
Developing Context-Aware Ubiquitous Computing
Systems with a Unified Middleware Framework

Hung Q. Ngo, Anjum Shehzad, Kim Anh Pham,

Maria Riaz, Saad Liaquat, and S. Y. Lee

Computer Engineering Dept. Kyung Hee University
449-701 Suwon, Republic of Korea

{nqhung, anjum, kimanh, maria, saad, sylee}@oslab.khu.ac.kr

Abstract. Context-awareness is one of the fundamental requirements for
achieving user-oriented ubiquity. In this paper, we present the design and
approach to a middleware solution that expedites context-awareness in a
ubiquitous computing environment. Context-Aware Middleware for Ubiquitous
computing Systems (CAMUS) envisions a comprehensive middleware solution
that not only focuses on providing context composition at the software level but
also facilitates dynamic features retrieval at the hardware level by masking the
inherent heterogeneity of environment sensors. Complexity is handled by
providing ‘separation of concerns’ between environment features extraction,
contextual data composition and context interpretation. Different reasoning
mechanisms are incorporated in CAMUS as pluggable services. Ontology based
formal context modeling using OWL is described. With a systematic approach,
CAMUS is proved to be a flexible and reusable novel middleware framework.

1 Introduction

The vision of ubiquitous computing, with devices seamlessly integrated into the life
of everyday users, and services readily available to users anywhere all the time [1],
[2], is becoming a reality. A ubiquitous computing environment is characterized by a
diverse range of hardware (sensors, user devices, computing infrastructure etc) and
equally diverse set of applications which anticipate the need of users and act on their
behalf in a proactive manner. One of the major goals of context-aware computing is to
provide services that are appropriate for a person at a particular place, time, situation,
etc. Certainly, sensing becomes an enabling technology but at the same time it
induces heterogeneity.

Context-aware computing involves acquiring context from various sources such as
physical/logical sensors, devices and repository; performing context deducing and
interpretation; monitoring for context changes and detecting situation occurrence;
then carrying out dissemination of context to interested consumers, triggering of
events, or adaptation of services in a distributed and timely manner.

Different approaches have been proposed for building context-aware applications
and services. Anind Dey et al [3] have built a Context Toolkit to support rapid
prototyping of certain types of context-aware applications by providing a number of

reusable components. Many projects have adopted this Toolkit approach [4], [5] while
others are developing a middleware infrastructure [6], [7], [8]. The latter is gradually
showing us its vital advantages. An appropriate infrastructure for context-aware
systems would provide uniform abstractions and reliable services for common
operations, support for most of the tasks involved in dealing with contexts, and thus
simplify the development of context-aware applications. It would also ensure that
different computing entities in the environment have a common semantic
understanding of contextual information for knowledge sharing [7], [8].

Beside the broad characteristics of middleware in common, a middleware for
context-awareness should also:

1. Support for heterogeneous and distributed sensing agents. Make it easy to

incrementally deploy new sensors and context-aware services in the
environment.

2. Provide different kinds of context classification mechanisms, including rules
written in different types of logic (first order logic, description logic,
temporal/spatial logic, fuzzy logic, etc.) as well as machine-learning
mechanisms (supervised and unsupervised classifiers). Different mechanisms
have different power, expressiveness and decidability properties, and system
developers can choose the appropriate logic that best meets the reasoning
requirements of each context.

3. Follow a formal context model using ontology to enable syntactic and
semantic interoperability, and knowledge sharing between different domains.

4. Provide facilities for applications to specify different behaviors in different
contexts easily, as well as privacy policy and security mechanism.

Furthermore, in order to make the middleware expandable in different application

domains, it is desirable to have a reusable framework in the middleware. However,
current context-aware architectures do not provide a complete solution for all the
essential requirements in context-aware computing. Most of them rely on proprietary
a protocol, thereby set a barrier to interoperability of different systems, and exclude
developers from reusing existing components in different domains. In addition, they
lack of a formal context model, instead, application-specific models have been used
making it difficult to share context data across heterogeneous systems. Also, most
context-aware systems do not really make use of the different context sources, which
is often the most important aspect in ubicomp environment. As a result, no
mechanisms yet exist to support the deployment of new sensing agents in the
environment, as well as to hide their heterogeneity.

In this paper we propose a unified middleware framework for context-aware
ubiquitous computing, namely CAMUS, to address these shortcomings of the existing
architectures. A unification interface for sensor access mechanisms and feature
abstraction for sensor data provide an efficient separation of concerns between
different sensing techniques and context formation process. Different reasoning
mechanisms are incorporated in CAMUS as pluggable services. Ontology based
formal context modeling using OWL [14] is described for a home domain. Feature
Tuple Space is utilized to provide underlying services for managing extracted features

from sensors. With a systematic approach, CAMUS is proved to be a flexible and
reusable novel middleware framework.

The remaining paper is organized as follows. First, we describe a smart home
scenario as a use case of our middleware framework. Then we present the core
architecture of CAMUS. Next, we describe the formal context modeling and
reasoning mechanisms incorporated in CAMUS. Finally, initial implementation,
discussion and future work are provided.

