
 

A Self Evolutionary Rule-base 

A. M. Khattak, Z. Pervez, W. A. Khan, S. Y. Lee, Y. K. Lee 

Department of Computer Engineering, Kyung Hee University, Korea 

{asad.masood, zeeshan, wajahat.alikhan, sylee)@oslab.khu.ac.kr, yklee@khu.ac.kr 
 

ABSTRACT 

The rapid growth in domain knowledge is the main reason for the 

evolution of knowledgebase’s maintaining the domain knowledge. Rule-

based Decision Support Systems (DSS) are the most effected systems 

with the growing knowledge. The experts need to continuously update 

the rule-base for the new knowledge. This manual and periodic updates 

in rule-base are time consuming and less useful. In this paper we 

propose a Self Evolutionary Rule-base algorithm for rule-bases of DSS 

to decrease the burden from experts and also provide updated knowledge 

on time. To achieve this objective, we develop a generic structure for 

rules storage that not only provide efficient manipulation of rules but a 

generic structure for storage of rules regardless of rules nature/format. 

The detail working of proposed Rule-base system for rules storage and 

manipulation is provided in this paper. For the proof of concept, we have 

implemented the Self Evolutionary Rule-base algorithm in Socially 

Interactive Clinical Decision Support System (SI-CDSS). The focus is 

on diabetes disease patients and the overall SI-CDSS is deployed in 

Microsoft Azure environment. In its implementation, Rough Set 

generated rules are used and the algorithm is executed on Rough Set 

generated rules. 

Keywords: Rules, Rule-base, Decision Support System, Algorithms, Performance, 

Verification. 

 

INTRODUCTION 

Rapid growth of information is the main reason for the increase in complexity of the 

collected data in a specified field of study. These complexities also introduce various types 

of uncertainties in the data collected specifically relating to problems in healthcare 

applications and services [2 and 3]. To extract the useful information from the uncertain 

data, different researchers from mathematics, computer science, and medical related areas 

have worked on number of theories [10] that supports in building expert systems. However, 

these theories do have limitations. These limitations restrict the theories and its complaint 

systems to limited domains where they can perform better. 

Rules are the important paradigm for representing expert knowledge. In rule-based expert 

systems, the rule-base contains the domain knowledge coded in the form of rules. In 

healthcare domain, theories that support rule-base models are preferred over those of 

machine learning based theories [2]. The fact behind it is that medical doctors can interact 

with systems using rule-based approaches. They can compile new rules while in machine 

learning based approaches, medical doctors are not aware of the internal working of the 

systems. In addition, most of the domain specific expert systems are also based on rule-

base (knowledgebase) [11]. Rule-based systems store, manipulate, and interpret 

information in a useful way. Rule-based systems are frequently used for diagnosis, 

recommendations, and symptoms clustering [8]. 

The rule-base systems use rules for variety of different purposes such as conflict resolution, 

decision making, and recommendation. However, the main issue is that these rules are 

maintained in text files or in XML files and are static in nature; on the other hand, the 

domain these rules are defined for is not static. So there is a need for a system that can help 

in rule evolution with the evolution in the field of knowledge. Rough Set based technique is 

used to generate new rules from the data collected [3]. The new rules need to update the 



 

existing set of rules or in other words, making the rule-base to evolve so that the rule-base 

can accommodate the new or changed rules. Another issue is a common structure for the 

storage of rules. When a system uses different rule-based approaches (rules in different 

format) then for rules storage they also need different structures. 

In this research, we focus on a generic storage structure that is used for storage of rules 

(from healthcare domain) of different representational format. On top of the proposed 

storage structure, we propose a Self Evolutionary Rule-base algorithm for rules with 

changes reflected from the evolved domain knowledge to accommodate the new and 

changed knowledge in Rule-base. A detail discussion on storage structure for rules and the 

implementation of Self Evolutionary Rule-base algorithm is provided in this research. The 

proposed algorithm for Rule-base is implemented with our underdevelopment Socially 

Interactive Clinical Decision Support System (SI-CDSS) [2] shown below.  

