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Abstract-Acoustic source positioning plays an important role 
in military tracking unwelcome objects. A system for this applica­
tion must be capable of dealing with the input recorded convolved 
mixture signals while minimizing the high communication and 
computation cost. This paper describes a distributed system 
for positioning multiple independent moving sources relying on 
acoustic signals. The sensors pre-process the sensed data to obtain 
the frequency features before compressing and sending it to 
the base. At the base, the source positioning are carried out 
via two clustering stages and an optimization method. Analysis 
and simulation results show that our system provides high 
accuracy and needs neither much communication nor complex 
computation in a distributed manner. It is robust even when there 
exists high noise with Rayleigh multi-path fading under Doppler 
effect and when the number of independent sources is greater 
than the microphone number. 

I. INTRODUCTION 

Previous works are mainly based on finding the relative 

angles between the sound sources and the receiving sensor 

arrays, called angles of arrival (AOAs). For techniques that 

use AOA scheme, most of acoustic approaches so far can only 

give solutions to one tracked object [1][2][3][4][5], and just 

few are for multi-object tracking [6][7]. To solve multi-object 

tracking with non-array sensors, the idea of using independent 

component analysis (ICA) comes naturally since ICA is a 

powerful algorithm to separate and restore the original source 

data provided that these sources are statistically independent. 

In reality, an acoustic signal takes different time delays for 

propagating to the sensors, generating the convolved mixture 

data. Some methods have been developed to deal with this 

problem on time domain [8] and on frequency domain [9]. 

However their computation load are either too high [10] or 

too complicated especially when the finite impulse response 

(FIR) Linear algebra is used for ICA on the complex field [11]. 

In addition, all the related techniques so far generally require 

a centralized algorithm, making the communication load too 

big to apply to wireless sensor networks (WSNs). 

Our preliminary method [12], based on ICA applied on 

frequency domain, can deal with convolved mixture data [8][9] 

and overcome many disadvantages of convolved mixture ICAs 

on both time and frequency domains. Nevertheless, it can 

only position still sources and does not adequately tolerate the 

noise. Fortunately, we observe that independent sources allow 
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for replacing the high-cost and low-reliability ICA techniques 

with clustering methods. The positioning problem can be 

solved relying on the information of magnitude ratios each 

of which is calculated from the energies of an f-component at 

different sensors. Localization method based on this informa­

tion will be described in the paper. 

II. PROPOSED METHOD FOR MULTI-OBJECT TRACKING 

A. Problem statement 

Consider M objects emitting continuous zero-mean acoustic 

signals and N location-known sensors. The signals are denoted 

by S j (t), j = 1, .. , M while at each sensor i, the received data 

are denoted by Xi (t) and modeled as in [2] 

M 

Xi(t) = L aijSj(t - Tij(t)), i = 1, .. , N 

j=l 
(1) 

where aij > 0, is the amplitude gain of the signal from source 

j measured at sensor i and Tij (t) is the propagation time of 

this signal. When the sources move, these parameters change 

over time and cause different shifts to different f-components 

at the receivers. That phenomenon is called Doppler effect 

[13]: 

fij = ( Vc 

(e 
())

) iJ, 
Vc + Vj cos ij t 

(2) 

where fj is some f-component of source j, Iij is the shifted 

version of fj at sensor i, and eij (t) is the irmnediate angle 
-+ 

between ij and V;. 
The issue is: With the received data and the only knowledge 

that the delayed versions of the sources are statistically inde­

pendent of one another, the source positions must be indicated. 

B. Distance information extraction 

Applying Short Time Fourier Transformation (STFT) to the 

sampled data at the sensor i, the time-delay Tij only affects the 

phase spectral image, not the magnitude spectral image (so­

called frequency image). Since the continuous form of STFT 

is not suitable for computing and storing, the Discrete Fourier 

Transformation (DFT) is replaced for calculation at sensors. 

Also note that when the speeds of the source are not zero, 

a source's magnitude frequency images calculated at different 
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Fig. I. Sensor architecture and Base architecture of the proposed system. 

sensors do not have the same form, thus the results of DFT 

for recorded data are 

M 

IXi(Wk)1 = L laijIISij(Wk)l, i = 1, .. , N. (3) 

j=l 
Xi (Wk) in the above equation is the DFT results of Xi (t) and 

k represents the discrete index. Meanwhile, ISij(Wk)1 is the 

discrete frequency image of the signal emitted by source j and 

recorded by sensor i. Now consider a particular interval on the 

frequency domain (wa, Wb) containing all shifted versions of 

some f-component of source z without any interference from 

other sources' shifted f-components, the frequency images in 

this interval are 

M 

IXi(Wkm»)I = L laijIISij(wkm»)1 j=l (4) 

= laiZIISiZ(Wkm»)I, i = 1, .. , N, 

where wkm) E (wa, Wb) and m is the index of the f-component. 