2 A Smart Home Scenario

To elaborate the functional aspects of the system described in the next section,
consider the following scenario:

Hung wakes up in the morning at 7:00 am. His morning routine involves taking a
bath, dress up, drink coffee, listen to morning news, have breakfast and leave for
office on his car. A number of things in the above scenario can be automated in a
timely manner if the context information of Hung and his environment is available e.g.
when he wakes up, the bath-tub fills up with warm (or cool) water, coffee pot heats up
coffee, the TV turns on and shows broadcast from the news channel, lights in
rooms/bathroom turn on/off according to his location etc. Before leaving the house,
he can be informed on this PDA or mobile phone if he needs to take a
raincoat/umbrella or to take a different route to office owing to a traffic block on the
normal route that might result in delay. Hung wears an RFID tag on his wrist.

The house is fitted with a number of sensors including several wireless
microphones, long range RFID reader (or several short range readers deployed around
the house), temperature, humidity and light sensors in the rooms. A camera fitted to
the ceiling of living room/bedroom is used to detect the users’ condition and state e.g.
lying on the bed, sitting, bending up, etc. The sensors are connected to a machine1 that
runs our middleware infrastructure.

Electronic devices (lights, bathtub controls, coffee pot, TV etc) are connected to a
home control system2 either wirelessly (Bluetooth, IrDA) or standard Ethernet from
where control commands are sent. An application executing on the master system
controls the behavior of these devices. This application needs the person’s context
information in order to make his home a smart environment.

Upon availability of such context information, the application can issue control
commands to fill the bathtub with hot (or cold) water and within due time, ask the
coffee pot to make coffee. When it is detected that the person has finished bathing, the
T.V. is turned on for him to listen to morning news on his preferred channel. His PDA
meanwhile asks the middleware services for weather and traffic conditions (about the
route that the person usually takes to office). This information is gathered from
sources external to the system and fall under the focus of interoperability of
middleware with existing useful services. When the person leaves the apartment,
lights, TV etc are automatically turned off and as a final step, the PDA checks with

1 It is assumed that CAMUS is deployed on a machine (workstation, desktop etc) in the house.
2 This master system can be a desktop running some home control software and may or may not be the

same as the one where our middleware is deployed.

the RFID reader if any milk cartons are left in the refrigerator or not (milk cartons
have RFID tags) and notes down in the person’s schedule if he should bring any milk
on the way back home.

3 CAMUS Core Architecture

Acquiring the users input from the real world is one of the challenges in context-
aware computing. However, the most interesting kinds of context are those that
humans do not explicitly provide. With advances in sensing and automated means of
perceiving the physical environment along with more efficient pattern recognition
techniques, we can automatically collect much more implicit context. The
environment in general contains a diverse nomenclature of sensors having different
access mechanisms, different sensory data and dissimilar representation schemes of
such data. This diversity leads to potential problems and complexity in design and
implementation. Thus a mechanism is required, which serves to extract information
from the heterogeneous sensors and present to the upper layers for deducing contexts,
in a standardized and unified manner.

3.1 Feature Extraction from Sensors

In CAMUS we provide a unification interface for each sensing agent (named Feature
Extraction, FX Agent), as depicted in figure 1. Unification interface is aware of the
definitions of the feature constructs based on the sensor types. This aids in deciding
which sensor values are to be extracted and aggregated from sensor outputs. At this
lowest layer in the CAMUS design, containers that hold access mechanism
implementations (or wrappers) are also provided for individual sensors, to hide the
communication details and data polling frequency of sensors from the above layers.

Fig.1. Feature Extraction Agent in CAMUS. Preprocessing module performs filtering,
conversion, or contrast enhancement for sensor signals. Then features will be extracted,
quantized/segmented, and encapsulated into feature tuples. Feature tuples are injected into
Feature Tuple Space through Unification Interface for deducing context in upper layers

The extracted features should be as descriptive of the contexts they are attempting
to model as possible. If the features are discriminative enough, the recognition

mechanisms would be simple and lightweight. In order to have a more expressive
representation of context information, features are further quantized or segmented,
resulting in a set of symbolic values that describe concepts from the real world. Fuzzy
sets [9], [10] or crisp limits can be applied to quantize/segment the features. The
probability (or confidence) associated with outputs of fuzzy quantization can be used
as inputs of probability based context reasoning mechanisms [10], [11].

More informative sensors and a wider set of features would be essential for more
detailed and accurate situational descriptions. Thus numerous useful features might be
generated by each sensor; and the feature representation must facilitate the
identification of individual features uniquely as well as collection of features by the
same source. This is achieved by allocating a unique feature identifier in conjunction
with the sensor and type identifiers to each Feature Tuple (FT) in the space.
FT= {Sesnor_ID, Type_ID, Feature_ID, Feature_Value,
Probability, Timestamp}

Consider the features in table 1, which are gathered from an audio and video sensor
deployed in Bedroom of the Smart Home mentioned in our scenario. The information
of audio sensor provided in the table can be encoded in Feature Tuples as follows:
FT1= {3, 1, 1, 1, 0.9, xxxxx}

FT2= {3, 1, 1, 2, 0.1, xxxxx}

Table 1. Example Feature Tuples. Same Sensor ID is assigned to individual sensors in the same
physical space. Sensor ID = 3 indicates Bedroom. The semantic labeling and context reasoning
processes are discussed in the next sections.

