, y)
=

T∑
t=1

α(y′, t)β(y, t + 1)ewT (y′,y). (31)



6 La The Vinh, Sungyoung Lee, and Young-Koo Lee

Gradient of the duration weight From the definition of the duration poten-
tial function, it is clear that

dQD(si, si−1, X)
dwD(y)

=
∑

y,d

δ(si.y = y, si.e− si.b + 1 = d)
(d−my)2

2σ2
y

. (32)

As a result
dZX

dwD(y)
=

D∑

d=1

T∑
t=1

(d−my)2

2σ2
y

θ(y, t, d), (33)

where
θ(y, t, d) = λ(y, t− 1)ζ(y, t + d)eG(y,t,t+d−1) (34)

can be considered to be the sum of potential values of all sequences Y =
y1, y2, ..., yT , which have d labels y from time t, or equivalently yt = yt+1 =
... = yt+d−1 = y.

Gradient of the observation weight From (17) and (18) we have

dQO(si−1, si, X)
dwO(y, o)

=
si.e∑

k=si.b

δ(si.y = y, xk = o). (35)

Combining (35) and the definition of θ in (34) leads to

dZX

dwO(y, o)
=

∑

k, t, d
k ∈ [t, t + d− 1]

θ(y, t, d)δ(xk = o). (36)

3 Evaluation

In this section, we show that our proposed algorithm achieves a remarkable im-
provement in terms of the complexity in comparison with the previous work
theocratically as well as practically. In the following experiments, we use C++
programming language with Microsoft Visual Studio IDE to implement the al-
gorithms.

3.1 Complexity Analysis

As it is described in [5], the required complexity for computing each gradient is
O(TM2D), where T , M , D are the length of the input sequence, the number
of label values, and the maximum duration of a label, respectively. Because of
this, the estimation of gradients for all N model’s parameters takes O(NTM2D).

In our solution, gradients are computed by using (31), (33), and (36). It is
obvious that if α, λ, β, ζ, and θ are cached then the maximum time needed is



A fast implementation of semi-Markov conditional random fields 7

about O(TD). Therefore, for optimizing N parameters, our algorithm needs only
O(NTD) to complete calculating all gradients. Nevertheless, we need to take
into account the extra time of estimating the cached variables. As it is shown
in the forward and backward algorithm, α, λ, β, and ζ can be computed with
O(2TM(M+D)), meanwhile from (34) we see that θ takes O(TMD). Totally, for
caching of these variables, we need a complexity of around O(2TM2 + 3TMD).
Herein, we take a numerical example to compare O(NTM2D), which is the
estimated complexity in [5] and O(NTD + 2TM2 + 3TMD), our algorithm
complexity. Let T = 1000, D = 100, M = 8 and N = 10000 then the former is
about 64× 109, the latter is about 109.

In addition, Fig. 1 illustrates another comparison of the two complexities with
N=532, M=4, D=16 and T changes from 1024 to 4096, time is measured in
millisecond. The blue represents the amount of time which is needed by the
method proposed by Sarawagi and Cohen in [5], time consumed by our algo-
rithm is marked by the red. Undoubtedly, there is a remarkable improvement in
our complexity.

4 Conclusion

In this paper, we have presented a fast implementation for estimating the gradi-
ents of semi-CRF in the training phase, increasing the computation performance
of the model. Although, semi-CRF is a powerful discriminative model for sequen-
tial data. It, however, is limited in use because of the high computation com-
plexity. Therefore, we believe that our contribution will make semi-CRF more
practical especially for large-scale applications.

Acknowledgments. This research was supported by the MKE (Ministry of
Knowledge Economy), Korea, under the ITRC (Information Technology Re-
search Center) support program supervised by the NIPA (National IT Industry
Promotion Agency) (NIPA-2009-(C1090-0902-0002)). This work was also spon-
sored by the IT R&D program of MKE/KEIT, [10032105, Development of Re-
alistic Multiverse Game Engine Technology], and by the Basic Science Research
Program funded by National Research Foundation (2009-0076798).

References

1. Andrew, G.: A hybrid markov/semi-markov conditional random field for sequence
segmentation. In: Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP) (2006)

2. Doherty, M.K.: Gene Prediction with Conditional Random Fields. Master’s thesis,
Department of Electrical Engineering and Computer Science, Massachusetts Institue
of Technology (2007)

3. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In: Proceeding of International
Conference on Machine Learning (ICML) (2001)



8 La The Vinh, Sungyoung Lee, and Young-Koo Lee

4. Okanohara, D., Miyao, Y., Tsuruoka, Y., Tsujii, J.: Improving the scalability of semi-
markov conditional random fields for named entity recognition. In: Proceedings of
the 21st International Conference on Computational Linguistics and the 44th annual
meeting of the Association for Computational Linguistics. pp. 465–472 (2006)

5. Sarawagi, S., Cohen, W.: Semi-markov conditional random fields for information
extraction. In: Proceedings of Advances in Neural Information Processing Systems
(NIPS) (2004)

6. Truyen, T., Phung, D., Bui, H., Venkatesh, S.: Hierarchical semi-markov conditional
random fields for recursive sequential data. In: Proceeding of International Confer-
ence on Advances in Neural Information Processing (NIPS) (2008)

7. Vail, D.L., Veloso, M.M., Lafferty, J.D.: Conditional random fields for activity recog-
nition. In: Proceedings of the International Conference on Autonomous Agents and
Multi-agent Systems (2007)