The remaining paper is arranged as follows: Related Work section presents details on Rule-

base and Rule-based systems. Section Proposed Scheme provides detail description of 

proposed storage structure and evolutionary algorithm. Implementation and Results section 

presents the preliminary implementation details. Finally we conclude our discussion in 

Conclusions section. 

RELATED WORK 

Expert systems are mostly rule-based systems. They use human expert knowledge (human 

intelligence) to solve real-world problems. The expert knowledge is often represented in 

the form of rules. Rule-based systems in healthcare domain are preferred over machine 

learning based systems due to the fact that rules are easily understandable to doctors. The 

rules in healthcare system represent medical doctors and domain knowledge. In addition, 

medical doctors feel comfortable while interacting with rule-based systems. The problem 

with these systems is that the rules are static and needs expert intervention for updates [3]. 

A medical guidelines based (i.e., rule-based) clinical decision support system proposed in 

[4] mainly focus on metabolism synthesis. The rule-base is constructed from the predefined 

logic (i.e., medical logic) and then used in inference engine for decision making. It is 

composed of four different components namely; data, model, inference, human computer 

interaction. The rule-base is static and does not consider evolution for the updates in the 

field of knowledge (domain knowledge). So, all the updates are carried out by experts and 

doctors manually. 

In [7], the authors focused on real-time activities performed by patients and then use these 

activities and domain knowledge for decision making. The system used description logic 

rules after match making process to make appropriate decisions based on situation analysis. 

The rules used are stored in text file and are periodically updated by experts based on user 

and system needs. In [5], the authors proposed inference mechanism with Electronic Health 

Record (EHR) for existing hospital information system. The rule engine and the rule-base 

for containing the clinical guideline are integrated together. With static rules, their main 



 

drawback is strict modeling of information according to its input types for different 

components. 

A healthcare service using conventional clinical decision support system and ontology to 

manage user healthcare data has been proposed in [6]. The main functionality of the system 

was to generate, deploy, and manage patient information. The information is inferred using 

rule-base and ontology. The results are then propagated to dependent components. In [9], 

the authors presented a tool for multi-objective job scheduling problems. An interactive 

multi objective genetic algorithm for decisions has been proposed. It’s  decision function  

is  defined  as  a  measure  of  truth  of  a  linguistically  quantified  statements (rules). The 

tool also provides support for what-if analyses. 

Research work and actual deployment of rule-based decision system is visible in different 

areas including healthcare such as; in development of clinical decision support systems. 

These systems are very strict with the structure for rule representation and one rule-base 

cannot support two or more inference engines with different formats of rules. Another issue 

is that the rule-base of these systems is static and is not updated with the new knowledge. 

Our proposal is a generic structure for rules storage regardless of the rules nature and keeps 

the rule-base dynamic with evolving domain knowledge. 

PROPOSED SCHEME 

Clinical Decision Support System (CDSS) is widely used now days in every country for 

better, timely, and low cost healthcare services. Most of these systems are based on the 

concept of using rules for decision making and because of this these systems are also 

termed as expert systems. This section provides details on proposed scheme i.e., Self 

Evolutionary Rule-base for SI-CDSS [2]. SI-CDSS continuously generate new rules based 

on patient’s experience and expert interventions. To cope with the growing knowledge, our 

proposed scheme keeps the rule-base updated. To support the proposed scheme, a generic 

structure is also build for rules storage regardless of rules structure/format. Based on the 

generic structure and evolutionary algorithm, this section is divided into two subsections 

(see Figure 4 for overall system architecture).  

Rules-base Storage Structure 

Information systems as well as decision support systems are mainly based on reliable data 

and facts. Facts (conditions) represent our knowledge about the situation/problem. Rules 

are used to represent relationships among the Facts. Based on these rules, Inference Engine 

makes the inference for situation analysis and decision making. The rules are mainly used 

to get end results based on the given facts. For example, Figure 1 shows the consequent 

effects of combination of facts (A….X) that builds confidence for a rule in a given situation 

and results in consequent effects (actions). 