Value
 Sensor

ID
Sensor
Type Feature ID Numeric

Value
Quantized Value
(Symbolic,
Probability)

Time
Stamp

1 (Silent, 0.9) 3 1(Audio) 1(Intensity) x (dB)
2 (Moderate, 0.1) xxxxx

1 (Stable, 0.8) 3 2(Video) 3(Motion
Pattern)

NA
2 (Regular, 0.2) xxxxx

3 2(Video) 6(Posture) NA 2 (Lying, 0.9) xxxxx
1 (TotalDark, 0.2) 3 2(Video) 7(Luminous

Intensity)
y (cd)

2 (Dark, 0.8)
xxxxx

The main features extracted following the MPEG-7 specifications for audio and

video signals in CAMUS are shown in table 2, along with their semantic meanings.
In CAMUS, Feature Tuple Space (FTS) is employed as underlying communication

and storage mechanism. Feature Tuple Space provides a domain-wide persistent space
where features gathered from the diverse sensors are stored with a common
representation scheme. Features are stored directly as objects independent in space
and time and decoupled from the generating processes; an important advantage in the
ubiquitous environment in terms of interoperability and scalability. Various sub-

modules for feature extraction and context formation dynamically interact in the
middleware by mere flow of objects in and out of the FTS.
The CAMUS provides different modules at the context layer to acquire various kinds
of contextual information and reason about it in an appropriate way, as depicted in
figure 2.

Fig.2. CAMUS Core Architecture.

3.2 Feature - Context Mapping

Upon the notification of feature change in the tuple space, this layer performs the
mapping required to convert a given feature into context. The Feature - Context
Mapping meta-information is saved in the ontology repository (section 4.2.2).
Information such as user Id mapped to his name as well as his profile is saved in the
ontology as a meta-information which enables this layer to do necessary mappings. If
certain context is not present in the ontology repository and is requested by either
context aggregator or reasoning module, it will register to the Feature Tuple Space for
the feature, corresponding to that context. For example, the feature tuple in table 1
FT1= {3, 1, 1, 1, 0.9, xxxxx}

would be mapped to corresponding context information
{Location.Bedroom, Environment.Sound.Intensity = Silent,
Probability = 0.9, TimeStamp = xxxxx}

3.3 Ontology Repository

This main repository provides the basic storage services in a scalable and reliable
fashion and contains the domain ontology, context information (including both
elementary and composite context), and meta-information as explained below.

Domain Ontology. Domain ontology contains the domain concepts and properties
with formal semantics described in OWL [14] and explained in detail in the context
modeling.

Context Information. Here context is any information saved by the Feature -
Context Mapping layer gathered from the environment through lower layers of the
architecture and explained in detail in the context modeling.

Meta-Information. Having well structured meta-information about the various
characteristics of the system allows flexibility and acts as a customizable solution for
the specific needs of the use case. In our framework, we save meta-information about
the devices (D in figure 2), sensors access mechanisms (S), feature to context labeling
(L) (used by Feature - Context Mapping layer) as well as the meta-information about
the input, output and capabilities of various pluggable reasoning modules (R).

3.4 Reasoning Engine

Reasoning engine is nothing but a collection of various pluggable reasoning modules.
Different applications and domains have different reasoning requirements and the
reasoning engine provides a collection of pluggable reasoning modules, providing
easy integration, knowledge maintenance and re-use. Reasoning engine has to handle
the facts present in the repository as well as to produce composite contexts.

Ontology Reasoning Module. This module is concerned with the class descriptions
(domain ontology) and instance data (context information) of the ontology repository.
This module is necessary to provide the entailed knowledge not formally present in
the repository and also uses axioms and rules associated with the reasoner. This
reasoner uses various kinds of logics to support inference; description logic, first
order logic, temporal logic and spatial logic to name a few.

Context Reasoning Modules. The reasoning engine can contain one or more
context reasoning modules based on application requirements. The need for context
reasoning modules arises because not all information can be gathered from sensors.
Sometimes, information from multiple sources is required to produce composite
context. Sometimes, a combination of context and ontology reasoning can be used.
Once composite context is saved in the repository; it is just a normal context like
other elementary contexts. Fuzzy logic, Bayesian networks and neural networks can
be used to produce composite context, providing different power and expressivity.

3.5 Context Aggregator

Context aggregation service is responsible for satisfying certain context queries. Each
context aggregation service performs a specific function. An example service can be
detecting that user has awaken and performing certain actions. Based on required

context information, it can either utilize the ontology reasoning module or context
reasoning module or both. Upon detecting that certain context is composite one, it
will retrieve meta-information from the repository about the specific context
reasoning module providing the composite context. Once retrieved, it will invoke the
corresponding reasoning module and return the result back to the application
requesting the context.