Although this f-component has different shifted versions, its 

energy is unchanged since the magnitude of the signal on the 

time domain is the same, or 

ISiZ(Wkm»)IT ISiZ(Wkm»)I = ISlZ(Wkm»)IT ISlZ(Wkm»)I, 
(5) 

i "Il. 

Based on the fact from (4) and (5), if an t'..component belongs 

to source z, then all relative distance relationships are 

(m) _I aiz 1 rilz - a lz 
IXi(Wkm»)IT IXi(Wkm»)1 . 

T 
,z"ll 

IXl(Wkm»)1 IXl(wkm»)1 
(6) 

where dlz and diz are the distances from source z to sensor 

l and to sensor i respectively; Xi(Wk) is the result after the 

step of noise filtering Xi(Wk), and Xi(wkm») is the frequency 
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Fig. 2. An example of data after filtering on Fourier domain 

image of Xi(Wk) on the segment (Wa,Wb) (see Fig.I). That 

means, for each f-component m within the frequency interval, 

a set of constraints is calculated and the location of the 

source having these components can be estimated. Thus, two 

clustering steps are needed, one for grouping the shifted 

frequency components to determine the segment (wa, Wb), 
and the other for grouping f-component positions to calculate 

source locations after f-component positions are computed. 

The advantages of this system are: (a) it is more robust than 

our previous system even when the sources are fixed, (b) it 

works well with moving sources and tolerates the co-existence 

of Doppler effect and Rayleigh mUlti-path fading, (c) it is 

considered to be a distributed method since the computation 

load is shared among the sensors and the communication cost 

is low, and (d) it is not constrained by the condition that the 

sensor number is greater than the source number. 

III. PROPOSED SYSTEM ARCHITECTURE 

The architecture design of the acoustic tracking system is 

displayed in Fig.l due to the extraction of distance information 

method as mentioned in Subsection II-B. 

A. Sensor architecture 

On frequency domain, the Gaussian noise level can be 

detected and all low f-components can be forced to zero 

(see Fig.2). Filtering step keeps only several dominant f­

components, so the data to be transmitted from a sensor to 

the base computer is reduced significantly. This is one of the 

key ideas for compressing the communication load so that the 

method can be applied into WSNs. 

The computation load at the sensors is high with DFT 

transformations of lengthy frames. However, as one can see 

in Fig.2, a sensor can skip calculating the frequency bins 

where the probability of major f-components' existence is 

low according to the feedback from the base. Thus, the 

computation load at sensors is reduced considerably, too. 



B. Central base architecture 

The work flow at the base is straightforward as described 
in Fig.l and in Section II-B. Received data are decompressed 
and fed into the "Frequency-Segmentation" stage. This process 
marks dominated f-components as well as the corresponding 
segments that contain the components with the index m. 
Then the block "Relative Distance Information Calculate" 
calculates a set of r;;n) for each component. These sets are 
then input into the "F-component Positioning" process to 
estimate the output position of each dominant f-component 
p(m). Frequency leakages, setting noise, Doppler effect and 
Rayleigh fading influence the detection result and make f­
components belonging to the same source j not have the 
same position. Therefore, the final stage "Source Positioning" 
is necessary to cluster those p(m) and estimate Pj under the 
averaging mechanism. 

1) Frequency Segmentation: This stage is used to indi­
cate every of frequency intervals which includes all shifted 
versions of a dominant f-component. It performs a cluster­
ing task that groups an f-component's shifted versions and 
determines that frequency segment. Doppler effect influences 
the f-components differently, the higher is the frequencies, 
the larger is the shift. From (2), an t"..component of source 
j at fo has shifted versions within ( v

+c . fo, � . fo). This Vc V1 Vc V1 
frequency interval varies depending on fo on the· frequency 
scale, however, it is fixed on the logarithmic scale as can be 
seen below 

/:).f(dB) = 10gIO(_v_C -fo) _logIO(_v_C -fo) Vc - Vj Vc + Vj 
_ 1 (VC + Vj) - ogIO --- . Vc - Vj 

(7) 

As the result, clustering task should be performed on the 
10gIO (.) scale of the frequency image under following criteria: 
(a) the width of each segment is not larger than /:).f(dB) 
(see 7); (b) the number of nonzero f-components within the 
grouped interval is greater than 2 so that the number of 
constraints is at least 3; and (c) the average energy of an 
f-component received at the sensors must be larger than the 
detected noise level. A sliding window with the width /:).f(dB) 
is then used to detect the frequency segments that hold (b) and 
(c). As the result, the number of sources can be larger than 
that of sensors. Moreover, the total loss of some f-components 
due to filtering is acceptable and the redundant f-component 
will hardly be taken into account. 