 

 

Figure 1. Shows abstract structure of rule. Set of conditions 

(facts), confidence building, and resultant action. 

 

In most systems these rules are stored in text files that are hard to maintain. In case of 

systems using two or more inference engines such as; SI-CDSS [2], the systems will 

maintain two different rule-bases as the rules format is different (see Figure 2) and cannot 

be stored in a rule-base fix for one particular format. As it is obvious that rules have two 

main components i.e., condition and action that makes it easy to model it. With variety of 

different rules representational format, using different logical, mathematical, and relational 

operators makes it a bit tough to model them in a single storage structure. To handle this, 

we develop a schema and in that we model rule as an entity separate from its condition and 

action parts. The rule entity contains the information about its associated conditions and  
 

if BMI<=3, Lethargic=1, Fats=1, then Diabetes type=1       

if Exercise>=2, Fats=0, then Additional Medication=0 
 

Patient(p) ⊓ hasSymptoms(cool skin) ⊓ hasSymptoms(dam skin) ⊓ hasBP(160/120)  

�generateRecomendation(drink juice) ⊓ generateRecomendation(take rest)  

 

UrineProblem,Weight,WeightLoss,Age,Fatigue,Pain�Class 

Yes,73,*,48,No,* �  5 

Figure 2. Shows the example of procedural (if-then) rules, description logic 

rules, and rules used by Rough Set. 
 

actions information by distributing its key as a foreign key. On rule entity, it also contains 

information about the rule format and the type of disease it is focusing on. All the 

conditions that can be part of a rule are modeled separately along with the operators. This 

also solves another problem for storing and handling unknown number of conditions of a 

rule while in conventional systems, the numbers of conditions are fixed. The same way, the 

actions can be many for a given rule so we also model it in a separate entity that makes a 

many-to-one relationship with the rules entity. For more detailed view of the storage 



 

structure please see Figure 3. The class entity is for extra recommendations from medical 

doctors while the user entity is for tracking user and user access privileges.  

Self Evolutionary Rule-base 

Rule-base is one of the main components of SI-CDSS that store and manipulate decision 

rules based on user’s request. Inference Engine needs to take a decision and for decision 

making rule-base is contacted and corresponding rules are extracted for decision making. 

These rules are mainly composed based on experts (doctors) knowledge [1], however, in 

SI-CDSS, patient’s experience is also incorporated that further help in recommendations 

and decision making. As updates in the domain knowledge and patients experience sharing 

is very frequent, and is the main reason for frequent rules generation by Rough Set based 

inference engine. At the same time these rules need to be updated in the Rule-base to 

provide up to date services and recommendations. 

 

Figure 3, Shows the generic storage structure for rules storage in rule-base. 

To achieve better healthcare services, recommendations, and decision makings; more 

sophisticated and exhaustive list of rules that can serve better are required. With the 

passage of time, the advancement in expert knowledge and user experience may introduce 

new rules as well as changes in the existing rules. These all need to be accommodated 

appropriately in the Rule-base. Change in rules based on patient’s experience is very 

sensitive. For this reason, the generated rules will only be stored if they are verified by the 

experts and allowed to be stored in the repository. We use the notion of social as the system 



 

is more interactive and also use patient’s experience for recommendations and decision 

makings. These rules are used by inference engine for decision making or analysis, so its 

main interaction point is the inference engine. Updates in rules and Rule-base will all 

happen through inference engine. The complete process of rules parsing, addition, and 

updates is given in the system overall architecture shown in Figure 4. 

Wrapper component is responsible for selecting the appropriate rules from the rule-base 

regarding its format and the calling inference engine. Parser handles all the rules retrieval 

and submission requests. Rule Engineering and Verification is responsible for providing 

facility to experts for creating new rules and also verification of existing rules in the Rule 

DB of Rule-base. Rule Updates component is actively listing for changes in existing rules. 