3.6 Context Delivery Services

The context delivery services perform the job of searching appropriate context
aggregators and delivering them to the applications. These include registration, query
and notification services [19], [20]. Context Aggregators register with the registration
service to provide the information about the context they can deliver. Interested
applications and agents query the registration service to find services of their interests.
The registration service upon finding appropriate aggregator, returns the handler to
the requested clients.

Each context aggregator specifies the context it provides, by utilizing the concepts
defined in the ontology repository. This standard schema sharing allows the different
kinds of entities to be described and utilize by registration service to find useful
services needed by the applications, thus allowing a flexible mechanism for
exchanging descriptive information of various entities. In our framework, this
semantic matchmaking [21], [22] is based on querying the Racer [23] Server which
allows subsumption and classification of different concepts defined in the ontology.

4 Formal Context Modeling

Once features are gathered from the feature extraction layer, the next job is to have a
global picture of the environment variables (features) at the context layer. Context
[12], in general words, is any information which is used to help applications more
adaptive to the surrounding environment and more responsive to the user. Here, we
should mention that context is not any information gathered from the environment
through sensing technology but the logical context of applications as well.

With the importance of context comes the issue of how to represent the context
effectively. There are many context modeling techniques being used in context aware
computing. Name value pairs [3] and entity relation model, to represent context, are
easier to implement but lack consensus on semantics of the representation. Modeling
context as objects [13] with fields containing state of context and methods/functions
to access, modify or register for changes to context also suffer from the same problem.
So, to represent and manage context information in a systematic manner, we need a
common shared understanding of the context. For this purpose, we are using the W3’s
Web Ontology Language (OWL) [14].

4.1 Using OWL as formal Context Modeling

To enable sharing and reuse of context, we need to describe the domain at hand in a
formal way. For this purpose, ontologies are used, defined as a shared and common
understanding of a domain that can be communicated between people and application
system [15]. Informally, they are used to represent the vocabularies of a domain
describing important concepts and relationships among them. Since, ubiquitous
computing environment is characterized by various domains e.g. home, office,
university etc; ontology can play a useful role in sharing the domain knowledge of a
particular environment.

OWL enables us achieve this goal in two steps. First, it allows us to define
concepts and relationships among concepts in a domain of discourse e.g. describing
person, devices, location etc. Second, it allows us to define instance data pertaining to
some specific time and space e.g. person A is carrying a device B while on the road.
Traditionally, ontologies are only used to describe domains (as mentioned above) but
in OWL, the horizon of ontology has been broadened to include instance data as well.

Since OWL is a knowledge representation language and has explicit semantics
associated with the knowledge, among other advantages it brings to us is the
reasoning capability which intelligent systems and agents can use to infer useful
contexts. Also, it can be used to represent meta-information about the sensors and its
profile, e.g. in our architecture, we are also using OWL to represent access
mechanism to the sensors, and the associated policies.

4.2 CAMUS Context Model

While context entities are conceptual entities, the information provided by them is
called the contextual information. This contextual information has its own syntactic
and semantic meanings. Some of the context entities are the producers of contextual
information while others are consumers or both. Contextual information gathered
from at least one sensor is called the elementary context while composite context is
any combination of elementary contexts or elementary and composite contexts as
shown in figure 3.

Fig.3. Contextual information hierarchy

4.2.1 Basic Model
Diverse context entities are usually found in the ubiquitous computing environment.
These entities range from various kinds of devices e.g. PDAs, mobile phones, ambient
displays etc., running various applications, to various environment conditions e.g.
sound intensity, light, temperature, traffic etc., utilized by various kinds of agents e.g.
software agents, persons, groups etc. All these entities are present and functioning at
different times at different places.

This variety leads us to categorize context entities, in our framework, mainly into
agents, devices, environment, location and time. Location and time are kept separate
from the other concepts to emphasize on the spatial and temporal aspects of the
ubiquitous computing environment. These conceptual entities and their relationships
are described in the ontology repository. Figure 4 shows the main context categories
and few domain concepts of our context model, termed as, cont-el.

Fig.4. Expandable Cont-el Basic Categorization and Some Domain Concepts

The ovals represent the main context categories while shadow rectangles represent
few of the concepts under the corresponding context category. Although dynamic
environments result in addition of new entities, but they can added in the ontology
and related to existing entities by various ontology language (OWL) constructs like

subClassOf, disjointWith etc. Also, if some entities change their meaning over the
passage of time, they can be controlled through ontology versioning. So, representing
context entities in the ontology brings all benefits of ontology mechanism.

4.2.2 Detailed Model
Context entities and contextual information are described in the ontologies;
facilitating various parts of the ubiquitous computing environment to interact with
each other effectively. We have described ontologies for a home domain. The
different ontologies made are based on basic categorization described above. In the
following paragraphs, we will describe different ontologies.