2) F-component Positioning : All constraint ratios rilz 
are computed (see (6» in "Relative Distance Information 
Calculating" process before being fed into the "F-component 
Positioning" process. The error in the constraints is unavoid­
able due to frequency leakage and the setting noise, so the 
solution for the position of f-component m should be a 
vector p(m), p(m) E R2 that compromises the constraints. We 
propose an objective function for this compromise 

N N-l 

Fj = L L (dij - riljdlj)2, 0 < rilj < 00 (8) 
i l,lo;ii 
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and the solution for source j will be 

p(m) = arg minFj. 
p(=) 

(9) 

The simple negative gradient method is chosen for this opti­
mization problem. 

3) Source Positioning: This stage groups f-component 
positions and computes the source coordinates as the mean 
values of f-component groups. The nearest-neighbor cluster­
ing, or d-min clustering technique [14] is used in this "Source 
Positioning" process. Equations (10) estimates the position of 
a source that includes the f-components whose positions are 

in the group j', denoted by Dj< 

L p(m) 
p(m)EDj' 

(lO) 

where N(m) is the number of f-components in the group. 

IV. EXPERIMENTS AND DISCUSSIONS 

Two main experiment sets are conducted via simulations 
in this section for system working demonstration and system 
evaluation. 

A. Experiment setup and modeling 

The deployed area is [Om,12m]x[Om,12m]. Five simulated 
sources (1\1 = 5), which imitate the sounds of different 
vehicles, motors and a siren (see Fig.3), are generated. They 
are parametrically determined so that Doppler effect can be 
generated properly (see (1». If a group sources are close 
together, they can be seen as one sound source; thus it is 
necessary for the sources to be distinct from one another 
for evaluation (5 meters in this simulation). Four sensors 
(N = 4 < M) are deployed around the corners of the deployed 
area (see Figure 4). The energies of the line-of-sight signals 
propagating to the sensors decrease according to the inverse 
square law at the sound speed of c = 343m/ s. The sampling 
frequency is Fs = 16.384K Hz and the time segment length 
Tf is 0.2s. The background noise for simulations of this paper 
is Gaussian and its level is the same at all sensors. 

Received acoustic data in practice always includes the 
effects of shadowing and fading due to multiple path re­
flections along with the received line-of-sight signals and 
Doppler effect. Therefore, we examine the situation under 
the existence of a Rayleigh fading channel. Since generating 
multiple paths for each source takes much computing time 
especially when Doppler effect is present, the Young model 
[15], which generates a Rayleigh channel with two arrays 
of Gaussian random variables and the inverse-DFT (IDFT) 
technique, is applied. If the ranges overlap, then the number of 
generated complex values is the number of overlapped ranges, 
and the Rayleigh noise at the bin is the sum of these values. In 
order for the result of IDFT to be real, the array representing 
the Rayleigh fading effect on the frequency domain, denoted 
by R(k), must be conjugately symmetric, or 

{ R (O)=O 
(11) R (k) = R* (N - k), k = 1, .. , N - 1 



Fig. 3. Signals of sources which are parametrically generated to imitate 
sounds of vehicles, motors and a siren. 

The parameter Signal to Noise Ratio SN R is chosen for 

evaluating results: 

SNR = 

Emean 
fY-RLERayleigh + (1 - fY-RL)EBackground' 

(12) 

where Emean is the mean value of the average signal energies 

received at the four sensors, Enoise is the sum noise energy 

of the background noise EBackground and the Rayleigh noise 

ERayleigh, while fY-RL E (0,1) represents the percentage of 

Rayleigh noise energy in the total noise energy. 