Once change is found then it update the corresponding rule and propagate it to Rule DB. It 

is important to note that not all the rules are updated based on simple change in rules but in 

fact, a rule is updated if there is a change in the consequent (action) of the rule. The update 

can be a change of existing consequent or addition of another consequent and in our 

proposed structure we have provision for any number of additional consequent. The detail 

working of proposed Self-Evolutionary Rule-base system is given in Algorithm 1. 

 

 

Figure 4,Overall architecture diagram of proposed Self Evolutionary Rule-base. 

 



 

 

 

Algorithm EvolutionaryRule-base ( ): Self Evolutionary algorithm to evolve Rule-base for accommodating 

the updated knowledge.  
 

Input: Rules form Rule DB and newly generated rules from inference engine. 

Input: User entered rules for new knowledge. 

Output: Set of new and updated rules storage. 

1. /* Check for type of inference engine and then activate appropriate wrapper.*/ 

2. Wrapper.initiate(IE.RulesType) 
3. /* Fetch the rules generated by the inference engine or expert entered rules.*/ 

4. Rules  ←  IE.Rules 

5. Rules + ←  EXPERT.Rules 
6. /* Fetch rules from RuleDB to be updated.*/ 

7. Rulesdb  ←  RuleDB.Rules 
8. /* Check if rules from inference engine are new then add in RuleDB.*/ 

9. IfNOT(Rules= ∃Rulesdb)then 

10. Rulesdb ←  {x ∣ <Rules∆, x >New} 
11. Endif 

12. /* Check for rules updates, update rule, and store in RuleDB*/ 

13. If(Rules= ∃RulesDB) ⊓ (∃∆ ⊓ ∆.Rules.Change)then 

14. Rulesdb.Rule ←  {x ∣ <Rules∆, x > Change} 
15. Endif 
16. /* Update the original RuleDB for the new and updated rules.*/ 

17. Execute.update(RulesDB,Rulesdb) 
18. End 
 

Algorithm-1, A Self Evolutionary Rule-base algorithm for dynamic updates in Rule DB for 

evolving domain knowledge. 

 

IMPLEMENTATION AND RESULTS 

As mentioned above, the Rule-base system is a subcomponent of overall SI-CDSS [2], 

which has been developed and deployed on Microsoft Azure environment for its prototype 

demonstration. In SI-CDSS deployment, Rule-base is also implemented and deployed for 

Rough Set based inference engine with focus on diabetes disease. In this prototype 

demonstration, the Rule DB was developed and maintained in Microsoft SQL Azure. 

Figure 5-a shows the user interface for patients to share their experience of using the 

medicine. This information is then used by Rough Set for rules generation and after mining 

the experience, inference engine generates recommendations for the patients as shown in 

Figure 5-b. The rules used by Rough Set are also in different format than the other rules see 

Figure 2. All the attributes used in conditions and actions are listed as columns, are of fix 

number. The values for the conditions are separated using comma that represent the AND 



 

operation. The rules contain different values for different combinations of symptoms. The 

numbers of symptoms are 33 in every single rule. With system learning new rules, we test 

our system for its claims using proposed structure with database manipulation against text 

files using string manipulations. We introduce a bunch of random 20 rules (i.e., new rules, 

existing rules, and some updated rules) and test both techniques performance. All these 

testing and deployment experiments are carried out on local machine with 3 GB memory 

and 2.67 GHz of quad core processor.  

 

 

 

Figure 5. (a) shows the interface for patient’s experience entry while (b) shows the 

recommendations generated by SI-CDSS based on the rules from Rule-base. 

a 

b 



 

With the novelty of introducing Self Evolutionary Rule-base, in addition, our proposed 

structure for rule storage also proved better performance than the traditional text file based 

rules storage. The Self Evolutionary Rule-base not only helps in timely updates in the 

Rule-base but the rules generated also become more compact. The Self Evolutionary Rule-

base process is completely automatic; however, for generated rules verification, the system 

also have provision for experts (doctors) to verify rules and eliminate rules that are not 

compliant with standard knowledge of the domain. 