For the entities related to Agent, we have top level concept called Agent. It has
been further classified into SoftwareAgent, Person, Organization, and
Group. Each Agent has property hasProfile associated with it whose range is
AgentProfile. Also, an Agent isActorOf some Activity. Activity
class, representing any Activity, can be classified based on the Actor of it e.g.
SingleActivity (which has only one actor), GroupActivity (which has
Group as its actor and can have many SinlgeActivity instances). An
Activity having some object of action on which it is done called
ActivityOnObject like CookingDinner, TurnOnLight, or WatchingTV
etc., while SelftActivity has no object of action e.g. Sleeping, or Bathing.
Activity itself is not related to time and location but whenever activity happens, it
generates an ActivityEvent (subclass of Event and
LocationContextObject), encapsulating both time and location information.

Our Device ontology is based on FIPA device ontology specification [17]. Every
Device has properties of hasHWProfile, hasOwner, hasService, and
hasProductInfo. Device is further classified into AudioDevice,
MemoryDevice, DisplayDevice, NetworkDevice. PDA is considered here
as subClassOf AudioDevice, DisplayDevice, NetworkDevice,
MemoryDevice and PersonalDevice. All different devices have associated
device profiles e.g. DisplayDevice hasDisplayProfile of
DisplayScreenProfile containing properties resolution, color, width,
height and unit. The hasService property of Device class has Range of
Service. Service, in our framework, has at present Software subclass which is
further sub-classified into disjoint classes Application and OS.

The environmental context is provided by the various classes in the Environment
ontology. Humidity, Sound, Light and Temperature are different
environmental information we are utilizing in our framework. This sensed
information is available though different sensors deployed in the smart environment,
and used by the applications to adapt their behavior. An Environment is unionOf
all different variables (temperature, light, sound and humidity) mentioned above.
Each of them has hasParameter property which links them to the different
information gathered from environment. For Sound, the hasParameter has the
range of AudioParameter class, which has subclasses, namely,
ACDCParameter (ACDC stands for Average Crossing/Direction Change Ratio),
HarmonicityRatio, Intensity, TransientDetection etc.
VideoParameter has been classified into MotionPattern,

PixelChangeVariance, PixelPercentageChange, Posture,
ZoomComponent etc.

...
<owl:Class rdf:ID="Activity"/>
<owl:ObjectProperty rdf:ID="generatesEvent">
 <rdfs:domain rdf:resource="#Activity"/>
 <rdfs:range rdf:resource="#ActivityEvent"/>
 <rdf:type
 rdf:resource="&owl;InverseFunctionalProperty "/>
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
</owl:ObjectProperty>
<owl:Class rdf:ID="ActivityEvent">
 <owl:equivalentClass>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#InstantActivityEvent"/>
 <owl:Class rdf:about="#IntervalActivityEvent"/>
 </owl:unionOf>
 </owl:Class>
 </owl:equivalentClass>
 <rdfs:subClassOf
 rdf:resource="&contellocation;LocationContextObject"/>
</owl:Class>
<owl:Class rdf:ID="IntervalActivityEvent">
 <rdfs:subClassOf rdf:resource="#ActivityEvent"/>
 <rdfs:subClassOf
 rdf:resource="&conteltime;IntervalEvent"/>
</owl:Class>
<owl:Class rdf:ID="InstantActivityEvent">
 <rdfs:subClassOf rdf:resource="#ActivityEvent"/>
 <rdfs:subClassOf
 rdf:resource="&conteltime;InstantEvent"/>
</owl:Class>
<owl:ObjectProperty rdf:ID="containsActivity">
 <rdfs:domain rdf:resource="#Activity"/>
 <rdfs:range rdf:resource="#Activity"/>
 <rdf:type rdf:resource="&owl;TransitiveProperty"/>
</owl:ObjectProperty>
...

...
<owl:Class rdf:ID="Environment">
 <owl:equivalentClass>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Humidity"/>
 <owl:Class rdf:about="#Light"/>
 <owl:Class rdf:about="#Sound"/>
 <owl:Class rdf:about="#Temperature"/>
 </owl:unionOf>
 </owl:Class>
 </owl:equivalentClass>
</owl:Class>
<owl:Class rdf:ID="Light">
 <rdfs:subClassOfrdf:resource="#Environment"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasParameter"/>
 <owl:allValuesFrom rdf:resource="#LightParameter"/>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="Parameter"/>
<owl:Class rdf:ID="LightParameter">
 <rdfs:subClassOf rdf:resource="#Parameter"/>
</owl:Class>
<owl:Class rdf:ID="LuminousIntensity">
 <rdfs:subClassOf rdf:resource="#LightParameter"/>
</owl:Class>
<owl:Class rdf:ID="Bright">
 <rdfs:subClassOf rdf:resource="#LuminousIntensity"/>
</owl:Class>
<owl:Class rdf:ID="TotalDark">
 <rdfs:subClassOf rdf:resource="#LuminousIntensity"/>
</owl:Class>
<owl:Class rdf:ID="Dark">
 <rdfs:subClassOf rdf:resource="#LuminousIntensity"/>
</owl:Class>
...