B. System working demonstration 

At the sensors, after "F-component Positioning" process, 

each f-component's position is determined and plotted with 

a circle (see Fig.4). Those f-components whose estimated 

positions are close to one another are grouped together as 

described in Section III-B3, in which dmin = 3.5m. 
Fig.4 displays the results of positioning task when the 

system attempts to localize five independent sources in the 

time segment Tf of 0.28 and the Rayleigh fading contribution 

of 20%. The estimated positions of the sources are calculated 

based on the groups' f-component positions due to equations 

(lO). Fig.4 is for the position estimation result when the 

speeds of the sources are all 40km/ h. It can be seen that 

the system is capable of locating the sources even when the 

source number is greater than that of the sensor. The Root 

Mean Square Errors (RMSEs) for the clustering in Fig.4 is 

less than 1.6 meters, an acceptable level especially when the 

speeds of the sources are high (in 0.2s, the trail lengths are 

around 2.2m). Obviously, positioning based on f-component 

localization is a good approach to deal with multiple acoustic 

source positioning in situations affected by high Gaussian 

noise, mUlti-path fading and Doppler effect. The SN R here 

is 2.51, the highest noise level of simulations in this paper. 

C. System performance evaluation 

The simulation in this section tries to examine the impacts 

of time segment Tf, the ratio S N R and the speed Vj on the 
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Fig. 4. Estimation results of an example using the highest level of noise in 
the simulation set and C<RL = 0.2, source speeds are 40kmlh. 

result accuracy. The chosen Tf is 0.2s, while the speed varies 

from 0 to 40kmlh in increments of SkmIh. The S N R values 

are generated based on the linear increment of the standard 

deviation of Gaussian noise. Fig.5 illustrates the distance 

errors under the impacts of noise level S N R, the percentage 

of Rayleigh multi-path fading noise fY-RL and the speed of 

sources Vj when the time segment is 0.28. Each plotted error 

value is the average result of RMSEs of 1000 trials. 

It can be seen that higher noise and higher velocity lead to 

higher source positioning error. It is because the higher noise 

level results in more error in the f-component positions due 

to the increased error in the constraint ratios, especially if the 

f-components have low magnitude. Meanwhile, higher speeds 

lengthen the pathtrails, increasing the uncertainty of positions. 

From Fig.5, one can see that the RMSE increases almost 

linearly with Vj. It is obvious since higher speed sources 

leave longer path trails. In addition, Rayleigh multi-path fading 

caused by high Vj affects the accuracy less than that caused 

by low Vj (compare the sub-figures). An f-component at a 

low Vj produces noise in a narrow and condensed Doppler 

shift range on the frequency domain. As a result, at the same 

level of Rayleigh noise, the received energy of an f-component 

through the line-of-sight path is corrupted more by a narrow 

shift range than by a wide shift range, causing poor accuracy 

at low Vj when there exists Rayleigh fading. Meanwhile, when 

Vj is high, the energy of Rayleigh fading noise is spread wider 

and thinner on the frequency domain and less affects the line­

of-sight f-component. 

It is noticeable that the system can not obtain the ideal re­

sults when there exists no noise (SNR = (0). The accuracy of 

estimated f-component positions suffers because of the limited 

time length of a frame which produces unavoidable spectral 

leakage. Moreover, the errors are also caused by the influence 

of the second original source, whose f-components appear all 
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Fig. 5. RMSE error results of source locations under influences of speeds of sources, Gaussian noise and Rayleigh mUlti-path fading when Tf 0.2s. 

over the frequency domain, to other sources' f-components. 

However, when the noise level increases quickly, the system 

can tolerate the noise well with little error increment. The 

estimation error increases an average amount of 0.6m when the 

SN R decreases 16 times from around 40 to 2.5. Comparing 

two sub figures of Fig.5, it is evident that the higher is the 

contribution of Rayleigh fading noise to the same level of 

total noise, the worse is the f-component clustering result. 

V. CONCLUSIONS 

We have described a distributed system for independent 

acoustic source positioning in which the separation is per­

formed based on the ratios of f-component energy values 

received at the sensors with clustering and optimization 

methods. The simulation conditions are made realistic with 

Doppler effect and Rayleigh multi-path fading to illustrate 

how well the system solves the problem of multiple moving 

source positioning. The results show that the system gives 

high accuracy and requires low communication cost for a 

large data set. The proposed system can be regarded as a 

design for the future generations of WSNs because it requires 

powerful sensors for performing DFT on long segments of 

data. Nevertheless, strong computing ability is not essential 

because with the feedback from the base, the sensors only 

perform the full DFT once and then focus on calculating 

DFT at bins in several frequency segments which contain the 

dominant f-components. The system is actually more useful 

than just positioning multiple sources. It can also output 

the characteristics of sources for further position estimation 

refinement and recognition since most acoustic features are 

on the frequency domain. 
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