CONCLUSION 

Rule-based systems are mostly used in healthcare domain for developing CDSS. With the 

passage of time, the rules containing expert and domain knowledge needs to be updated to 

accommodate new discoveries. To achieve this, a Self Evolutionary Rule-base system is 

proposed with a generic structure to store different types of rules. The system is 

implemented as subcomponent in currently under development system SI-CDSS in 

Microsoft Azure environment for diabetes patients. The overall working and performance 

of proposed scheme proves better in comparison against the text based rules management 

systems performance. In future, our focus is to work for full capacity of the proposed Rule-

base i.e., to work with several different inference engines with diverse nature of rules in the 

Rule-base at a time and still achieve its claimed effectiveness. 

ACKNOWLEDGMENTS 

This work was supported by the MKE (The Ministry of Knowledge Economy), Korea, 

under the ITRC (Information Technology Research Center) support program supervised by 

the NIPA (National IT Industry Promotion Agent)” (NIPA-2011-(C1090-1121-0003). 

REFERENCES 

1. E. S. Berner, D. Ed, “Clinical Decision Support Systems: State of the Art”, 

Department of Health Services Administration, University of Alabama at Birmingham, 

AHRQ Publication No. 09-0069-EF, June 2009. 

2. I. Fatima, M.Fahim, D. Guan, Y. K. Lee and S. Y. Lee, "Socially Interactive CDSS for 

u-Life Care", The 5th ACM International Conference on Ubiquitous Information 

Management and Communication (ACM ICUIMC 2011), Seoul, Korea, February 21-

23, 2011. 

3. F. Feng, X.Y. Liu, V. Leoreanu-Fotea and Y.B. Jun, Soft sets and soft rough sets, 

Inform. Sci. (2010) 10.1016/j.ins.2010.11.004. 

4. D. Jegelevicius, A. Krisciukaitis, A. Lukosevicius, V. Marozas, A. Paunksnis, V. 

Barzdziukas, M. Patasius, D. Buteikiene, A. Vainoras, L. Gargasas L. “Network Based 

Clinical Decision  Support  System”.  9th International Conference on Information 

Technology and Applications in Biomedicine (ITAB), Larnaca, Cyprus, 2009. 

5. J. A. Kim, I. Cho, Y. Kim. “Clinical  Decision Support   System Architecture in 

Korea”, International Conference on Convergence and Hybrid Information 

Technology, Washington DC, USA, 2008. 



 

6. E. J. Ko, H. J. Lee, and J. W. Lee. “Ontology and CDSS based  Intelligent  Health  

Data  Management  in  HealthCare Server”, world   Academy   of   Science, 

Engineering   and Technology, 2007. 

7. A. M. Khattak, Z. Pervez, K. K. Ho, S. Y. Lee, and Y. K. Lee. “Intelligent 

Manipulation of Human Activities using Cloud   Computing   for   u-Life   Care”.   

The   10th   Annual International     Symposium     on     Applications     and     the 

Internet(SAINT 2010), Seoul, Korea, 2010. 

8. V. Mauno, S. Crina, "Medical Expert Systems", Current Bioinformatics, 3, pp 56-

65(10), January 2008, doi = doi:10.2174/157489308783329869 

9. D. Petrovic, A. Duenas, S. Petrovic. “Decision support tool for multi-objective job 

shop scheduling problems with linguistically quantified decision functions” Decision 

Support Systems, 43(4), 1527-1538, 2007. 

10. A. Radzikowska and E.E. Kerre, A comparative study of fuzzy rough sets, Fuzzy Sets 

and Systems 126(2), pp. 137–155, 2002.  

11. S. Tsumoto, Automated induction of medical expert system rules from clinical 

databases based on rough set theory, Information Sciences 112 , pp. 67–84, 1998. 

 
 