Fig.5. Few definitions from Activity and Environment ontology in OWL

Location ontology, an important aspect of ubiquitous computing environment, has
SpatialObject as its top level class. This class is equivalent of
SpatialObject defined at NASA Jet Propulsion Lab space ontology3. We have
imported this ontology into our space ontology, as it describes useful information
related to spatial objects. Place is a SpatialObject and has IndoorPlace and
OutdoorPlace as it two subclasses. Each Place has hasEnvironment property
which describes the environment conditions like temperature, humidity etc. A Place is
a isPartOf some other Place. As we have defined ontology for the home domain, we
have concepts like BedRoom, BathRoom, DinningRoom and LivingRoom etc.
in our ontology. SubRoom isPart of Room, and represents an interesting place
inside room such as OnBed, BesideDinningTable, InFrontOfTV, InSofa

3 http://sweet.jpl.nasa.gov/ontology/space.owl#

etc. LocationContextObject is anything which can have location context,
having properties of locatedIn, locatedNearBy, locatedFarAwayFrom
etc.

Temporal information is ubiquitous in real world situations and also considered as
common need for ubiquitous computing applications. For time, we are using the
concepts from DAML-Time ontology [16]. TemporalThing, a general concept,
has subclass of InstantThing, IntervalThing and Event.
InstantEvents (subclass of Event and InstantThing) can be thought of
points which don’t have any interior points e.g. entering a room, turning the TV on,
and turning lights off. While IntervalEvents (subclass of Event and
IntervalThing) denote events, that span some interval of time e.g. watching
movie, playing games, or attending the meeting. Every TemporalThing has
begins and ends properties pointing to the InstantThing and denotes its
beginning and end. inside relation is between IntervalThing and
InstantThing stating that some instant is inside the interval. before indicates
that some TemporalThing (sleeping) has its end before the beginning of some
TemporalThing (waking up). More details of our different ontologies can be
found at our website4.

5 Reasoning Mechanisms

The contextual information provided by the environment leads to only elementary
contexts. Some contexts are useful only when they are combination of some
elementary and/or composite contexts, and also need consistency of contextual
information. Our framework supports various pluggable reasoning modules and
developer of the context Aggregator services can exploit any kind of reasoning
mechanism based on application requirements. These reasoning modules are broadly
classified into ontology and context reasoning mechanisms.

5.1 Ontology Reasoning Mechanisms

High valued ontologies depend heavily on the availability of well-defined semantics
and powerful reasoning modules. The expressive power and the efficiency of
reasoning provided by OWL, (the semantics of OWL can be defined via a translation
into an expressive Description Logics (DL) [24]), make it an ideal candidate for
ontology constructs. The facts gathered from context entities make a factual world in
OWL, consisting of individuals and their relationships asserted through binary
relations.

Ontology reasoning helps us to find subsumption relationships (between
subconcept-superconcept), instance relationships (an individual i is an instance of
concept C), and consistency of context knowledge base, provided by Racer [23]
Server. In the design phase of formalizing the context entities, OWL reasoning

4 http://ucg.khu.ac.kr/ontology/0.1/

services (such as satisfiability and subsumption) can test whether concepts are non-
contradictory and can derive implied relations between concepts.

Also, a set of rules can be defined to assert additional constraints for context entity
instances when certain conditions (represented by a concept term) are met. For
instance, in Home, a person is generally considered as not doing official work. This
relationship is asserted by a rule (operator) that fires for every individual that is
classified as a member of concept Person and located in Home.

(locatedIn {Home}.Personx) (¬OnJob.Personx)

All concepts and relations are written using the Protégé 2000 [25] which allows
writing vocabularies in OWL. At present, we are using the Jena Semantic web toolkit
[26] to insert the context information as it allows parsing, managing, querying and
reasoning the ontologies programmatically.

5.2 Context Reasoning Mechanisms

Besides rules written in some form of logic, CAMUS also uses various machine
learning techniques to deal with context. Learning techniques that can be used include
Bayesian learning, neural networks, reinforcement learning, etc. Reinforcement
learning or neural networks could be used to learn the appropriate action to perform in
different states in an online, interactive manner. For learning the conditional
probabilities of different events, Bayesian learning is appropriate. Currently we are
focusing particularly on Bayesian networks, because they provide a flexible, noise
resilient and intuitively interpretable framework for classification, as well as causal
modeling [10], [11] and have proven useful in many application domains.

The naïve Bayes classifier is used to infer user activities at home. It uses context
data described by the ontology, a vector of elementary contexts with their confidence
values as inputs. No background information modeling is required, except for
choosing the relevant network inputs. Fuzzy membership values can be applied as
virtual evidence [11]. The classifier has proven robust even with missing, uncertain,
and incomplete information, and especially computationally efficient. Based on
context data, we seek to learn probabilistic classifiers for relevant user activities, i.e.:

a ∈ ACT = {Sleeping, Walking, WatchingTV, …}

Using a Bayesian approach, the system can determine the activity aMAP with the
maximum a posteriori (MAP) probability:

aMAP = arg max a∈ACT P(a|Location,Motion,Posture,

 Environment_params,Feature_params)

We can easily look for the maximum element by applying the Bayesian theorem
(the constant denominator can be eliminated because of the argmax), or giving some
other simplify assumptions such as all sensor value are conditionally independent
(naïve Bayes classifier). Figure 6 illustrates this recognition process with the input
values described in table 1.

Fig.6. An example of deducing user activity using Bayesian network

6 Initial Implementation

In the Feature Tuple Space, we are using the Tspaces [28] from IBM. Tspaces
provides considerable benefits because of its small footprint, support for group
communication, access control and flexibility for adding customized operations and
data types in the tuple space. Additional database features such as data integrity,
indexing, transactions and event notifications are also available for improved search
performance and reliability.

We are using the MySQL database as the ontology repository. All concepts and
relations are written using the Protégé 2000 [25] which allows writing vocabularies in
OWL. At present, we are using the Jena Semantic web toolkit [26] to insert the
context information as it allows parsing, managing, querying and reasoning the
ontologies programmatically. The Feature - Context Mapping layer utilizes the API
provided by Jena to insert the elementary context into MySQL. An in-memory or flat
file model can be used instead of database if the context domain is small and contains
not many contexts to manage. The rule based reasoning engine provided by Jena uses
RDQL (RDF Query Language), to access the stored knowledge in the ontology
repository. Naïve Bayes approach is used to detect that the user activity using the
continuous elementary context from the ontology repository and the produced
composite context is saved in the ontology repository once inputs to the network
change.

In order to provide customized wrappers for new sensors, a developer will extend
from the basic functionality provided by the infrastructure along with providing a

description of the sensor in OWL. This description (meta-info) is used by the Feature
- Context Mapping layer to perform necessary mappings for production of context.

Table 2. Expandable Features implemented in CAMUS, both simple and composed features
are extracted to combine with other sensors’ features for deducing context data.

Sensor Type Feature Type Feature Value (Quantized.Symbolic value)

1.Intensity {1.Silent, 2.Moderate, 3.Loud}
2.ACDCRatio (Average
Crossing/Direction Change
Ratio)

{1.VeryLow, 2.Low, 3.Avg, 4.High,
5.VeryHigh}

3.HarmonicityRatio {1.Low, 2.Medium, 3.High}
4.SpectralCentroid {1.Ultralow, 2.Low, 3.Medium, 4.High}
5.SpectralSpread {1.Low, 2.Medium, 3.High}
6.TransientDetection {0.None, 1.Transient}
7.LowEnergyRatio {1.Low, 2.High}

1.Audio

8.AudioType {0.Unknown, 1.Music, 2.TelephoneRing,
3.Applause}

1.Pixel Percent
Change

(%) OR {1.Low, 2.High}

2.Pixel Change
Variance

{1.Low, 2.Medium, 3.High}

3.Motion Pattern {1.Stable, 2.Regular, 3.Irregular}
4.Translational
Component

{0.None, 1.Up, 2.Down, 3.RightSideway,
4.LeftSideway}

5.Zoom Component {0.None, 1.ZoomIn [Forward], 2.ZoomOut
[Backward]}

6.Posture {1.Standing, 2.Lying, 3.Bending,
4.Walking}

2. Video

*Posture is a
composed
feature,
determined from
the basic video
features such as
pixel change
variance,
translational
and zoom
components of
motion 7.Luminous Intensity {1.TotalDark, 2.Dark, 3.Bright,

4.VeryBright} OR (% luminance)
3.Light 1.Light_Source (0.NotDetermined, 1.Natural, 2.Artificial)
4.
Temperature

1.Temperature {1.Cold, 2.Warm, 3.Normal, 4.Hot}

5.Humidity 1.Humidity {1.Dry, 2.Normal, 3.Humid}
1.Tag_ID {PersonID, DeviceID etc}
2.Reader_ID {1.Washroom, 2.Kitchen, 3. Bedroom,

4.Living room…}

6.RFID

3.Granularity {1.Low, 2.Medium, 3.High}
{7.TV, 8.ElectricOven, 9.MainDoor,
10.WaterHeater} 1.Status

{1.On, 2.Off} (planned for future
implementation)

7 Discussion and Future Work

Since features are quantized/segmented to semantic value, feature tuples can greatly
reduce the communication overheads. Thus, communication facilities with small
footprint like emerging ZigBee technology can be employed exchanging features
among interested parties. This can promote the development of autonomous,
distributed and low cost, plug and play sensing modules with embedded feature
extraction and classification algorithms.

OWL is the effort towards standard ontologies. It requires an effort to agree upon
concepts and relationships in different domains to enable sharing the context. The
semantic interoperability should be seen as an emergent phenomenon constructed
incrementally, leading to the web of emergent semantics. Same effort is required in
the context-aware computing to agree upon common semantics among different
domains so that context information can be shared in the real sense.

A ‘Smart Home’ test bed has been setup and a prototype CAMUS system is under
development for step-by-step evaluation of the proposed architecture. This will enable
us to verify the architecture, witness strong and weak spots, improve upon the
architecture and provide effective solutions for real world applications.

Many prototype and commercial context-aware middleware are expected to coexist
in a real deployment environment. CAMUS will provide interfaces for
communication with middleware solutions by other developers. This cross platform
communication enables data sharing and adds to the possible amount of context
information available to CAMUS users. As a first step, the authors will provide OSGi
[27] compliant interface/bundle for communication and data utilization from the
Context Toolkit [3] infrastructure.

8 Summary

In this paper we have presented the CAMUS as a unified middleware framework for
context-aware ubiquitous computing systems. CAMUS envisions a comprehensive
middleware solution that not only focuses on providing context composition at the
software level but also facilitates dynamic features retrieval at the hardware level by
masking the inherent heterogeneity of environment sensors. Complexity is handled by
providing ‘separation of concerns’ between environment features extraction,
contextual data composition and context interpretation. Different reasoning
mechanisms are incorporated in CAMUS as pluggable services, ranging from rules
written in different types of logic to machine-learning mechanisms.. Ontology based
formal context modeling using OWL is described for a home domain. With a
systematic approach, CAMUS is proved to be a flexible and reusable novel
middleware framework

References

1. M. Weiser: Scientific America. The Computer for the 21st Century. (Sept. 1991) 94-104;
reprinted in IEEE Pervasive Computing. (Jan.-Mar. 2002) 19-25

2. M. Satyanarayanan: IEEE Personal Communications. Pervasive Computing: Vision and
Challenges. (Aug. 2001) 10-17

3. Dey, A.K., et al.: A Conceptual Framework and a Toolkit for Supporting the Rapid
Prototyping of Context-Aware Applications. Anchor article of a special issue on Context-
Aware Computing, Human-Computer Interaction (HCI) Journal, Vol. 16. (2001)

4. S. Jang, W. Woo: Ubi-UCAM: A Unified Context-Aware Application Model. In: Context
2003, Stanford, CA, USA. (Jun. 2003)

5. J. Hong: The Context Fabric. http://guir.berkeley.edu/projects/confab/
6. Kumar, M.; Shirazi, B.A.; Das, S.K.; Sung, B.Y.; Levine, D.; Singhal, M: PICO: a

middleware framework for pervasive computing. In: IEEE Pervasive Computing, Vol. 2
Issue 3. (July – Sept, 2003) 72- 79

7. Anand Ranganathan and Roy H. Campbell: A Middleware for Context-Aware Agents in
Ubiquitous Computing Environments. In: CM/IFIP/USENIX International Middleware
Conference, Brazil. (Jun. 2003)

8. Chen Harry, Tim Finin, and Anupam Joshi: An Intelligent Broker for Context-Aware
Systems. In: Ubicomp 2003, Seattle, Washington. (Oct. 2003)

9. Zadeh, L.: Fuzzy Sets. Information and Control 8, (1965) 338-353
10. Korpipaa, P., Koskinen, M., Peltola, J., Makela, S. M., Seppanen, T.: Bayesian approach to

sensor-based context awareness. In: Personal and Ubiquitous Computing, Vol. 7, Issue 2.
(July 2003) 113-124

11. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Revised second printing. Morgan
Kaufmann, San Francisco. (1988)

12. Winograd T.: Architectures for Context. In: Human-Computer Interaction (HCI) Journal,
'01, Vol. 16.

13. S. S. Yau, F. Karim, Y. Wang, B. Wang, S.Gupta: Reconfigurable Context-Sensitive
Middleware for Pervasive Computing. (Jul.-Sep. 2002) 33-40

14. W3C Web Ontology Working Group: The Web Ontology language: OWL.
http://www.w3.org/2001/sw/WebOnt/

15. J. Davies, D. Fensel, F. V. Harmelen: Towards the Semantic Web, Ontology-Driven
Knowledge Management, John Wiley & Sons. (Nov. 2002)

16. Hobbs, J. R.: A Daml ontology of time. http://www.cs.rochester.edu/~ferguson/daml/daml-
time-nov2002.txt. (2002)

17. FIPA Device Ontology Specification. http://www.fipa.org/specs/fipa00091/SI00091E.pdf
18. Brickley, D., Miller, L.: FOAF Vocabulary Specification. http://xmlns.com/foaf/0.1/
19. Jini. http://www.jini.org/
20. UPnP. http://upnp.org/
21. Trastour, D., Bartolini, C., Gonzalez-Castillo, J.: A Semantic Web Approach to Service

Description for Matchmaking of Services. HP Labs Bristol. HPL-2001-183. (2001)
22. Li, L., Horrocks, I.: A software framework for matchmaking based on semantic web

technology. In: WWW 2003, ACM. (2003) 331-339
23. Haarslev, V., Moller, R.: Racer: A Core Inference Engine for the Semantic Web. In:

EON2003, Sanibel Island, Florida. (Oct. 2003)
24. Baadar, F., Horrocks, I., Sattler, U.: Description Logics. Handbook on Ontologies. (2004)

3-28
25. Protégé Project. http://protege.stanford.edu
26. Jena: A Semantic Web Framework for Java. http://jena.sourceforge.net/
27. OSGi. http://www.osgi.org/
28. IBM Research: TSpaces. http://www.almaden.ibm.com/cs/TSpaces

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

